
DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computational Tools for Data Science

Week 7:

Mining social network graphs

1

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Recap: Graphs

• A (simple and undirected) graph is a pair 𝑮𝑮 = (𝑽𝑽(𝑮𝑮),𝑬𝑬(𝑮𝑮)).

• The set 𝑽𝑽(𝑮𝑮) is the vertex set of the graph 𝐺𝐺. Its elements are the
vertices of 𝐺𝐺 (sometimes they are also called nodes).

2

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Recap: Graphs

• A (simple and undirected) graph is a pair 𝑮𝑮 = (𝑽𝑽(𝑮𝑮),𝑬𝑬(𝑮𝑮)).

• The set 𝑽𝑽(𝑮𝑮) is the vertex set of the graph 𝐺𝐺. Its elements are the
vertices of 𝐺𝐺 (sometimes they are also called nodes).

• The set 𝑬𝑬(𝑮𝑮) is the edge set of 𝐺𝐺. Its elements are the edges of 𝐺𝐺.
– An edge 𝑒𝑒 ∈ 𝐸𝐸 𝐺𝐺 is a 2-element subset of the vertex set 𝑉𝑉(𝐺𝐺).

Hence, 𝑒𝑒 = 𝑢𝑢, 𝑣𝑣 for some vertices 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 𝐺𝐺 .
We briefly write 𝑢𝑢𝑣𝑣 for an edge 𝑢𝑢, 𝑣𝑣 .

3

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Recap: Graphs
Simple graphs:

1. No loops:

2. No parallel edges:

4

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Recap: Graphs
Undirected graphs… what are directed graphs (briefly digraphs):

Edges are directed:

Formally, edges are no longer 2-element subsets of 𝑉𝑉(𝐺𝐺).

Model a directed edge 𝒆𝒆 (also called arc) as a triple 𝒆𝒆,𝒗𝒗,𝒖𝒖 ,
meaning that the arc 𝑒𝑒 is directed from vertex 𝑣𝑣 to vertex 𝑢𝑢.

5

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Graphs as models for networks
Examples:

• Transportation network

• Electric circuits

• Many types of flows: traffic flow, electric flow …

• Phylogenetic networks (more complex than phylogenetic trees)

• Timetables and assignments with priorities (Nobel prize: Shapley)

• Internet

6

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Social networks
Examples:

• Communication networks: telephone networks, email networks

• Financial transactions

• Collaboration networks

• Social media, e.g.:
– Facebook friends relation corresponds to undirected edge
– Twitter follow relation corresponds to directed edge

• (Internet)

7

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs

1. Vertices correspond to network participants:
people, addresses, websites, accounts

8

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs

1. Vertices correspond to network participants:
people, addresses, websites, accounts

2. Edges correspond to relationship between two participants:
friends or no friends (undirected edge)
following (directed edge)
flow of transactions (weighted edge)
different types of relationship (coloured edge)

9

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs

1. Vertices correspond to network participants:
people, addresses, websites, accounts

2. Edges correspond to relationship between two participants:
friends or no friends (undirected edge)
following (directed edge)
flow of transactions (weighted edge)
different types of relationship (coloured edge)

3. Locality property

10

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs

3. Locality property

We assume the network is not random.

Relations within the network tend to cluster in communities.

11

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs

3. Locality property

We assume the network is not random.

Relations within the network tend to cluster in communities.

If A is related to B and B is related to C, then the probability of A and
C being related is higher than the average.

12

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

13

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

14

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Random: probability for 𝑋𝑋,𝑍𝑍 ∈ 𝐸𝐸(𝐺𝐺): 𝐸𝐸 𝐺𝐺 −2
𝑉𝑉(𝐺𝐺)
2 −2

= 7
19
≈ 0,368

15

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: If 𝑌𝑌 = 𝐴𝐴, then 𝑋𝑋,𝑍𝑍 = 𝐵𝐵,𝐶𝐶 . Fits locality.

16

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: Same for 𝑌𝑌 = 𝐶𝐶,𝐺𝐺,𝐸𝐸

17

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: If 𝑌𝑌 = 𝐹𝐹, then 𝑋𝑋,𝑍𝑍 = 𝐷𝐷,𝐺𝐺 and 𝑋𝑋,𝑍𝑍 = 𝐷𝐷,𝐸𝐸 fit locality.

18

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: If 𝑌𝑌 = 𝐹𝐹, 𝑋𝑋,𝑍𝑍 = 𝐸𝐸,𝐺𝐺 violates locality.

19

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: If 𝑌𝑌 = 𝐹𝐹, 𝑋𝑋,𝑍𝑍 = 𝐸𝐸,𝐺𝐺 violates locality. So far: 6 vs. 1.

20

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: If 𝑌𝑌 = 𝐵𝐵: 3 neighbours, only 2 of them adjacent. 7 vs. 3

21

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: If 𝑌𝑌 = 𝐷𝐷: 4 neighbours, 2 pairs of them adjacent. 9 vs. 7

22

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Suppose 𝑋𝑋,𝑌𝑌 , 𝑌𝑌,𝑍𝑍 ∈ 𝐸𝐸 𝐺𝐺 . Check 𝑋𝑋,𝑍𝑍 :

Actually: Fraction the number of times edge 𝑋𝑋,𝑍𝑍 exists: 9
9+7

≈ 0,563

23

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modelling social networks via graphs
Example

𝐸𝐸 𝐺𝐺 = 9

𝑉𝑉 𝐺𝐺 = 7

𝑉𝑉(𝐺𝐺)
2

=
7
2

= 21

Conclusion: 0,563 ≫ 0,368. So locality property holds. The graph
might be suitable to model a social network.

24

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Clustering (partitioning) social network graphs

Problems with previously introduced clustering tools.

Examples:

1. Agglomerative hierarchical clustering

2. Point assignment tools (e.g. 𝑘𝑘-means)

25

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

Let 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 𝐺𝐺 . The usual distance function 𝑑𝑑 on a graph is:

𝑑𝑑 𝑢𝑢, 𝑣𝑣 = 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒔𝒔 𝒑𝒑𝒑𝒑𝒔𝒔𝒔𝒔 𝑏𝑏𝑒𝑒𝑙𝑙𝑏𝑏𝑒𝑒𝑒𝑒𝑙𝑙 𝑢𝑢 𝑎𝑎𝑙𝑙𝑑𝑑 𝑣𝑣 𝑖𝑖𝑙𝑙 𝐺𝐺

26

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

Let 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 𝐺𝐺 . The usual distance function 𝑑𝑑 on a graph is:

𝑑𝑑 𝑢𝑢, 𝑣𝑣 = 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒔𝒔 𝒑𝒑𝒑𝒑𝒔𝒔𝒔𝒔 𝑏𝑏𝑒𝑒𝑙𝑙𝑏𝑏𝑒𝑒𝑒𝑒𝑙𝑙 𝑢𝑢 𝑎𝑎𝑙𝑙𝑑𝑑 𝑣𝑣 𝑖𝑖𝑙𝑙 𝐺𝐺

Say we measure distance between two clusters 𝐶𝐶1 and 𝐶𝐶2 via
shortest distance between two members, one from each cluster.

27

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

Let 𝑢𝑢, 𝑣𝑣 ∈ 𝑉𝑉 𝐺𝐺 . The usual distance function 𝑑𝑑 on a graph is:

𝑑𝑑 𝑢𝑢, 𝑣𝑣 = 𝑙𝑙𝑒𝑒𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑜𝑜𝑜𝑜 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒆𝒆𝒔𝒔𝒔𝒔 𝒑𝒑𝒑𝒑𝒔𝒔𝒔𝒔 𝑏𝑏𝑒𝑒𝑙𝑙𝑏𝑏𝑒𝑒𝑒𝑒𝑙𝑙 𝑢𝑢 𝑎𝑎𝑙𝑙𝑑𝑑 𝑣𝑣 𝑖𝑖𝑙𝑙 𝐺𝐺

Say we measure distance between two clusters 𝐶𝐶1 and 𝐶𝐶2 via
shortest distance between two members, one from each cluster.

Hence, we always merge two clusters (or vertices) that are directly
connected by an edge (yielding shortest possible distance, namely 1).

28

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

29

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

30

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

31

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

32

• Let 𝑒𝑒 ∈ 𝐸𝐸(𝐺𝐺) whose end vertices lie in different clusters 𝐶𝐶1𝑒𝑒, 𝐶𝐶2𝑒𝑒. In
each merging step, the probability of merging the clusters 𝐶𝐶1𝑒𝑒and 𝐶𝐶2𝑒𝑒
is the same for each such edge 𝑒𝑒.

• At some point (maybe even initially) it becomes likely that we
merge two clusters that should not be combined.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with agglomerative clustering

33

• Let 𝑒𝑒 ∈ 𝐸𝐸(𝐺𝐺) whose end vertices lie in different clusters 𝐶𝐶1𝑒𝑒, 𝐶𝐶2𝑒𝑒. In
each merging step, the probability of merging the clusters 𝐶𝐶1𝑒𝑒and 𝐶𝐶2𝑒𝑒
is the same for each such edge 𝑒𝑒.

• At some point (maybe even initially) it becomes likely that we
merge two clusters that should not be combined.

