
Computational Tools
for Data Science

Week 3 Lecture:
MapReduce

The New Software Stack

• Modern computing often makes use of massive data/files

• Just reading such files from disk takes a prohibitively long time

• Must make use of parallelism

• Cluster Computing Model

Cluster Computing Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch

Challenge: Machines fail

• One server may stay up 3 years (1,000 days)
• If you have 1,000 servers, expect to lose 1/day
• People estimated Google had approximately 1M machines in 2011

• 1,000 machines fail every day!

Solution: Distributed file system.

Distributed File System

• Provides global namespace, redundancy, and availability

• Examples:
• Google File System (GFS)
• Hadoop File System (HDFS)

• Typical usage pattern:
• Huge files
• Data rarely updated in place
• Reads and appends are common

Distributed File System

• Chunk servers
• Files split into “chunks”
• Typically 16-64 MB
• Each chunk replicated 2x or 3x, preferably on different racks

• Master/Name node
• Stores metadata about where files are stored
• Might be replicated

• Client library for file access
• Talks to master to find chunks
• Connects directly to chunk servers to access data

Other Challenges

• Network Bottlenecks
• Network bandwidth e.g. 40 Gbps
• Moving 400 TB takes approximately 1 day

Idea: move computation to the data

• Distributed programming is hard!
• Need a simple model that hides most of the complexity

Solution to both: MapReduce!

MapReduce
• Dataflow

• Split: Partition data into chunks and distribute to different machines.
• Map: Map data items to list of <key, value> pairs.
• Shuffle: Group data with the same key and send to the same machine.
• Reduce: Takes list of values with the same key <key, [value1, ..., valuek]> and

outputs list of new data items.

• You only write the Map and Reduce functions.

• Technically all inputs to Map tasks and outputs from Reduce tasks
should have <key, value> form to allow for composition.

MapReduce: Word Counting

• Input: Document of words
• Output: Frequency of each word

• Document: “Deer Bear River Car Car River Deer Car Bear.”

• (Bear, 2), (Car, 3), (Deer, 2), (River, 2)

MapReduce: Word Counting

MapReduce more formally

• Input: a set of key-value pairs <𝑘, 𝑣>

• map(𝑘, 𝑣) ➝ <𝑘1, 𝑣1>, <𝑘2, 𝑣2>, …, <𝑘𝑛, 𝑣𝑛>
• Takes a key-value pair and outputs a set of key-value pairs (possibly zero)
• One map call for every input <k,v> pair

• reduce(𝑘, [𝑣1, … , 𝑣𝑟]) ➝ <𝑘, 𝑣!">, …, <𝑘, 𝑣#">
• All values 𝑣𝑖 with the same key 𝑘 are reduced together
• There is one reduce call for each unique key 𝑘 produced by map

MapReduce: Inverted Index

• Input: Set of documents
• Output: List of documents that contain each word

• Document 1: “Deer Bear River Car Car River Deer Car Bear.”
• Document 2: "Deer Antilope Stream River Stream"

• (Bear, [1]), (Car, [1]), (Deer, [1,2]), (River, [1,2]), (Antilope, [2]), (Stream, [2])

MapReduce: Inverted Index

• map(word in document i) ➝ <word, i>

• reduce(word, [i1, i2, …, ik]) ➝ <word, [j1, j2, …, jk’]>

↑
Unique
(sorted)

MapReduce: Common Friends

• Input: Friend lists
• Output: For pairs of friends, a list of common friends

Matrix Vector Multiplication

• Input: 𝑟×𝑛 matrix 𝑀, vector 𝑣 of length 𝑛
• 𝑚!" = (𝑖, 𝑗) entry of 𝑀
• 𝑣" = 𝑗th entry of 𝑣

• Output: vector 𝑥 = 𝑀𝑣 of length 𝑟 with entries

𝑥! = ,
"#$

%

𝑚!"𝑣"

Matrix Vector Multiplication

𝑥$ = -
%&!

'

𝑚$%𝑣%

• map(𝑚$%) ➝ <𝑖,𝑚$%𝑣%>
• So all terms making up 𝑥! have the same key

• reduce: simply sum up all values associated to a key 𝑖 to get <𝑖, 𝑥$>

What if 𝑣 is too big for main memory?

Matrix 𝑀 Vector 𝑣

Relations
• A relation is a table with column headers called attributes, e.g.

• Rows of the table are called tuples

• Write 𝑅(𝐴1, 𝐴2, … , 𝐴') to say that the relation name is 𝑅 and its
attributes are 𝐴1, 𝐴2, … , 𝐴'

• Used in databases

Operations on relations

• Selection: Apply a condition 𝐶 to each tuple in the relation and
produce as output only those tuple that satisfy 𝐶. Denoted 𝜎((𝑅).

• Projection: For some subset 𝑆 of attributes, produce from each tuple
only the components for the attributes in 𝑆. The result of this
projection is denoted 𝜋)(𝑅).

• Union, Intersection, and Difference: Used for two relations with the
same schema.

Operations on relations (cont.)

• Natural Join: Given two relations 𝑅 and 𝑆, compare each pair of
tuples, one from each relation. If the tuples agree on all the attributes
that are common to the two schemas, then produce a tuple that has
components for each of the attributes in either schema and agrees
with the two tuples on each attribute. If the tuples disagree on one or
more shared attributes, then produce nothing from this pair of tuples.
Denoted 𝑅 ⋈ 𝑆.

Operations on relations (cont.)

