02941 Physically Based Rendering DTU Compute

Worksheet 4

The key subject this week is Monte Carlo integration, that is, to solve integrals by sampling. With sampling
comes the ability to render soft shadows and indirect illumination. We will focus on soft shadows in this
worksheet.

Learning Objectives
* Apply Monte Carlo integration in rendering.
» Sample points on a triangle mesh.
» Sample directions using a cosine-weighted hemisphere.

* Render soft shadows including the effects of ambient occlusion.

Ray Tracing

Worksheet 1 included an area light, but what if the light source is more complicated. We often need to
carefully consider the sampling of light sources to avoid very high variance results. We will in the following
assignments work on sampling techniques.

* Load the Cornell box (CornellBox.obj) and the blocks inside it (CornellBlocks.obj) and render an
image of the Cornell box where the blocks cast soft shadows. Pick a number of samples per pixel that
results in smooth soft shadows. Make sure that your sampling estimates the value of the direct lighting
integral properly using Monte Carlo integration theory.

For the sampling, try sampling a position «; on an area light with probability pdf(x;) = ﬁi’
where N is the number of triangles and A is the area of the sampled triangle. Then ensure that you
sample the area light uniformly (with probability pdf(xz;) = %, where A is the total surface area).
(CPU framework: update the sample function in ArealLight.cpp and, if necessary, the shade fun-
ction in Lambertian.cpp. GPU framework: update sample in AreaLight.h and __closesthit__-
arealight in shaders.cu.)

* Load the Stanford bunny (bunny.obj) together with the Cornell box and change its material, so that it
acts as an area light (give it non-zero ambient, Ka, in the .mtl file). Compare the two different sampling
techniques for this scene with two very different area lights.

* Return to the scene from Worksheet 2 (bunny and sky). Ambient occlusion is essentially the idea that
the environment (the background) is an infinitely distant ambient area light. Compute ambient occlu-
sion by tracing a ray in a direction sampled on the hemisphere over each surface point. Consider the
colour returned by the sky model to be the incident illumination if the ray is not occluded. (Imple-
ment sample_cosine_weighted in sampler.h. CPU framework: implement the shade function in
Ambient.cpp. Note that the ambient occlusion shader is used when you press ’2’ on the keyboard.
GPU framework: implement the INDIRECT section of __closesthit__directional.)

 Use the panoramic environment map from Worksheet 2 and update the holdout shader so that it includes
ambient occlusion as well as the shadow cast by the sun. Pick a number of samples that results in
smooth illumination and save the image. (CPU framework: update the shade function in Holdout . cpp.
GPU framework: implement the INDIRECT section of __closesthit__holdout.).

Worksheet 4 Deliverables

Cornell box images (with blocks that cast soft shadows) and with a bunny that is also an area light. Images of
the bunny in an environment illuminated by sun and sky and in a photographed environment. Include relevant
code and please give details about the number of samples per pixel.



Reading Material

The curriculum for Worksheet 4 is

P Sections 13-13.3 and 13.5-13.6.5. Monte Carlo Integration.
P Section 14.2-14.2.3. Sampling Light Sources. (Soft shadows.)
P Section 14.3. Direct Lighting.

Alternative literature available online or uploaded to CampusNet:

* Dutré, P. Global Illumination Compendium. Lecture Notes, Katholieke Universiteit Leuven, September
2003. https://people.cs.kuleuven.be/~philip.dutre/GI/

* Shirley, P., Wang, C., and Zimmerman, K. Monte Carlo techniques for direct lighting calculations.
ACM Transactions on Graphics 15(1), pp. 1-36, 1996. https://doi.org/10.1145/226150.226151

Additional resources:

* Landis, H. Production-ready global illumination. In RenderMan in Production, ACM SIGGRAPH
2002 Course Notes, Chapter 5, pp. 87-101, 2002.

e Pharr, M., and Green, S. Ambient Occlusion. In GPU Gems: Programming Techniques, Tips, and
Tricks for Real-Time Graphics, Chapter 17, Addison-Wesley, 2004.
https://developer.nvidia.com/gpugems/gpugems/part-iii-materials/chapter- 17-ambient-occlusion

JERF 2022


https://www.pbr-book.org/3ed-2018/Monte_Carlo_Integration
https://www.pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/Sampling_Light_Sources
https://www.pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/Direct_Lighting
https://people.cs.kuleuven.be/~philip.dutre/GI/
https://doi.org/10.1145/226150.226151
https://developer.nvidia.com/gpugems/gpugems/part-iii-materials/chapter-17-ambient-occlusion