• (We might prevent this by more sophisticated methods, e.g.
only merge / stop merging when density / cohesion becomes too
low, but the naïve approach is not suitable.)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with point assignment (e.g. 𝑘𝑘-means)

34

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with point assignment (e.g. 𝑘𝑘-means)

35

• Say we set 𝑘𝑘 = 2 (fitting to our example graph).

• Say our first 2 clustroids are B (at random) and F (far apart from B).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with point assignment (e.g. 𝑘𝑘-means)

36

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Problems with point assignment (e.g. 𝑘𝑘-means)

37

• Say we set 𝑘𝑘 = 2 (fitting to our example graph).

• Say our first 2 clustroids are B (at random) and F (far apart from B).

• A and C are assigned to B’s cluster.

• E and G are assigned to F’s cluster.

• Assigning D to B’s or F’s cluster is equally reasonable.

– Hence, with probability 0,5 vertex D ends up in the wrong cluster.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Betweenness

38

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Betweenness centrality
Label each edge 𝑒𝑒 = 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸(𝐺𝐺) with a score 𝑏𝑏(𝑒𝑒).

39

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Betweenness centrality
Label each edge 𝑒𝑒 = 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸(𝐺𝐺) with a score 𝑏𝑏(𝑒𝑒). Define:

𝑏𝑏 𝑒𝑒 = �
𝑥𝑥,𝑦𝑦∈𝑉𝑉(𝐺𝐺)
𝑥𝑥≠𝑦𝑦

𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑥𝑥 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠 𝑙𝑙𝑙𝑎𝑎𝑙𝑙 𝑢𝑢𝑠𝑠𝑒𝑒 𝑒𝑒
𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑥𝑥 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠

40

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Betweenness centrality
Label each edge 𝑒𝑒 = 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸(𝐺𝐺) with a score 𝑏𝑏(𝑒𝑒). Define:

𝑏𝑏 𝑒𝑒 = �
𝑥𝑥,𝑦𝑦∈𝑉𝑉(𝐺𝐺)
𝑥𝑥≠𝑦𝑦

𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑥𝑥 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠 𝑙𝑙𝑙𝑎𝑎𝑙𝑙 𝑢𝑢𝑠𝑠𝑒𝑒 𝑒𝑒
𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑥𝑥 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠

This labelling is called the betweenness centrality (sometimes also
just called betweenness) of the edge 𝒆𝒆. The betweenness (centrality)
for vertices is defined analogously.

41

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Betweenness centrality
Label each edge 𝑒𝑒 = 𝑢𝑢, 𝑣𝑣 ∈ 𝐸𝐸(𝐺𝐺) with a score 𝑏𝑏(𝑒𝑒). Define:

𝑏𝑏 𝑒𝑒 = �
𝑥𝑥,𝑦𝑦∈𝑉𝑉(𝐺𝐺)
𝑥𝑥≠𝑦𝑦

𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑥𝑥 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠 𝑙𝑙𝑙𝑎𝑎𝑙𝑙 𝑢𝑢𝑠𝑠𝑒𝑒 𝑒𝑒
𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑥𝑥 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠

This labelling is called the betweenness centrality (sometimes also
just called betweenness) of the edge 𝒆𝒆. The betweenness (centrality)
for vertices is defined analogously.

Idea: High betweenness indicates:
1. An edge/vertex of 𝐺𝐺 where many paths must run through (hence,

maybe low connectivity).
2. A central position for the edge/vertex, otherwise not many paths.

42

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Betweenness centrality for edges

43

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

44

• Start with one cluster (if our initial graph 𝐺𝐺 is connected).

• In each step, we consider a subgraph 𝐻𝐻 of 𝐺𝐺 and the clusters
correspond to connected components of 𝐻𝐻.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

45

• Start with one cluster (if our initial graph 𝐺𝐺 is connected).

• In each step, we consider a subgraph 𝐻𝐻 of 𝐺𝐺 and the clusters
correspond to connected components of 𝐻𝐻.

• Per step: delete the edges of highest betweenness.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

46

• Start with one cluster (if our initial graph 𝐺𝐺 is connected).

• In each step, we consider a subgraph 𝐻𝐻 of 𝐺𝐺 and the clusters
correspond to connected components of 𝐻𝐻.

• Per step: delete the edges of highest betweenness.

– If some connected component / cluster decomposes into new
ones (2 or maybe more), replace cluster by the new connected
components (2 or maybe more).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

47

• Start with one cluster (if our initial graph 𝐺𝐺 is connected).

• In each step, we consider a subgraph 𝐻𝐻 of 𝐺𝐺 and the clusters
correspond to connected components of 𝐻𝐻.

• Per step: delete the edges of highest betweenness.

– If some connected component / cluster decomposes into new
ones (2 or maybe more), replace cluster by the new connected
components (2 or maybe more).

– If deletion of the edges does not disconnect a cluster, keep it.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer 48

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer 49

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer 50

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer 51

Divisive hierarchical clustering via betweenness:
Girvan-Newman Algorithm

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

52

• We need to count shortest paths (that use a specific edge).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

53

• We need to count shortest paths (that use a specific edge).

• Girvan-Newman Algorithm

– Count shortest paths from a given start vertex.

o This is done in 3 steps.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

54

• We need to count shortest paths (that use a specific edge).

• Girvan-Newman Algorithm

– Count shortest paths from a given start vertex.

o This is done in 3 steps.

– We repeat this for every vertex.

o Eventually, we will have counted each shortest path twice.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

55

• Let 𝐺𝐺 be the given graph with |𝑉𝑉(𝐺𝐺)| = 𝑙𝑙 and |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 for some
𝑚𝑚,𝑙𝑙 ∈ ℕ. We fix a vertex of 𝐺𝐺, call it 𝒔𝒔.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

56

• Let 𝐺𝐺 be the given graph with |𝑉𝑉(𝐺𝐺)| = 𝑙𝑙 and |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 for some
𝑚𝑚,𝑙𝑙 ∈ ℕ. We fix a vertex of 𝐺𝐺, call it 𝒔𝒔.

• Perform a breadth-first search (BFS) in 𝐺𝐺 with 𝒔𝒔 as the root.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

57

• Let 𝐺𝐺 be the given graph with |𝑉𝑉(𝐺𝐺)| = 𝑙𝑙 and |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 for some
𝑚𝑚,𝑙𝑙 ∈ ℕ. We fix a vertex of 𝐺𝐺, call it 𝒔𝒔.

• Perform a breadth-first search (BFS) in 𝐺𝐺 with 𝒔𝒔 as the root.

• Instead of storing a breadth-first search tree, we store precisely
all those edges that lie on some shortest path starting in 𝑠𝑠.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

58

• Let 𝐺𝐺 be the given graph with |𝑉𝑉(𝐺𝐺)| = 𝑙𝑙 and |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 for some
𝑚𝑚,𝑙𝑙 ∈ ℕ. We fix a vertex of 𝐺𝐺, call it 𝒔𝒔.

• Perform a breadth-first search (BFS) in 𝐺𝐺 with 𝒔𝒔 as the root.

• Instead of storing a breadth-first search tree, we store precisely
all those edges that lie on some shortest path starting in 𝑠𝑠.

• In other words: we store no edges whose end vertices lie in the
same distance class w.r.t. 𝑠𝑠, but all edges whose end vertices lie
in different distance classes w.r.t. 𝑠𝑠.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

59

• Let 𝐺𝐺 be the given graph with |𝑉𝑉(𝐺𝐺)| = 𝑙𝑙 and |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 for some
𝑚𝑚,𝑙𝑙 ∈ ℕ. We fix a vertex of 𝐺𝐺, call it 𝒔𝒔.

• Perform a breadth-first search (BFS) in 𝐺𝐺 with 𝒔𝒔 as the root.

• Instead of storing a breadth-first search tree, we store precisely
all those edges that lie on some shortest path starting in 𝑠𝑠.

• In other words: we store no edges whose end vertices lie in the
same distance class w.r.t. 𝑠𝑠, but all edges whose end vertices lie
in different distance classes w.r.t. 𝑠𝑠.

• The running time of BFS is 𝑶𝑶 𝒎𝒎 .

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

60

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

61

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 1

62

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 2

63

For each vertex 𝑣𝑣, count # of shortest paths from 𝑠𝑠 ending in 𝑣𝑣.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 2

64

For each vertex 𝑣𝑣, count # of shortest paths from 𝑠𝑠 ending in 𝑣𝑣.

• Label 𝑠𝑠 with ℓ2 𝑠𝑠 : = 1. (Note that 𝑠𝑠 has distance 0 to itself.)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 2

65

For each vertex 𝑣𝑣, count # of shortest paths from 𝑠𝑠 ending in 𝑣𝑣.

• Label 𝑠𝑠 with ℓ2 𝑠𝑠 : = 1. (Note that 𝑠𝑠 has distance 0 to itself.)

