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Chapter 4

Electromagnetic Radiation

Whether it be molecules, the waves of the sea or myriads of stars, elements of
nature form overall structures.

Peter Haarby describing Inge Lise Westman’s paintings

In the previous chapter we found a number of correspondences between quantum
fields and Maxwell’s equations. In particular, we found that the electromag-
netic field vectors capture the mean effects of quantum particles. The Maxwell
equations that we found correspondences to are sometimes referred to as the
microscopic Maxwell equations. These equations only involve the electric and
magnetic field vectors (E and B), and the current and charge densities (j and
ρ). The charge and current densities are material specific quantities referring
to the behaviour of the electrons in the material. The field vectors are a more
macroscopic way of describing light.

What we are really interested in is the progress of energy in a field. Therefore
we introduce the Poynting vector in this chapter (Sec. 4.1). The Poynting vec-
tor is a quantity describing the energy flow in an electrodynamic field. Based
on this quantity, we try to say something about the propagation of electro-
magnetic energy. This leads to a justification for the inverse square law of
radiation and a formal solution for the microscopic equations. Afterwards we
move to a more macroscopic description of charges and currents (Sec. 4.2). This
is necessary since it is difficult to model every atom in a graphics scene. More
macroscopic material properties are introduced, and, with those, we obtain the
so-called macroscopic Maxwell equations. The next step is to investigate the dif-
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ferent wave functions that we can use as solutions for the macroscopic equations
(Sec. 4.3). Using some simplifying assumptions, we arrive at plane waves as a
simple solution. Finally, we describe some wave theory which is used extensively
in graphics. In particular, we derive the law of reflection, the law of refraction,
and the Fresnel equations for reflection and transmission (Sec. 4.4). As an ad-
ditional feature we show that variants of these laws and formulae are also valid
for the important case of inhomogeneous waves (almost any wave propagating
in an absorbing material is inhomogeneous).

4.1 Microscopic Maxwell Equations

From the theory of quantum electrodynamics we understand that the interaction
of photons and electrons to a certain extent agrees with Maxwell’s equations:

c2∇×B =
j

ε0
+
∂E

∂t
(4.1)

∇×E = −∂B
∂t

(4.2)

∇ ·E = ρ/ε0 (4.3)

∇ ·B = 0 , (4.4)

where E and B are the electric and magnetic field vectors, j and ρ are the
current and charge densities, c is the speed of light in vacuum, and ε0 is the
vacuum permittivity. The original version of Maxwell’s equations included two
additional vectors (H and D) because Maxwell (and other early workers) were
not aware of the internal structure of atoms. They did not know that charges
are bound to atoms and that atomic magnetism is caused by circulating currents
[Feynman et al. 1964, Sec. 32-2]. This means that they had to work with a more
general set of equations than what is really needed to describe nature. Maxwell’s
old magnetic vector H proves to be useful in a more macroscopic description of
the electromagnetic field. Therefore the field H is still used extensively and we
will introduce it later in this chapter.

In our thought experiment of the previous chapter concerning a quantum field
simulator for rendering realistic images, we reasoned that the intensity of RGB
colour values is determined by the number of photons arriving per second. The
relative amount of red, green, and blue is determined by the energies of the pho-
tons. When we reduce the quantum particles to waves and use only Maxwell’s
equations, we have to think of it a little differently. The number of photons
arriving per second is rather the magnitude of the energy flux in the field and
the energies of the photons are the wavelengths present in the field. When we
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look at Maxwell’s equations there is no quantity describing the energy of the
field. We need such a quantity in order to relate the electromagnetic field to the
RGB colour values of our image.

Simple arguments show that the loss of energy per unit time and per unit volume
due to work done by the electromagnetic field is the quantity E · j [Feynman
et al. 1964]. This was also known to Maxwell [1873, Vol. II, Chapter VI] and
using his equation (4.1) involving the curl of the magnetic field, one can also
write this quantity as

E · j = ε0c
2E · (∇×B)− ε0E ·

∂E

∂t
.

Poynting [1884] essentially showed that another way to write it is

E · j = −∇ · (ε0c2E ×B)− ∂

∂t

(
ε0
2
E ·E +

ε0c
2

2
B ·B

)
.