• Grouping and Aggregation:
• Given a relation 𝑅, partition its tuples according to their values in one set of

attributes 𝐺, called the grouping attributes.
• For each group, aggregate the values in certain other attributes.
• The normally permitted aggregations are SUM, COUNT, AVG, MIN, and MAX.
• The result of this operation is one tuple for each group. That tuple has a

component for each of the grouping attributes, with the value common to
tuples of that group.

• It also has a component for each aggregation, with the aggregated value for
that group.

Selections using MapReduce

• map: for each tuple 𝑡 in relation 𝑅, test if it satisfies 𝐶.
• If it does, produce <𝑡, 𝑡>
• Otherwise produce nothing

• reduce: the identity function
• The values (or keys) form the relation 𝜎&(𝑅)

Projections using MapReduce

• map: For each tuple 𝑡 in 𝑅, construct a tuple 𝑡′ by eliminating from 𝑡
those components whose attributes are not in 𝑆. Output the key-
value pair <𝑡", 𝑡′>.

• reduce: <𝑡", [𝑡", 𝑡", … , 𝑡"]> ➝ <𝑡", 𝑡′>

Operations using MapReduce

• Union:
• map(𝑡) ➝ <𝑡, 𝑡>
• Reduce: <𝑡, 𝑡 > ➝ <𝑡, 𝑡> and <𝑡, [𝑡, 𝑡]> ➝ <𝑡, 𝑡>

• Intersection:
• map(𝑡) ➝ <𝑡, 𝑡>
• reduce: <𝑡, [𝑡, 𝑡]> ➝ <𝑡, 𝑡> and <𝑡, 𝑡 > ➝ nothing

• Difference 𝑹− 𝑺:
• map: 𝑡 ➝ <𝑡, 𝑅> for 𝑡 in 𝑅 and 𝑡 ➝ <𝑡, 𝑆> for 𝑡 in 𝑆
• reduce: produce <𝑡, 𝑡> if value list is [𝑅], otherwise produce nothing

Natural Join using MapReduce

• Consider joining 𝑅(𝐴, 𝐵) and S(𝐵, 𝐶)

• map: (𝑎, 𝑏) ➝ <𝑏, (𝑅, 𝑎)> for (𝑎, 𝑏) in 𝑅
𝑏, 𝑐 ➝ <𝑏, (𝑆, 𝑐)> for 𝑏, 𝑐 in 𝑆

• reduce:
• each key 𝑏 will be associated to a list of pairs each of the form (𝑅, 𝑎) or 𝑆, 𝑐
• Construct all triples 𝑎, 𝑏, 𝑐 where (𝑅, 𝑎) and 𝑆, 𝑐 are associated to key 𝑏
• These triples are your values and the keys are irrelevant

Group and Aggregation using MapReduce

• Consider 𝑅(𝐴, 𝐵, 𝐶) where 𝐴 will be a grouping attribute, 𝐵 an
aggregated attribute, and 𝐶 neither grouped nor aggregated.
• 𝜃 is the aggregation function, e.g., MAX, MIN, COUNT, etc.

• map(𝑎, 𝑏, 𝑐) ➝ <𝑎, 𝑏>

• reduce(𝑎, [𝑏1, … , 𝑏*]) ➝ (𝑎, 𝜃(𝑏1, … , 𝑏*))

Matrix Multiplication 𝑃 = 𝑀𝑁
𝑝$* = -

%

𝑚$%𝑛%*

• Can think of 𝑀 and 𝑁 as relations:
• 𝑀(𝐼, 𝐽, 𝑉) with tuples 𝑖, 𝑗, 𝑚𝑖𝑗
• 𝑀(𝐽, 𝐾,𝑊) with tuples (𝑗, 𝑘, 𝑛"')

• Good for sparse matrices (only need to record nonzero entries)

• Natural join: (𝑖, 𝑗, 𝑘, 𝑣, 𝑤) for each (𝑖, 𝑗, 𝑣) in 𝑀 and (𝑗, 𝑘, 𝑤) in 𝑁
• This represents the pair (𝑚𝑖𝑗, 𝑛"')
• Want (𝑖, 𝑗, 𝑘, 𝑣×𝑤)

Matrix Multiplication (cont.)

𝑝$* = -
%

𝑚$%𝑛%*

• map: for 𝑚𝑖𝑗 produce <𝑗, (𝑀, 𝑖,𝑚$%)>, for 𝑛𝑗𝑘 produce <𝑗, (𝑁, 𝑘, 𝑛𝑖𝑘)>
• reduce: for each value (𝑀, 𝑖,𝑚$%) and each value (𝑁, 𝑘, 𝑛𝑖𝑘)

associated to key 𝑗, produce <(𝑖, 𝑘),𝑚$%𝑛%*>

• map: identity
• reduce: for each key (𝑖, 𝑘) compute the sum of the associated values

Matrix multiplication in one step

• map:
• for each 𝑚𝑖𝑗 produce <(𝑖, 𝑘), (𝑀, 𝑗, 𝑚𝑖𝑗)> for all 𝑘
• for each 𝑛𝑗𝑘 produce <(𝑖, 𝑘), (𝑁, 𝑗, 𝑛𝑗𝑘)> for all 𝑖

• reduce:
• each key (𝑖, 𝑘) will have an associated list with all the values (𝑀, 𝑗, 𝑚𝑖𝑗) and
(𝑁, 𝑗, 𝑛𝑗𝑘) for all 𝑗

• Must match up (𝑀, 𝑗, 𝑚𝑖𝑗) and (𝑁, 𝑗, 𝑛𝑗𝑘) for each 𝑗 (sort by 𝑗)
• Multiply the third components and sum these up to obtain 𝑝𝑖𝑘
• Output <(i,k),𝑝𝑖𝑘>

• Not necessarily faster