• Let 𝑣𝑣 be a vertex in distance class 𝐷𝐷𝑖𝑖 for 𝑖𝑖 > 0. Now label 𝑣𝑣 with:
• 6

ℓ2 𝑣𝑣 : = �
𝑤𝑤∈𝐷𝐷𝑖𝑖−1
𝑣𝑣𝑤𝑤∈𝐸𝐸(𝐺𝐺)

ℓ2 𝑏𝑏

Hence, we label top (from root 𝑠𝑠) down along the distance classes.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 2

66

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 2

67

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

68

Label each edge 𝑒𝑒 with the following count 𝑏𝑏𝑟𝑟(𝑒𝑒):

𝑏𝑏𝑟𝑟 𝑒𝑒 = �
𝑦𝑦∈𝑉𝑉(𝐺𝐺)

𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑠𝑠 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠 𝑙𝑙𝑙𝑎𝑎𝑙𝑙 𝑢𝑢𝑠𝑠𝑒𝑒 𝑒𝑒
𝑎𝑎𝑙𝑙𝑙𝑙 𝑠𝑠𝑙𝑜𝑜𝑠𝑠𝑙𝑙𝑒𝑒𝑠𝑠𝑙𝑙 𝑠𝑠 − 𝑦𝑦 𝑝𝑝𝑎𝑎𝑙𝑙𝑙𝑠𝑠

To label all edges with this count, we use another auxiliary labelling
ℓ3 for the vertices.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

69

Intuition:

• Think of ℓ3 and 𝑏𝑏𝑟𝑟 as demand and flow.

• BUT instead of Kirchhoff’s law, each vertex consumes a flow of 1.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

70

Intuition:

• Think of ℓ3 and 𝑏𝑏𝑟𝑟 as flows.

• BUT instead of Kirchhoff’s law, each vertex consumes a flow of 1.

• We demand that each vertex without neighbours in later distance
classes receives a flow of 1.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

71

Intuition:

• Think of ℓ3 and 𝑏𝑏𝑟𝑟 as flows.

• BUT instead of Kirchhoff’s law, each vertex consumes a flow of 1.

• We demand that each vertex without neighbours in later distance
classes receives a flow of 1.

• Each other vertex must receive (1 + what is sent further).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

72

Intuition:

• Think of ℓ3 and 𝑏𝑏𝑟𝑟 as demand and flow.

• BUT instead of Kirchhoff’s law, each vertex consumes a flow of 1.

• We demand that each vertex without neighbours in later distance
classes receives a flow of 1.

• Each other vertex must receive (1 + what is sent further).

• How is the total flow (-1) which enters a vertex 𝑏𝑏 split among the
edges 𝑣𝑣𝑏𝑏 that enter 𝑏𝑏:

– via the fraction ℓ2(𝑣𝑣)
ℓ2(𝑤𝑤)

.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Girvan-Newman Algorithm: Step 3

73

• Label each vertex 𝑣𝑣 that has no neighbour in a later distance class
with: ℓ3 𝑣𝑣 ≔ 1.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Girvan-Newman Algorithm: Step 3

74

• Label each vertex 𝑣𝑣 that has no neighbour in a later distance class
with: ℓ3 𝑣𝑣 ≔ 1.

• Let 𝑣𝑣 be a vertex in distance class 𝐷𝐷𝑖𝑖 for 𝑖𝑖 > 0 with a neighbour in
𝐷𝐷𝑖𝑖+1. Now label 𝑣𝑣 with:

• 6

ℓ3 𝑣𝑣 ≔ 1 + �
𝑤𝑤∈𝐷𝐷𝑖𝑖+1
𝑣𝑣𝑤𝑤∈𝐸𝐸(𝐺𝐺)

𝑏𝑏𝑟𝑟(𝑣𝑣𝑏𝑏)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Girvan-Newman Algorithm: Step 3

75

• Label each vertex 𝑣𝑣 that has no neighbour in a later distance class
with: ℓ3 𝑣𝑣 ≔ 1.

• Let 𝑣𝑣 be a vertex in distance class 𝐷𝐷𝑖𝑖 for 𝑖𝑖 > 0 with a neighbour in
𝐷𝐷𝑖𝑖+1. Now label 𝑣𝑣 with:

• 6

ℓ3 𝑣𝑣 ≔ 1 + �
𝑤𝑤∈𝐷𝐷𝑖𝑖+1
𝑣𝑣𝑤𝑤∈𝐸𝐸(𝐺𝐺)

𝑏𝑏𝑟𝑟(𝑣𝑣𝑏𝑏)

• Let 𝑏𝑏 ∈ 𝐷𝐷𝑖𝑖+1 and let 𝑣𝑣1, … , 𝑣𝑣𝑘𝑘 be the neighbours of 𝑏𝑏 in 𝐷𝐷𝑖𝑖. Let ℓ2
denote the labelling we have assigned in Step 2. Now label each
edge 𝑣𝑣𝑗𝑗𝑏𝑏 by

𝑏𝑏𝑟𝑟 𝑣𝑣𝑗𝑗𝑏𝑏 ≔ ℓ3 𝑏𝑏 ⋅
ℓ2(𝑣𝑣𝑗𝑗)

∑𝑝𝑝=1𝑘𝑘 ℓ2(𝑣𝑣𝑝𝑝)
= ℓ3 𝑏𝑏 ⋅

ℓ2(𝑣𝑣𝑗𝑗)
ℓ2(𝑏𝑏)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

• Let ℓ3(𝑏𝑏𝑖𝑖) = 1.

• 𝑏𝑏𝑟𝑟 𝑣𝑣𝑏𝑏𝑖𝑖 = 1 ⋅ ℓ2(𝑣𝑣)
ℓ2(𝑤𝑤𝑖𝑖)

So 𝑏𝑏𝑟𝑟 𝑣𝑣𝑏𝑏𝑖𝑖 really counts the fraction of
all 𝑠𝑠-𝑏𝑏𝑖𝑖 paths that use the edge 𝑣𝑣𝑏𝑏𝑖𝑖.

76

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

• Let ℓ3(𝑏𝑏𝑖𝑖) = 1.

• 𝑏𝑏𝑟𝑟 𝑢𝑢𝑣𝑣 = ℓ3 𝑣𝑣 ⋅ ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

=

77

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

• Let ℓ3(𝑏𝑏𝑖𝑖) = 1.

• 𝑏𝑏𝑟𝑟 𝑢𝑢𝑣𝑣 = ℓ3 𝑣𝑣 ⋅ ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

=

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

�
𝑤𝑤𝑖𝑖

𝑏𝑏𝑟𝑟 𝑣𝑣𝑏𝑏𝑖𝑖 =

78

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

• Let ℓ3(𝑏𝑏𝑖𝑖) = 1.

• 𝑏𝑏𝑟𝑟 𝑢𝑢𝑣𝑣 = ℓ3 𝑣𝑣 ⋅ ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

=

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

�
𝑤𝑤𝑖𝑖

𝑏𝑏𝑟𝑟 𝑣𝑣𝑏𝑏𝑖𝑖 =

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

�
𝑤𝑤𝑖𝑖

ℓ2 𝑣𝑣
ℓ2 𝑏𝑏𝑖𝑖

=

79

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

• Let ℓ3(𝑏𝑏𝑖𝑖) = 1.

• 𝑏𝑏𝑟𝑟 𝑢𝑢𝑣𝑣 = ℓ3 𝑣𝑣 ⋅ ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

=

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

�
𝑤𝑤𝑖𝑖

𝑏𝑏𝑟𝑟 𝑣𝑣𝑏𝑏𝑖𝑖 =

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

�
𝑤𝑤𝑖𝑖

ℓ2 𝑣𝑣
ℓ2 𝑏𝑏𝑖𝑖

=

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+ �
𝑤𝑤𝑖𝑖

ℓ2 𝑢𝑢
ℓ2 𝑏𝑏𝑖𝑖

80

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges: Step 3

• Let ℓ3(𝑏𝑏𝑖𝑖) = 1.

• 𝑏𝑏𝑟𝑟 𝑢𝑢𝑣𝑣 = ℓ3 𝑣𝑣 ⋅ ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

=

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

�
𝑤𝑤𝑖𝑖

𝑏𝑏𝑟𝑟 𝑣𝑣𝑏𝑏𝑖𝑖 =

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

�
𝑤𝑤𝑖𝑖

ℓ2 𝑣𝑣
ℓ2 𝑏𝑏𝑖𝑖

=

=
ℓ2 𝑢𝑢
ℓ2 𝑣𝑣

+ �
𝑤𝑤𝑖𝑖

ℓ2 𝑢𝑢
ℓ2 𝑏𝑏𝑖𝑖

81

So 𝑏𝑏𝑟𝑟(𝑢𝑢𝑣𝑣) really counts the
fraction of all shortest paths
from 𝑠𝑠 that use 𝑢𝑢𝑣𝑣.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

82

• In order to compute the betweenness centrality for an edge 𝑒𝑒, we
have to perform the three previous steps for every vertex as root.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

83

• In order to compute the betweenness centrality for an edge 𝑒𝑒, we
have to perform the three previous steps for every vertex as root.

• Set 𝑏𝑏𝑟𝑟 𝑒𝑒 = 0 if 𝑒𝑒 is not contained in the BFS structure.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

84

• In order to compute the betweenness centrality for an edge 𝑒𝑒, we
have to perform the three previous steps for every vertex as root.

• Set 𝑏𝑏𝑟𝑟 𝑒𝑒 = 0 if 𝑒𝑒 is not contained in the BFS structure.