Looking back at the equation (3.20) of charge conservation, this equation is
remarkably similar. Only there is a loss of electromagnetic energy (−E · j)
whereas there is no loss of charge in the field. Considering this analogy, one
defines the energy flux S of the field, also called Poynting’s vector, and the
energy density u of the field as follows:

S = ε0c
2E ×B (4.5)

u =
ε0
2

(|E|2 + c2|B|2) , (4.6)

such that

∇ · S +
∂u

∂t
= −E · j . (4.7)

In the previous chapter we saw how the expression for the energy density
(4.6) agrees well with the quantized description of the energy in a photon field
(cf. Equations 3.7 and 3.17). Thus we can use the intensity of Poynting’s vector
|S| to represent the intensity of the colour values in our renderer.

Knowing how to find the energy flux of the field, the next thing we need to know,
is how to follow the propagation of the waves through a scene. How are waves
of light emitted, how are they absorbed, how do they interact with matter? To
start with emission, the formula for electromagnetic radiation by one individual
point charge in free space is as follows [Feynman et al. 1963, Sec. 28-1]:

E =
q

4πε0

(
~er′

r′2
+
r′

c

d

dt

(
~er′

r′2

)
+

1

c2
d2

dt2
~er′

)
(4.8)

B = ~er′ ×E/c , (4.9)
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Figure 4.1: A moving point charge q at a large distance r ≈ r′ from an
observer. This figure illustrates why the displacement of the vector ~er′(t) on the
unit sphere is approximately equal to the displacement x(t)/r.

where q is the charge and r(t) = r(t)~er(t) is the vector at time t from the
charge toward the position we are considering in the field. The distance is
denoted r(t) and the unit vector describing the direction of r is denoted ~er(t).
The distance and direction appearing in the formulae (4.8–4.9) are retarded such
that r′ = r(t − r′/c) and ~er′ = ~er(t − r′/c). Note that these expressions are
recursive. We cannot determine the electromagnetic field at an instance in time
without knowing where the charges were at some time in the past.

If we look closer at the equation for radiation from a single charge (4.8), it
reveals that the first two terms will vanish quickly as the distance to the charge
increases. So let us assume that r is large and concentrate on the third term
only:

E =
q

4πε0c2
d2~er′

dt2
.

Let us assume that the charge moves slowly compared to the speed of light.
Then the charge will move only a short distance from r′ to r. If we let x
denote the length of r − r′ projected on a plane normal to r′, the sine of the
angle between r and r′, that is, x/r, will approximately be the change in ~er′ .
This is illustrated in Figure 4.1. Since the distance r ≈ r′ is large, it is almost
constant. Therefore the acceleration of ~er′ is approximately a′⊥/r

′, where a′⊥ is
the retarded, projected acceleration of the charge itself. The prime denotes that
it is retarded, which means that it is at the time t − r′/c, and the symbol ⊥
denotes that it is projected on a plane normal to the viewing direction r′. With
this approximation, we have an expression for the magnitude of the electric field
vector

|E| = q

4πε0c2r′
a′⊥ .
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From the relation (4.9) between E and B we find the following (which is valid
for energy radiated through a vacuum)

|B| = |E|/c , (4.10)

Inserting in the expression for Poynting’s vector (4.5), we find the that the
intensity of the energy flux is

|S| = ε0c|E|2 . (4.11)

If we assume that the charge is accelerating in a direction forming the angle
θ with r′, we get the following intensity for a single charge far away from the
point of observation:

|S| = q2

16π2ε0c3r′2
a′2 sin2 θ , (4.12)

where a′ is the retarded acceleration of the charge. Note that the intensity of
the radiation falls off with the square of the distance r′ to the source. This is
the justification for the inverse square law of radiation and now we are aware
of the simplifying assumptions involved in its derivation. If we get close enough
or if the charge is moving fast enough, the inverse square law is no longer valid.
In that case we should use the general result given by Equations 4.11 and 4.8
(except for r′ = 0).

The equation for a single point charge is interesting, but we need more than one
charge to describe the scenes that we want to render in graphics. If we return to
the vector potential A and scalar potential φ defined indirectly in the previous
chapter (Equation 3.8), and choose the Lorentz gauge, we have

E = −∇φ− ∂A

∂t
, B = ∇×A , ∇ ·A = − 1

c2
∂φ

∂t
. (4.13)

Then Mawell’s equations (4.1–4.4) become

∇2A− 1

c2
∂2A

∂t2
= − j

ε0c2
(4.14)

∇2φ− 1

c2
∂2φ

∂t2
= − ρ

ε0
. (4.15)

These two equations are actually four differential equations of identical structure
(A has three components). Formally they have the same solution. This general
solution for Maxwell’s equations at the time t is [Feynman et al. 1964, Sec. 21-3]

A(x, t) =

∫
j(y, t− rxy/c)

4πε0c2rxy
dy (4.16)

φ(x, t) =

∫
ρ(y, t− rxy/c)

4πε0rxy
dy , (4.17)
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where x and y are positions in space. The field vectors are obtained by insertion
in the equations (4.13) which define the potentials. It is possible to derive the
field of a single point charge (4.8–4.9) using this solution [Feynman et al. 1964,
Chapter 21].