• Then we get:

𝑏𝑏 𝑒𝑒 =
1
2

�
𝑟𝑟∈𝑉𝑉(𝐺𝐺)

𝑏𝑏𝑟𝑟(𝑒𝑒)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

85

• In order to compute the betweenness centrality for an edge 𝑒𝑒, we
have to perform the three previous steps for every vertex as root.

• Set 𝑏𝑏𝑟𝑟 𝑒𝑒 = 0 if 𝑒𝑒 is not contained in the BFS structure.

• Then we get:

𝑏𝑏 𝑒𝑒 =
1
2

�
𝑟𝑟∈𝑉𝑉(𝐺𝐺)

𝑏𝑏𝑟𝑟(𝑒𝑒)

• Note that we need to divide by 2 since we count each shortest path
twice, namely for each of the two ways of how to traverse the path.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

86

• In order to compute the betweenness centrality for an edge 𝑒𝑒, we
have to perform the three previous steps for every vertex as root.

• Set 𝑏𝑏𝑟𝑟 𝑒𝑒 = 0 if 𝑒𝑒 is not contained in the BFS structure.

• Then we get:

𝑏𝑏 𝑒𝑒 =
1
2

�
𝑟𝑟∈𝑉𝑉(𝐺𝐺)

𝑏𝑏𝑟𝑟(𝑒𝑒)

• Note that we need to divide by 2 since we count each shortest path
twice, namely for each of the two ways of how to traverse the path.

• The running time for the betweenness computation is 𝑂𝑂(𝑙𝑙𝑚𝑚). So if
our graph is not sparse, then 𝑂𝑂 𝑙𝑙𝑚𝑚 = 𝑂𝑂 𝑙𝑙3 .

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Computing betweenness for edges

87

• In order to compute the betweenness centrality for an edge 𝑒𝑒, we
have to perform the three previous steps for every vertex as root.

• Set 𝑏𝑏𝑟𝑟 𝑒𝑒 = 0 if 𝑒𝑒 is not contained in the BFS structure.

• Then we get:

𝑏𝑏 𝑒𝑒 =
1
2

�
𝑟𝑟∈𝑉𝑉(𝐺𝐺)

𝑏𝑏𝑟𝑟(𝑒𝑒)

• Note that we need to divide by 2 since we count each shortest path
twice, namely for each of the two ways of how to traverse the path.

• The running time for the betweenness computation is 𝑂𝑂(𝑙𝑙𝑚𝑚). So if
our graph is not sparse, then 𝑂𝑂 𝑙𝑙𝑚𝑚 = 𝑂𝑂 𝑙𝑙3 .

• For huge data sets: only take random set of vertices for BFS roots.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Modularity

88

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Quality of clusters / communities: Modularity

89

• Given a graph 𝐺𝐺 and a partitioning (clustering) 𝒞𝒞 = 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 of
𝑉𝑉(𝐺𝐺) into communities (clusters) 𝐶𝐶𝑖𝑖.

• Rough idea: Define modularity 𝑄𝑄(𝐺𝐺,𝒞𝒞) as a measure via:

�
𝐶𝐶𝑖𝑖∈𝒞𝒞

𝑜𝑜𝑜𝑜 𝑒𝑒𝑑𝑑𝑙𝑙𝑒𝑒𝑠𝑠 𝑏𝑏𝑖𝑖𝑙𝑙𝑙𝑖𝑖𝑙𝑙 𝐶𝐶𝑖𝑖 − 𝒆𝒆𝒆𝒆𝒑𝒑𝒆𝒆𝒆𝒆𝒔𝒔𝒆𝒆𝒆𝒆 # 𝑜𝑜𝑜𝑜 𝑒𝑒𝑑𝑑𝑙𝑙𝑒𝑒𝑠𝑠 𝑏𝑏𝑖𝑖𝑙𝑙𝑙𝑖𝑖𝑙𝑙 𝐶𝐶𝑖𝑖

• We need a model for an average / random graph on our cluster 𝐶𝐶𝑖𝑖.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

90

• Let 𝐺𝐺 be a graph. Define a random (multi)graph ℛ𝑑𝑑(𝐺𝐺) on the
same vertex set which keeps all vertex degrees (# edges incident
with a vertex)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

91

• Let 𝐺𝐺 be a graph. Define a random (multi)graph ℛ𝑑𝑑(𝐺𝐺) on the
same vertex set which keeps all vertex degrees (# edges incident
with a vertex), i.e.:

1. 𝑉𝑉 ℛ𝑑𝑑 𝐺𝐺 = 𝑉𝑉 𝐺𝐺 .

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

92

• Let 𝐺𝐺 be a graph. Define a random (multi)graph ℛ𝑑𝑑(𝐺𝐺) on the
same vertex set which keeps all vertex degrees (# edges incident
with a vertex), i.e.:

1. 𝑉𝑉 ℛ𝑑𝑑 𝐺𝐺 = 𝑉𝑉 𝐺𝐺 .

2. 𝑑𝑑ℛ𝑑𝑑(𝐺𝐺) 𝑣𝑣 = 𝑑𝑑𝐺𝐺 𝑣𝑣 for every 𝑣𝑣 ∈ 𝑉𝑉 𝐺𝐺 .

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

93

• Let 𝐺𝐺 be a graph. Define a random (multi)graph ℛ𝑑𝑑(𝐺𝐺) on the
same vertex set which keeps all vertex degrees (# edges incident
with a vertex), i.e.:

1. 𝑉𝑉 ℛ𝑑𝑑 𝐺𝐺 = 𝑉𝑉 𝐺𝐺 .

2. 𝑑𝑑ℛ𝑑𝑑(𝐺𝐺) 𝑣𝑣 = 𝑑𝑑𝐺𝐺 𝑣𝑣 for every 𝑣𝑣 ∈ 𝑉𝑉 𝐺𝐺 .

• Here let 𝑑𝑑𝐺𝐺(𝑣𝑣) denote the # edges incident with vertex 𝑣𝑣 in 𝐺𝐺.
Hence, 𝑑𝑑ℛ𝑑𝑑(𝐺𝐺) 𝑣𝑣 denotes the # edges incident with 𝑣𝑣 in ℛ𝑑𝑑 𝐺𝐺 .

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

94

• Let 𝐺𝐺 be a graph. Define a random (multi)graph ℛ𝑑𝑑(𝐺𝐺) on the
same vertex set which keeps all vertex degrees (# edges incident
with a vertex), i.e.:

1. 𝑉𝑉 ℛ𝑑𝑑 𝐺𝐺 = 𝑉𝑉 𝐺𝐺 .

2. 𝑑𝑑ℛ𝑑𝑑(𝐺𝐺) 𝑣𝑣 = 𝑑𝑑𝐺𝐺 𝑣𝑣 for every 𝑣𝑣 ∈ 𝑉𝑉 𝐺𝐺 .

• Here let 𝑑𝑑𝐺𝐺(𝑣𝑣) denote the # edges incident with vertex 𝑣𝑣 in 𝐺𝐺.
Hence, 𝑑𝑑ℛ𝑑𝑑(𝐺𝐺) 𝑣𝑣 denotes the # edges incident with 𝑣𝑣 in ℛ𝑑𝑑 𝐺𝐺 .

• Idea of building ℛ𝑑𝑑 𝐺𝐺 : Cut the edges at every vertex and rewire
them randomly, allowing multiple edges and loops.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

95

• Let 𝑣𝑣,𝑏𝑏 ∈ 𝑉𝑉 𝐺𝐺 and let |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚. We enumerate the edges
incident with 𝑣𝑣 within 𝐺𝐺 from 1 to 𝑑𝑑𝐺𝐺(𝑣𝑣).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

96

• Let 𝑣𝑣,𝑏𝑏 ∈ 𝑉𝑉 𝐺𝐺 and let |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚. We enumerate the edges
incident with 𝑣𝑣 within 𝐺𝐺 from 1 to 𝑑𝑑𝐺𝐺(𝑣𝑣).

• Probability that the 𝑖𝑖-th edge incident with 𝑣𝑣 is rewired to some
edge incident with 𝑏𝑏:

𝑑𝑑𝐺𝐺(𝑏𝑏)
2𝑚𝑚 − 1

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Model for a random graph

97

• Let 𝑣𝑣,𝑏𝑏 ∈ 𝑉𝑉 𝐺𝐺 and let |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚. We enumerate the edges
incident with 𝑣𝑣 within 𝐺𝐺 from 1 to 𝑑𝑑𝐺𝐺(𝑣𝑣).

• Probability that the 𝑖𝑖-th edge incident with 𝑣𝑣 is rewired to some
edge incident with 𝑏𝑏:

𝑑𝑑𝐺𝐺(𝑏𝑏)
2𝑚𝑚 − 1

• Expected # of edges between 𝑣𝑣 and 𝑏𝑏 in ℛ𝑑𝑑 𝐺𝐺 :

𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅
𝑑𝑑𝐺𝐺(𝑏𝑏)
2𝑚𝑚 − 1

≈
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Quality of clusters / communities: Modularity

98

• Given a graph 𝐺𝐺 with |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 and a clustering 𝒞𝒞 = 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 of
𝑉𝑉(𝐺𝐺) into communities 𝐶𝐶𝑖𝑖.

• Define modularity 𝑄𝑄(𝐺𝐺,𝐶𝐶) as:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1
2𝑚𝑚

⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Quality of clusters / communities: Modularity

99

• Given a graph 𝐺𝐺 with |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 and a clustering 𝒞𝒞 = 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 of
𝑉𝑉(𝐺𝐺) into communities 𝐶𝐶𝑖𝑖.

• Define modularity 𝑄𝑄(𝐺𝐺,𝐶𝐶) as:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1
2𝑚𝑚

⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

• Here 𝐴𝐴𝑣𝑣𝑤𝑤 is the indicator function: 𝐴𝐴𝑣𝑣𝑤𝑤 = �1, 𝑖𝑖𝑜𝑜 𝑣𝑣𝑏𝑏 ∈ 𝐸𝐸(𝐶𝐶𝑖𝑖)
0, 𝑖𝑖𝑜𝑜 𝑣𝑣𝑏𝑏 ∉ 𝐸𝐸(𝐶𝐶𝑖𝑖)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Quality of clusters / communities: Modularity

100

• Given a graph 𝐺𝐺 with |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 and a clustering 𝒞𝒞 = 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 of
𝑉𝑉(𝐺𝐺) into communities 𝐶𝐶𝑖𝑖.

• Define modularity 𝑄𝑄(𝐺𝐺,𝐶𝐶) as:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1
2𝑚𝑚

⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

• Here 𝐴𝐴𝑣𝑣𝑤𝑤 is the indicator function: 𝐴𝐴𝑣𝑣𝑤𝑤 = �1, 𝑖𝑖𝑜𝑜 𝑣𝑣𝑏𝑏 ∈ 𝐸𝐸(𝐶𝐶𝑖𝑖)
0, 𝑖𝑖𝑜𝑜 𝑣𝑣𝑏𝑏 ∉ 𝐸𝐸(𝐶𝐶𝑖𝑖)

• We scale the sum by 1
2𝑚𝑚

to get the range for 𝑄𝑄 𝐺𝐺,𝒞𝒞 within [−1, 1].

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Quality of clusters / communities: Modularity

101

• Given a graph 𝐺𝐺 with |𝐸𝐸(𝐺𝐺)| = 𝑚𝑚 and a clustering 𝒞𝒞 = 𝐶𝐶1, … ,𝐶𝐶𝑘𝑘 of
𝑉𝑉(𝐺𝐺) into communities 𝐶𝐶𝑖𝑖.

• Define modularity 𝑄𝑄(𝐺𝐺,𝐶𝐶) as:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1
2𝑚𝑚

⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

• Here 𝐴𝐴𝑣𝑣𝑤𝑤 is the indicator function: 𝐴𝐴𝑣𝑣𝑤𝑤 = �1, 𝑖𝑖𝑜𝑜 𝑣𝑣𝑏𝑏 ∈ 𝐸𝐸(𝐶𝐶𝑖𝑖)
0, 𝑖𝑖𝑜𝑜 𝑣𝑣𝑏𝑏 ∉ 𝐸𝐸(𝐶𝐶𝑖𝑖)

• We scale the sum by 1
2𝑚𝑚

to get the range for 𝑄𝑄 𝐺𝐺,𝒞𝒞 within [−1, 1].

• Usually: 𝑄𝑄 𝐺𝐺,𝒞𝒞 > 0,3 is an indicator for good community structure.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm

102

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm

103

• The Louvain algorithm is an agglomerative clustering algorithm.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm

104

• The Louvain algorithm is an agglomerative clustering algorithm.

• The algorithm merges clusters by deciding locally where modularity
is optimised the most.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm

105

• The Louvain algorithm is an agglomerative clustering algorithm.

• The algorithm merges clusters by deciding locally where modularity
is optimised the most.

• The algorithm is heuristic and might end in a local maximum.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm

106

• The Louvain algorithm is an agglomerative clustering algorithm.

• The algorithm merges clusters by deciding locally where modularity
is optimised the most.

• The algorithm is heuristic and might end in a local maximum.

• The running time of the algorithm is 𝑂𝑂 𝑚𝑚 .

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm

107

• The Louvain algorithm is an agglomerative clustering algorithm.

• The algorithm merges clusters by deciding locally where modularity
is optimised the most.

• The algorithm is heuristic and might end in a local maximum.

• The running time of the algorithm is 𝑂𝑂 𝑚𝑚 .

o Running time via considering random neighbours: 𝑂𝑂 𝑙𝑙 ⋅ log(𝑙𝑙)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm

108

• The Louvain algorithm is an agglomerative clustering algorithm.

• The algorithm merges clusters by deciding locally where modularity
is optimised the most.

• The algorithm is heuristic and might end in a local maximum.

• The running time of the algorithm is 𝑂𝑂 𝑚𝑚 .

o Running time via considering random neighbours: 𝑂𝑂 𝑙𝑙 log(𝑙𝑙)

• The algorithm can be split into 2 steps, which are iterated.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

109

𝑣𝑣

𝐶𝐶1

𝐶𝐶2

𝐶𝐶3

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

110

𝑣𝑣

𝐶𝐶1

𝐶𝐶2

𝐶𝐶3

• Remove a vertex 𝑣𝑣 from its community (here 𝐶𝐶3). Modularity change
• Put 𝑣𝑣 into its own community (here 𝐶𝐶4). Modularity change

𝐶𝐶4

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

111

𝑣𝑣

𝐶𝐶1

𝐶𝐶2

𝐶𝐶𝐶3

• Modularity change when switching to this refined clustering:
Δ𝑄𝑄𝑟𝑟𝑒𝑒𝑚𝑚𝑟𝑟𝑣𝑣𝑒𝑒 ≔ 𝑄𝑄 𝐺𝐺,𝐶𝐶1,𝐶𝐶2,𝐶𝐶𝐶3,𝐶𝐶4 − 𝑄𝑄 𝐺𝐺,𝐶𝐶1,𝐶𝐶2,𝐶𝐶3

𝐶𝐶4

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

112

𝑣𝑣

𝐶𝐶1

𝐶𝐶2

𝐶𝐶𝐶3

• Now move 𝑣𝑣 to a community that contains a neighbour of 𝑣𝑣.

𝐶𝐶4

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

113

𝑣𝑣

𝐶𝐶1

𝐶𝐶𝐶2

𝐶𝐶𝐶3

• Now move 𝑣𝑣 to a community that contains a neighbour of 𝑣𝑣

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

114

𝑣𝑣

𝐶𝐶1

𝐶𝐶𝐶2

𝐶𝐶𝐶3

• Modularity change when switching to this clustering:
Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖 ≔ 𝑄𝑄 𝐺𝐺,𝐶𝐶1,𝐶𝐶𝐶2,𝐶𝐶𝐶3,𝐶𝐶4 − 𝑄𝑄 𝐺𝐺,𝐶𝐶1,𝐶𝐶2,𝐶𝐶𝐶3,𝐶𝐶4

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

115

• The total change in modularity is:
Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≔ Δ𝑄𝑄𝑟𝑟𝑒𝑒𝑚𝑚𝑟𝑟𝑣𝑣𝑒𝑒 + Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

116

• The total change in modularity is:
Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≔ Δ𝑄𝑄𝑟𝑟𝑒𝑒𝑚𝑚𝑟𝑟𝑣𝑣𝑒𝑒 + Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖

• Note that Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖 depends on to which community we move 𝑣𝑣.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

117

• The total change in modularity is:
Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≔ Δ𝑄𝑄𝑟𝑟𝑒𝑒𝑚𝑚𝑟𝑟𝑣𝑣𝑒𝑒 + Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖

• Note that Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖 depends on to which community we move 𝑣𝑣.
 Check all and choose community with biggest modularity gain.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the main idea

118

• The total change in modularity is:
Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≔ Δ𝑄𝑄𝑟𝑟𝑒𝑒𝑚𝑚𝑟𝑟𝑣𝑣𝑒𝑒 + Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖

• Note that Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖 depends on to which community we move 𝑣𝑣.
 Check all and choose community with biggest modularity gain.

• Δ𝑄𝑄𝑟𝑟𝑒𝑒𝑚𝑚𝑟𝑟𝑣𝑣𝑒𝑒 and Δ𝑄𝑄𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑟𝑟𝑖𝑖 can be computed locally by only considering
those communities that are affected by the change.
o(See e.g. Stanford lecture notes from 2021 on Machine Learning

with Graphs by Leskovec)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the full picture of step 1

119

• Start with a vertex partition into singleton sets.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the full picture of step 1

120

• Start with a vertex partition into singleton sets.

• Order the vertices arbitrarily: 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the full picture of step 1

121

• Start with a vertex partition into singleton sets.

• Order the vertices arbitrarily: 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖.

• Compute Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 when moving vertex 𝑣𝑣1.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the full picture of step 1

122

• Start with a vertex partition into singleton sets.

• Order the vertices arbitrarily: 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖.

• Compute Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 when moving vertex 𝑣𝑣1.

• IF Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≤ 0, do not change the community where 𝑣𝑣1 is in.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the full picture of step 1

123

• Start with a vertex partition into singleton sets.

• Order the vertices arbitrarily: 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖.

• Compute Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 when moving vertex 𝑣𝑣1.

• IF Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≤ 0, do not change the community where 𝑣𝑣1 is in.