4.2 Macroscopic Maxwell Equations

Since we do not want to simulate the interaction of every charge with the field,
we need some more macroscopic measures. Considering the general solution
(4.16–4.17), macroscopic expressions for the charge and current densities (ρ and
j) seem to be the right way to go. Suppose we want to model a material with
N atoms per unit volume. We model each atom as having just one general
dipole moment qd, where q is the magnitude of the charges in the atom and d
is a vector denoting their separation. A dipole is two charges separated by a
very short distance, but under a few assumptions any assembly of point charges
approximately has a dipole potential. The assumptions are that the charges
should be (a) located in a small limited region, (b) neutral as a whole, and (c)
observed at a large distance [Feynman et al. 1964, Sec. 6-5]. The dipole moment
per unit volume is called the polarisation vector and is given by

P = Nqd .

In this dipole approximation the polarisation vector is proportional to the elec-
tric field vector E, we write

P = ε0χeE ,

and refer to χe as the electric susceptibility. The charge and current densities
due to the polarisation of a material are [Feynman et al. 1964, Sec. 10-3 and
Sec. 32-2]

ρpol = −∇ · P , jpol =
dP

dt
. (4.18)

If there are no charges or currents in free space and no magnetisation currents in
the material, these charge and current densities are the only ones present. The
polarisation vector is therefore a more macroscopic or phenomenological way of
describing the charges and currents in a dielectric.

Magnetisation is not related to the charge density, “the magnetisation of mate-
rials comes from circulating currents within the atoms” [Feynman et al. 1964,
Sec. 36-1]. To describe this, one introduces another macroscopic quantity: The
magnetisation vector M . It is defined indirectly by

jmag = ∇×M . (4.19)
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Summing up the different terms in the charge and current densities, we have

ρ = ρfree + ρpol

j = jfree + jpol + jmag .

Inserting these in Maxwell’s equations and moving the terms around, we get the
following result:

∇× (ε0c
2B −M) = jfree +

∂

∂t
(ε0E + P ) (4.20)

∇×E = −∂B
∂t

(4.21)

∇ · (ε0E + P ) = ρfree (4.22)

∇ ·B = 0 . (4.23)

If we introduce two additional field vectors:

D = ε0E + P (4.24)

H = ε0c
2B −M , (4.25)

we get the original Maxwell equations. Sometimes this version of the equations
is referred to as the macroscopic Maxwell equations because they involve the
phenomenological polarisation and magnetisation vectors (P and M).

The magnetisation vector is often assumed to be proportional to H such that

M = χmH , (4.26)

where χm is the magnetic susceptibility. Then a rearrangement of Equation 4.25
gives

H =
ε0c

2

1 + χm
B .

This assumption is, however, only valid for a very limited set of magnetic ma-
terials. Another assumption we can make is that free charges only appear as
conduction in a material. It has been found experimentally that metals produce
a current with a density j proportional to E [Feynman et al. 1964, Sec. 32-6]. To
model this relationship, we introduce another phenomenological quantity called
the conductivity σ, such that

jfree = σE .

To summarise these macroscopic or phenomenological material properties, we
have

D = ε0(1 + χe)E = εE (4.27)

B = (1 + χm)/(ε0c
2)H = µH (4.28)

jfree = σE . (4.29)
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To shorten notation, these equations also introduce the permittivity ε and the
permeability µ. Note that all these macroscopic material properties are inde-
pendent of the direction of the field. For this reason they are often referred to
as the isotropic material equations. When using these material equations, we
cannot model as general a case as if we use Equations 4.20–4.23. If we use the
indirect definitions of P and M (Equations 4.18 and 4.19), we do not have to
make any simplifying assumptions about the material. Unfortunately the po-
larisation and magnetisation vectors are not easy to model, so in the following
we will use the isotropic material equations.