• Otherwise, change the communities so that Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 is maximal.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the full picture of step 1

124

• Start with a vertex partition into singleton sets.

• Order the vertices arbitrarily: 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖.

• Compute Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 when moving vertex 𝑣𝑣1.

• IF Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≤ 0, do not change the community where 𝑣𝑣1 is in.

• Otherwise, change the communities so that Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 is maximal.

• Continue with 𝑣𝑣2 in the same way. (The only difference is that one
community consists now of 2 vertices instead of 1.)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: the full picture of step 1

125

• Start with a vertex partition into singleton sets.

• Order the vertices arbitrarily: 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑖𝑖.

• Compute Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 when moving vertex 𝑣𝑣1.

• IF Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 ≤ 0, do not change the community where 𝑣𝑣1 is in.

• Otherwise, change the communities so that Δ𝑄𝑄𝑖𝑖𝑟𝑟𝑖𝑖 is maximal.

• Continue with 𝑣𝑣2 in the same way. (The only difference is that one
community consists now of 2 vertices instead of 1.)

• Stop if all vertices have been processed.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: illustration

126

0

3

2

1

54
6

7

8

9

10

11

12

13

14

15

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: end of step 1

127

0

3

2

1

54
6

7

8

9

10

11

12

13

14

15

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: step 2

128

• Collapse each community into a new ”super” vertex.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: step 2

129

• Collapse each community into a new ”super” vertex.

• Add loops at each vertex, weighted by 2 times the sum of all
(weighted) edges within the former community.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: step 2

130

• Collapse each community into a new ”super” vertex.

• Add loops at each vertex, weighted by 2 times the sum of all
(weighted) edges within the former community.

• Replace all edges between two former communities by one edge
weighted by the sum of all (weights of) removed edges.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: step 2

131

DA

CB

12 4

4

1

3

16 2

1 1

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: second pass of step 1

132

DA

CB

12 4

4

1

3

16 2

1 1

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: weighted modularity involved

133

• Recall: Definition of modularity:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1
2𝑚𝑚

⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: weighted modularity involved

134

• Recall: Definition of modularity:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1

2𝑚𝑚
⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

now: sum over all edge weights

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: weighted modularity involved

135

• Recall: Definition of modularity:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1
2𝑚𝑚

⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

now: indicates edge weights

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: weighted modularity involved

136

• Recall: Definition of modularity:

𝑄𝑄 𝐺𝐺,𝒞𝒞 =
1
2𝑚𝑚

⋅ �
𝐶𝐶𝑖𝑖∈𝒞𝒞

�
𝑣𝑣,𝑤𝑤∈𝑉𝑉(𝐶𝐶𝑖𝑖)

𝑣𝑣≠𝑤𝑤

𝐴𝐴𝑣𝑣𝑤𝑤 −
𝑑𝑑𝐺𝐺(𝑣𝑣) ⋅ 𝑑𝑑𝐺𝐺(𝑏𝑏)

2𝑚𝑚

now: indicate weighted degrees

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: second pass of step 1

137

DA

CB

12 4

4

1

3

16 2

1 1

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Louvain algorithm: second pass of step 2

138

BCAD

24 24

3

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering

139

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Remarks about spectral clustering

140

• Spectral clustering can be applied to several data sets, but you need
to turn the data into a graph (there are several ways).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Remarks about spectral clustering

141

• Spectral clustering can be applied to several data sets, but you need
to turn the data into a graph (there are several ways).

• For spectral clustering the data set does not have to be of a special
shape (e.g. not ‘sperical’ as for 𝑘𝑘-means). The algorithm adapts to
the shape of the data.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Remarks about spectral clustering

142

• Spectral clustering can be applied to several data sets, but you need
to turn the data into a graph (there are several ways).

• For spectral clustering the data set does not have to be of a special
shape (e.g. not ‘sperical’ as for 𝑘𝑘-means). The algorithm adapts to
the shape of the data.

• Spectral clustering yields very good results.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Remarks about spectral clustering

143

• Spectral clustering can be applied to several data sets, but you need
to turn the data into a graph (there are several ways).

• For spectral clustering the data set does not have to be of a special
shape (e.g. not ‘sperical’ as for 𝑘𝑘-means). The algorithm adapts to
the shape of the data.

• Spectral clustering yields very good results.

• Computing all eigenvalues is expensive for dense matrices.
– But there are quite efficient algorithms for computing only the first

few smallest eigenvalues and their eigenvectors.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering

144

• Let G be a simple undirected graph.

• Task: Partition 𝑉𝑉(𝐺𝐺) into two classes (clusters) such that:
1. we maximise the # of edges within the clusters, and
2. we minimise the # of edges between the clusters.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering

145

• Let G be a simple undirected graph.

• Task: Partition 𝑉𝑉(𝐺𝐺) into two classes (clusters) such that:
1. we maximise the # of edges within the clusters, and
2. we minimise the # of edges between the clusters.

• For two vertex sets 𝐴𝐴,𝐵𝐵 ⊆ 𝑉𝑉 𝐺𝐺 let 𝑬𝑬(𝑨𝑨,𝑩𝑩) denote the set of edges
that have one end vertex in 𝐴𝐴 and the other in 𝐵𝐵.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering

146

• Let G be a simple undirected graph.

• Task: Partition 𝑉𝑉(𝐺𝐺) into two classes (clusters) such that:
1. we maximise the # of edges within the clusters, and
2. we minimise the # of edges between the clusters.

• For two vertex sets 𝐴𝐴,𝐵𝐵 ⊆ 𝑉𝑉 𝐺𝐺 let 𝑬𝑬(𝑨𝑨,𝑩𝑩) denote the set of edges
that have one end vertex in 𝐴𝐴 and the other in 𝐵𝐵.

• If 𝐴𝐴 ⊆ 𝑉𝑉 𝐺𝐺 and 𝐵𝐵 = 𝑉𝑉(𝐺𝐺) ∖ 𝐴𝐴 (the complement of 𝐴𝐴 within 𝑉𝑉(𝐺𝐺)),
then 𝐸𝐸(𝐴𝐴,𝐵𝐵) is called a cut of 𝑮𝑮.
(Sometimes we also refer to the partition (𝐴𝐴,𝐵𝐵) as the cut.)

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering: “good” cut

147

• Idea: Find the smallest cut 𝐸𝐸(𝐴𝐴,𝐵𝐵) within 𝐺𝐺.

• Pro: Can be done (rather) efficiently (Ford-Fulkerson, Karger).

• Con: Only focusses on minimising edges between the 2 clusters.

– What about maximising edges within clusters?

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering: “good” cut

148

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering: “good” cut

149

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering: “good” cut

150

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering: “good” cut

151

• Better: Consider normalised cuts and minimise.

• Let 𝐸𝐸(𝐴𝐴,𝐵𝐵) be a cut of G. Then the normalised cut value is:

𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙 𝐴𝐴,𝐵𝐵 ≔
𝐸𝐸 𝐴𝐴,𝐵𝐵
𝑣𝑣𝑜𝑜𝑙𝑙 𝐴𝐴

+
𝐸𝐸 𝐴𝐴,𝐵𝐵
𝑣𝑣𝑜𝑜𝑙𝑙 𝐵𝐵

Here 𝒗𝒗𝒔𝒔𝒗𝒗 𝑨𝑨 ≔ ∑𝑣𝑣∈𝐴𝐴 𝑑𝑑(𝑣𝑣).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering: “good” cut

152

• Better: Consider normalised cuts and minimise.

• Let 𝐸𝐸(𝐴𝐴,𝐵𝐵) be a cut of G. Then the normalised cut value is:

𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙 𝐴𝐴,𝐵𝐵 ≔
𝐸𝐸 𝐴𝐴,𝐵𝐵
𝑣𝑣𝑜𝑜𝑙𝑙 𝐴𝐴

+
𝐸𝐸 𝐴𝐴,𝐵𝐵
𝑣𝑣𝑜𝑜𝑙𝑙 𝐵𝐵

Here 𝒗𝒗𝒔𝒔𝒗𝒗 𝑨𝑨 ≔ ∑𝑣𝑣∈𝐴𝐴 𝑑𝑑(𝑣𝑣).
• This way we produce more balanced bipartitions, still inducing a

small cut.

• However, finding a cut with minimised 𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙-value is NP-hard!

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering: “good” cut

153

• Let 𝐸𝐸(𝐴𝐴,𝐵𝐵) be a cut of G. Then the normalised cut value is:

𝑙𝑙𝑛𝑛𝑢𝑢𝑙𝑙 𝐴𝐴,𝐵𝐵 ≔
𝐸𝐸 𝐴𝐴,𝐵𝐵
𝑣𝑣𝑜𝑜𝑙𝑙 𝐴𝐴

+
𝐸𝐸 𝐴𝐴,𝐵𝐵
𝑣𝑣𝑜𝑜𝑙𝑙 𝐵𝐵

Here 𝒗𝒗𝒔𝒔𝒗𝒗 𝑨𝑨 ≔ ∑𝑣𝑣∈𝐴𝐴 𝑑𝑑(𝑣𝑣).

• Or consider: RatioCut

𝑅𝑅𝑎𝑎𝑙𝑙𝑖𝑖𝑜𝑜𝐶𝐶𝑢𝑢𝑙𝑙 𝐴𝐴,𝐵𝐵 ≔
𝐸𝐸 𝐴𝐴,𝐵𝐵

|𝐴𝐴|
+

𝐸𝐸 𝐴𝐴,𝐵𝐵
|𝐵𝐵|

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

RECAP: Adjacency matrix of a graph

154

• Let 𝐺𝐺 be a simple undirected graph with |𝑉𝑉(𝐺𝐺)| = 𝑙𝑙.
Enumerate the vertices of 𝐺𝐺 by 𝑣𝑣1, … , 𝑣𝑣𝑖𝑖.

• Define Adjacency Matrix 𝐴𝐴 = 𝐴𝐴 𝐺𝐺 ∈ ℝ𝑖𝑖×𝑖𝑖 of 𝐺𝐺 as follows:
Let 𝑎𝑎𝑖𝑖𝑗𝑗 be the entry of 𝐴𝐴 in row 𝑖𝑖 and column 𝑗𝑗.
Set 𝑎𝑎𝑖𝑖𝑗𝑗 = 1 iff 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 ∈ 𝐸𝐸(𝐺𝐺), otherwise set 𝑎𝑎𝑖𝑖𝑗𝑗 = 0.

• If 𝐴𝐴𝑥𝑥 = 𝑦𝑦, then the following holds for the 𝑖𝑖-th component 𝑦𝑦𝑖𝑖 of 𝑦𝑦:

𝑦𝑦𝑖𝑖 = �
𝑗𝑗=1

𝑖𝑖

𝑎𝑎𝑖𝑖𝑗𝑗 𝑥𝑥𝑗𝑗 = �
𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗∈𝐸𝐸(𝐺𝐺)

𝑥𝑥𝑗𝑗

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

RECAP: Adjacency matrix of a graph

155

Example:

𝐴𝐴 =

0 1 1 0 1 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
1 0 0 1 0 1
0 0 0 1 1 0

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral Graph Theory

156

• Analysing the spectrum of a graph 𝐺𝐺, i.e. of its adjacency matrix 𝐴𝐴
to obtain insight about the structure of 𝐺𝐺.

• The spectrum of 𝐴𝐴 is the set 𝜦𝜦 = 𝜆𝜆1, … , 𝜆𝜆𝑖𝑖 ⊆ ℝ of its eigenvalues.
Usually we sort 𝛬𝛬 by 𝜆𝜆1 ≤ 𝜆𝜆2 ≤ ⋯ ≤ 𝜆𝜆𝑖𝑖.

• Recap (eigenvalue 𝜆𝜆 and one eigenvector 𝑥𝑥 of it):
𝐴𝐴𝑥𝑥 = 𝜆𝜆 ⋅ 𝑥𝑥

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

RECAP: symmetric matrices

157

• 𝑨𝑨 𝑮𝑮 = 𝑨𝑨 is a symmetric real matrix. Hence:

1. 𝐴𝐴 is diagonalisable.
2. There is an orthogonal basis of eigenvectors.
3. 𝐴𝐴 has only real eigenvalues.

• Also: 𝐴𝐴 𝐺𝐺 = 𝐴𝐴 is positive semidefinite (i.e. all eigenvalues ≥ 0).

• Fact: 𝐴𝐴 is positive semidefinite iff 𝑥𝑥𝑇𝑇𝐴𝐴𝑥𝑥 ≥ 0 for all 𝑥𝑥 ≠ 0.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Some intuition: 𝑑𝑑-regular graphs

158

• As special case: Let 𝐺𝐺 be a connected graph where each vertex
has the same degree 𝑑𝑑 ∈ ℕ (the latter property is called 𝒆𝒆-regular).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Some intuition: 𝑑𝑑-regular graphs

159

• As special case: Let 𝐺𝐺 be a connected graph where each vertex
has the same degree 𝑑𝑑 ∈ ℕ (the latter property is called 𝒆𝒆-regular).

𝐴𝐴 ⋅ 1, 1, … , 1 𝑇𝑇 = 𝑑𝑑 ⋅ 1, 1, … , 1 𝑇𝑇

• Why? Because for each vertex, we sum over all its 𝑑𝑑 neighbours.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Some intuition: 𝑑𝑑-regular graphs

160

• As special case: Let 𝐺𝐺 be a connected graph where each vertex
has the same degree 𝑑𝑑 ∈ ℕ (the latter property is called 𝒆𝒆-regular).

𝐴𝐴 ⋅ 1, 1, … , 1 𝑇𝑇 = 𝑑𝑑 ⋅ 1, 1, … , 1 𝑇𝑇

• Why? Because for each vertex, we sum over all its 𝑑𝑑 neighbours.

Actually:
1. 𝑑𝑑 is the largest eigenvalue of 𝐴𝐴.
2. 𝑑𝑑 has multiplicity 1. So there is only one eigenvector for it.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Some intuition: 𝑑𝑑-regular graphs

161

• As special case: Let 𝐺𝐺 be 𝑑𝑑-regular with precisely 2 components,
say 𝑋𝑋 and 𝑌𝑌.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Some intuition: 𝑑𝑑-regular graphs
• As special case: Let 𝐺𝐺 be 𝑑𝑑-regular with precisely 2 components,

say 𝑋𝑋 and 𝑌𝑌.

𝐴𝐴 ⋅ (1, … , 1
𝑋𝑋

, 0, … , 0)
𝑌𝑌

𝑇𝑇 = 𝑑𝑑 ⋅ (1, … , 1
𝑋𝑋

, 0, … , 0)
𝑌𝑌

𝑇𝑇

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Some intuition: 𝑑𝑑-regular graphs

163

• As special case: Let 𝐺𝐺 be 𝑑𝑑-regular with precisely 2 components,
say 𝑋𝑋 and 𝑌𝑌.

𝐴𝐴 ⋅ (1, … , 1
𝑋𝑋

, 0, … , 0)
𝑌𝑌

𝑇𝑇 = 𝑑𝑑 ⋅ (1, … , 1
𝑋𝑋

, 0, … , 0)
𝑌𝑌

𝑇𝑇

𝐴𝐴 ⋅ (0, … , 0
𝑋𝑋

, 1, … , 1)
𝑌𝑌

𝑇𝑇 = 𝑑𝑑 ⋅ (0, … , 0
𝑋𝑋

, 1, … , 1)
𝑌𝑌

𝑇𝑇

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Some intuition: 𝑑𝑑-regular graphs

164

• As special case: Let 𝐺𝐺 be 𝑑𝑑-regular with precisely 2 components,
say 𝑋𝑋 and 𝑌𝑌.

𝐴𝐴 ⋅ (1, … , 1
𝑋𝑋

, 0, … , 0)
𝑌𝑌

𝑇𝑇 = 𝑑𝑑 ⋅ (1, … , 1
𝑋𝑋

, 0, … , 0)
𝑌𝑌

𝑇𝑇

𝐴𝐴 ⋅ (0, … , 0
𝑋𝑋

, 1, … , 1)
𝑌𝑌

𝑇𝑇 = 𝑑𝑑 ⋅ (0, … , 0
𝑋𝑋

, 1, … , 1)
𝑌𝑌

𝑇𝑇

• Now: 𝜆𝜆𝑖𝑖 = 𝜆𝜆𝑖𝑖−1 = 𝑑𝑑.

• Intuition:

𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖−1 = 0 𝜆𝜆𝑖𝑖 − 𝜆𝜆𝑖𝑖−1 ≈ 0

𝑋𝑋 𝑌𝑌 𝑋𝑋 𝑌𝑌

few edges

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

General case

165

• Let 𝐺𝐺 be a simple undirected connected graph.

• Define Degree Matrix 𝑫𝑫 = 𝐷𝐷 𝐺𝐺 ∈ ℝ𝑖𝑖×𝑖𝑖 of 𝐺𝐺 as follows:
Let 𝑑𝑑𝑖𝑖𝑗𝑗 be the entry of 𝐷𝐷 in row 𝑖𝑖 and column 𝑗𝑗.
Set 𝑑𝑑𝑖𝑖𝑗𝑗 = 0 for all 𝑖𝑖 ≠ 𝑗𝑗 and 𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑(𝑣𝑣𝑖𝑖) for all 𝑖𝑖.

• Define the Laplacian Matrix 𝑳𝑳 = 𝐿𝐿 𝐺𝐺 ∈ ℝ𝑖𝑖×𝑖𝑖 of 𝐺𝐺 as 𝐴𝐴 − 𝐷𝐷.

Facts about 𝐿𝐿:
• 𝐿𝐿 is symmetric
• 𝐿𝐿 is diagonalisable.
• There is an orthogonal basis of eigenvectors.
• 𝐿𝐿 has only real eigenvalues and 𝜆𝜆1 = 0 witnessed by 1, … , 1 𝑇𝑇.
• 𝐿𝐿 is positive semidefinite, hence 𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 ≥ 0 for all 𝑥𝑥 ≠ 0..