Let us briefly get an idea about how the isotropic material properties relate
to real-world materials [Born and Wolf 1999]: If σ is not negligibly small, the
material is a conductor (which roughly means that it has some electrons that
are not bound to any particular atom such that they are able to produce a “free”
current). As an example metals are good conductors. If the material is not a
conductor, it is called a dielectric. The electric properties are then determined
solely by the permittivity ε. If µ differs appreciably from unity, the material is
magnetic. In particular, if µ > 1, the material is paramagnetic, while if µ < 1 it
is diamagnetic. The material properties are all wavelength dependent.

4.3 Time-Harmonic Solution and Plane Waves

If we look at the differential equations (4.14–4.15) which give rise to the general
solution for the electromagnetic field, they reveal that the vector and scalar
potentials have wave solutions at locations in space where there is no charge
or current density (where ρ and j are zero). Let us represent the solution as
time-harmonic plane waves. Then the potentials have the form

A(x, t) = Re
(
A0e

−i(ωt−k·x)
)

φ(x, t) = Re
(
φ0e
−i(ωt−k·x)

)
,

where k is the wave vector and Re takes the real part of a complex quantity.
If we insert these solutions in the expressions (4.13) for E and B, we again get
time-harmonic plane waves. This plane wave solution is valid for radiation in
free space, that is, when ρ and j are zero. Let us try to figure out if it is also
valid in a more general case.

Having stepped away from the quantum theories, we can safely express the field
vectors in terms of Fourier transforms (the assumption is that the waves have a
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continuous range of frequencies):

F (x, t) =
1

π

∫ ∞
0

F(x, ω)e−iωt dω .

This is the argument why we are allowed to represent the field vectors as a
superposition of time-harmonic functions:

F (x, t) = Re
(
F0(x)e−iωt

)
.

In this representation both D and E are functions of e−iωt. From the material
equation (4.27) we then conclude that the permittivity ε does not depend on
time. Similarly the permeability µ does not depend on time.

The time-harmonic representation of the electromagnetic field is very conve-
nient. Therefore let us write Maxwell’s equations using complex time-harmonic
vector functions. To make it clear that the field vectors are complex, we follow
the notation of Bohren and Huffman [1983] and use the subscript c. As an
example the time-harmonic representation of the electric field vector is

Ec = E0(x)e−iωt ,

where it is understood that we obtain the physical electric field vector by taking
the real part E = Re(Ec). With a loss of generality that is of no significance
in a graphics context, we neglect charges moving freely through empty space,
that is, we set ρfree = 0. Using the isotropic material equations (4.27–4.29) and
the time independence of ε and µ, we get the following time-harmonic version
of the macroscopic Maxwell equations:

∇×Hc = (σ − iωε)Ec (4.30)

∇×Ec = iωµHc (4.31)

∇ · (εEc) = 0 (4.32)

∇ · (µHc) = 0 . (4.33)

Note that we have packed most of the important charges and currents into
the Hc vector and the material properties. By insertion of the plane wave
expressions

Ec(x, t) = E0e
−i(ωt−k·x) , Hc(x, t) = H0e

−i(ωt−k·x) , (4.34)

we observe that plane waves do not in general satisfy the conditions. But they
do satisfy them if we assume that the material properties are independent of
position, that is, if the material is homogeneous. Thus plane waves are not only
a solution in the free electromagnetic field, but also when we use the isotropic
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material equations and assume that the material is homogeneous. Inserting the
plane wave solution, we get the following Maxwell equations:

k ×H0 = −ω(ε+ iσ/ω)E0 (4.35)

k ×E0 = ωµH0 (4.36)

k ·E0 = 0 (4.37)

k ·H0 = 0 . (4.38)

This reveals that Maxwell’s equations require plane waves to satisfy the following
conditions:

k ·E0 = k ·H0 = E0 ·H0 = 0 (4.39)

k · k = ω2µ(ε+ iσ/ω) , (4.40)

where all the vectors may be complex and εc = ε+ iσ/ω is sometimes called the
complex permittivity (or the complex dielectric constant). The latter equation
is particularly interesting, it denotes the relation between material and wave
propagation.

Let us take a look at the real and imaginary parts of the wave vector k. We
write

k = k′ + ik′′ = k′~s ′ + ik′′~s ′′ ,

where k′ = |k′| and k′′ = |k′′| such that ~s ′ and ~s ′′ are unit vectors in the
direction of real and imaginary part of the wave vector respectively. If the real
part of the wave vector k′ is parallel to the imaginary part k′′, the wave is
said to be homogeneous. Otherwise it is inhomogeneous. Of course, k′′ = 0 is
parallel to any vector, why a wave is homogeneous if k is real-valued. If k is
complex, the exponential term of the plane wave expressions (4.34) is as follows

eik·x = eik
′·xe−k

′′·x .