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

General case

166

• Fact: If 𝒆𝒆 is orthogonal to the eigenvector of 𝝀𝝀𝟏𝟏 (so: ∑𝑖𝑖 𝑥𝑥𝑖𝑖 = 0) and
𝑥𝑥 is normalised, i.e. 𝑥𝑥𝑇𝑇𝑥𝑥 = 1, then the following holds (by Rayleigh):

𝜆𝜆2 = min
𝑥𝑥
𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 = �

𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗∈𝐸𝐸(𝐺𝐺)

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
2

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

General case

167

• Fact: If 𝒆𝒆 is orthogonal to the eigenvector of 𝝀𝝀𝟏𝟏 (so: ∑𝑖𝑖 𝑥𝑥𝑖𝑖 = 0) and
𝑥𝑥 is normalised, i.e. 𝑥𝑥𝑇𝑇𝑥𝑥 = 1, then the following holds (by Rayleigh):

𝜆𝜆2 = min
𝑥𝑥
𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 = �

𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗∈𝐸𝐸(𝐺𝐺)

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
2

• Furthermore, a minimising vector 𝑥𝑥 is an eigenvector for 𝜆𝜆2.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

General case

168

• Fact: If 𝒆𝒆 is orthogonal to the eigenvector of 𝝀𝝀𝟏𝟏 (so: ∑𝑖𝑖 𝑥𝑥𝑖𝑖 = 0) and
𝑥𝑥 is normalised, i.e. 𝑥𝑥𝑇𝑇𝑥𝑥 = 1, then the following holds (by Rayleigh):

𝜆𝜆2 = min
𝑥𝑥
𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 = �

𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗∈𝐸𝐸(𝐺𝐺)

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
2

• Furthermore, a minimising vector 𝑥𝑥 is an eigenvector for 𝜆𝜆2.

• CLUSTERING: Put all 𝑣𝑣𝑖𝑖 with 𝑥𝑥𝑖𝑖 < 0 into set 𝑋𝑋, the rest into set 𝑌𝑌.
This yields bipartition of 𝑉𝑉(𝐺𝐺).

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

General case

169

𝜆𝜆2 = min𝑥𝑥
∑𝑖𝑖 𝑥𝑥𝑖𝑖=0

𝑥𝑥𝑇𝑇𝐿𝐿𝑥𝑥 = �
𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗∈𝐸𝐸(𝐺𝐺)

𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
2

• If 𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 ∈ 𝐸𝐸(𝐺𝐺), ideally 𝑥𝑥𝑖𝑖 ≈ 𝑥𝑥𝑗𝑗.

• Indication for |𝑋𝑋| ≈ |𝑌𝑌|.

• But some 𝑥𝑥𝑖𝑖 are > 0 and some < 0,
since 𝑥𝑥 ≠ 0 and ∑𝑖𝑖 𝑥𝑥𝑖𝑖 = 0.

X𝑋𝑋 𝑌𝑌

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Example 1

170

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Example 2

171

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Indication for good balanced partition

172

• Let 𝐸𝐸(𝑋𝑋,𝑌𝑌) be a cut of 𝐺𝐺. Then define:

𝛼𝛼 = 𝛼𝛼 𝑋𝑋,𝑌𝑌 =
|𝐸𝐸(𝑋𝑋,𝑌𝑌)|

𝑚𝑚𝑖𝑖𝑙𝑙 𝑋𝑋 , |𝑌𝑌|

• Let 𝚫𝚫(𝑮𝑮) denote the maximum degree of 𝐺𝐺.
Then the following (Cheeger inequality) holds:

𝛼𝛼2

2Δ(𝐺𝐺)
≤ 𝜆𝜆2 ≤ 2𝛼𝛼

• Hence, we approximately (at most factor 2) find some balanced
(w.r.t. 𝛼𝛼) cut 𝐸𝐸(𝑋𝑋,𝑌𝑌) via an eigenvector of 𝐿𝐿 corresponding to 𝜆𝜆2.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering mixed with 𝑘𝑘-means

173

• Often: building the bipartition (𝑋𝑋,𝑌𝑌) for 𝑉𝑉(𝐺𝐺) from the components of the
eigenvector 𝑥𝑥2 of 𝜆𝜆2 by checking the sign is not ideal.

– Some other threshold than 0 might be better (especially if we partition
into more than 2 clusters).

• Idea: Perform 𝑘𝑘-means algorithm on the entries of 𝑥𝑥2, e.g. just in ℝ1.

– A similar approach works for partitioning into 𝑘𝑘 clusters. There we
consider entries of several eigenvectors (w.r.t. further eigenvalues) as
vectors of ℝ𝑘𝑘−1.

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Example 1

174

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Example 2

175

DTU Compute22 October 2024 Computational Tools for Data Science - Week 7 - Karl Heuer

Spectral clustering with 𝑘𝑘 clusters

176

• Idea 1 (naive): Recursively apply bipartitioning algorithm in a
divisive hierarchical manner.

• Con: Not very efficient.

• Idea 2 (better): Use more eigenvectors, also for bigger eigenvalues.
Can be done similarly, but with a normalised Laplacian.

• Preferable and commonly used.

• Efficient approximation algorithms (up to a constant factor) for 𝑘𝑘
clusters w.r.t similar normalised cut conditions do not exist.

	Computational Tools for Data Science
	Recap: Graphs
	Recap: Graphs
	Recap: Graphs
	Recap: Graphs
	Graphs as models for networks
	Social networks
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Modelling social networks via graphs
	Clustering (partitioning) social network graphs
	Problems with agglomerative clustering
	Problems with agglomerative clustering
	Problems with agglomerative clustering
	Problems with agglomerative clustering
	Problems with agglomerative clustering
	Problems with agglomerative clustering
	Problems with agglomerative clustering
	Problems with agglomerative clustering
	Problems with point assignment (e.g. 𝑘-means)
	Problems with point assignment (e.g. 𝑘-means)
	Problems with point assignment (e.g. 𝑘-means)
	Problems with point assignment (e.g. 𝑘-means)
	Betweenness
	Betweenness centrality
	Betweenness centrality
	Betweenness centrality
	Betweenness centrality
	Betweenness centrality for edges
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Divisive hierarchical clustering via betweenness:�Girvan-Newman Algorithm
	Computing betweenness for edges
	Computing betweenness for edges
	Computing betweenness for edges
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 1
	Computing betweenness for edges: Step 2
	Computing betweenness for edges: Step 2
	Computing betweenness for edges: Step 2
	Computing betweenness for edges: Step 2
	Computing betweenness for edges: Step 2
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Girvan-Newman Algorithm: Step 3
	Girvan-Newman Algorithm: Step 3
	Girvan-Newman Algorithm: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges: Step 3
	Computing betweenness for edges
	Computing betweenness for edges
	Computing betweenness for edges
	Computing betweenness for edges
	Computing betweenness for edges
	Computing betweenness for edges
	Modularity
	Quality of clusters / communities: Modularity
	Model for a random graph
	Model for a random graph
	Model for a random graph
	Model for a random graph
	Model for a random graph
	Model for a random graph
	Model for a random graph
	Model for a random graph
	Quality of clusters / communities: Modularity
	Quality of clusters / communities: Modularity
	Quality of clusters / communities: Modularity
	Quality of clusters / communities: Modularity
	Louvain algorithm
	Louvain algorithm
	Louvain algorithm
	Louvain algorithm
	Louvain algorithm
	Louvain algorithm
	Louvain algorithm
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the main idea
	Louvain algorithm: the full picture of step 1
	Louvain algorithm: the full picture of step 1
	Louvain algorithm: the full picture of step 1
	Louvain algorithm: the full picture of step 1
	Louvain algorithm: the full picture of step 1
	Louvain algorithm: the full picture of step 1
	Louvain algorithm: the full picture of step 1
	Louvain algorithm: illustration
	Louvain algorithm: end of step 1
	Louvain algorithm: step 2
	Louvain algorithm: step 2
	Louvain algorithm: step 2
	Louvain algorithm: step 2
	Louvain algorithm: second pass of step 1
	Louvain algorithm: weighted modularity involved
	Louvain algorithm: weighted modularity involved
	Louvain algorithm: weighted modularity involved
	Louvain algorithm: weighted modularity involved
	Louvain algorithm: second pass of step 1
	Louvain algorithm: second pass of step 2
	Spectral clustering
	Remarks about spectral clustering
	Remarks about spectral clustering
	Remarks about spectral clustering
	Remarks about spectral clustering
	Spectral clustering
	Spectral clustering
	Spectral clustering
	Spectral clustering: “good” cut
	Spectral clustering: “good” cut
	Spectral clustering: “good” cut
	Spectral clustering: “good” cut
	Spectral clustering: “good” cut
	Spectral clustering: “good” cut
	Spectral clustering: “good” cut
	RECAP: Adjacency matrix of a graph
	RECAP: Adjacency matrix of a graph
	Spectral Graph Theory
	RECAP: symmetric matrices
	Some intuition: 𝑑-regular graphs
	Some intuition: 𝑑-regular graphs
	Some intuition: 𝑑-regular graphs
	Some intuition: 𝑑-regular graphs
	Some intuition: 𝑑-regular graphs
	Some intuition: 𝑑-regular graphs
	Some intuition: 𝑑-regular graphs
	General case
	General case
	General case
	General case
	General case
	Example 1
	Example 2
	Indication for good balanced partition
	Spectral clustering mixed with 𝑘-means
	Example 1
	Example 2
	Spectral clustering with 𝑘 clusters