Here we may observe that k′ is the vector normal to the surface of constant phase
and k′′ is normal to the surface of constant amplitude. The phase velocity is
then v = ω/k′ and the amplitude is damped (or decays) in the direction ~s ′′ at
the rate k′′.

If we consider the relation (4.40) describing the rule for propagation of plane
waves in homogeneous matter, it is obvious that a phenomenological quantity
with the following definition is convenient:

n = n′ + in′′ = c
√
µ(ε+ iσ/ω) . (4.41)

It is called the (complex) index of refraction, or refractive index. If we insert it
in Equation 4.40, we get

k · k = k′ · k′ − k′′ · k′′ + i2k′ · k′′ =
ω2

c2
n2 . (4.42)
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For materials that are not strong absorbers, k′′ · k′′ will be so small that we
can neglect it. Then if we equate the real parts (and assume that the index of
refraction is positive), we get

k′ ≈ ω

c
n′ .

Hence, the real part of the refractive index is nearly the ratio of the speed of
light in vacuum to the phase velocity n′ ≈ k′c/ω = c/v. Equating the imaginary
parts, has the result

2k′k′′ cos θ =
ω2

c2
2n′n′′ ,

where θ is the angle between the real and imaginary parts of the wave vector
(k′ and k′′). Using the approximate expression for k′, we have

k′′ ≈ ω

c

n′′

cos θ
=

2π

λ

n′′

cos θ
.

where λ is the wavelength in vacuum. This means that the imaginary part n′′

is an expression related to the absorption of light in the material.

The index of refraction is a nice way to sum up all the material properties, and
indeed it is a quantity which is measured as one of the key optical properties of
materials. We will return to the optical properties of materials in Part II.

Considering the energy of the field, we know that it is the magnitude of the
Poynting vector:

|S| = |ε0c2E ×B| = ε0c
2|E ×B| .

For the plane wave solution, we have

|S| = ε0c
2µ|Re(Ec)× Re(Hc)| ,

where we have used one of the isotropic material equations (4.28) and the plane
wave expressions (4.34). When the plane wave expressions are inserted, we get

|S| = ε0c
2µ
∣∣∣Re(E0e

−i(ωt−k′·x))× Re(H0e
−i(ωt−k′·x))

∣∣∣ e−2k′′s′′·x .

Since the exponential terms which involve ωt and k′ · x are only oscillations,
it follows that 2k′′ is the exponential attenuation of the energy flux as the
wave propagates through the material. This attenuation is called the absorption
coefficient and in graphics we use the symbol σa (which should not be confused
with the conductivity σ). The relationship between the imaginary part of the
refractive index and the absorption coefficient is

σa = 2k′′ ≈ 4πn′′

λ cos θ
, (4.43)
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where cos θ = 1 for homogeneous plane waves. After explaining all these quan-
tities, we have come from a description of radiation from point charges at a
microscopic level to a description of absorption of plane waves at a macroscopic
level. We have not yet discussed how the wave changes when it meets a surface.
This is the subject of the following section.

4.4 Reflection and Refraction

Let us consider a plane wave incident on a smooth surface. Due to the photon
spin discussed in Chapter 3, it is convenient to resolve all the waves we deal with
into two independent plane wave components. The wave components we choose
are the wave with the electric vector perpendicular to the plane of incidence,
⊥-polarised light, and the wave with the electric vector parallel to the plane
of incidence, ‖-polarised light. From experience we know that light incident on
a smooth surface gives rise to two waves: A reflected and a transmitted wave.
In the following we denote the incident wave by the subscript i, the reflected
by the subscript r, and the transmitted by the subscript t. The boundary
conditions given by Maxwell’s equations require that the tangential component
of the electric vector is continuous across the boundary of the surface. The
⊥-polarised component of the electric vector is clearly tangent to the surface at
the point of incidence, therefore at the boundary:

E⊥i + E⊥r = E⊥t .

This must hold at all times and no matter where we place the point of incidence
in space. Suppose we place the point of incidence at the origin of our coordinate
system (where x = 0), then

E⊥0ie
−iωit + E⊥0re

−iωrt = E⊥0te
−iωtt .

This is true only if
ωi = ωr = ωt . (4.44)

Then the exponential factors cancel out, and we have:

E⊥0i + E⊥0r = E⊥0t . (4.45)

In addition, since the frequency of the reflected and transmitted waves is the
same as that of the incident wave (4.44), Equation 4.42 gives

ki · ki

n2i
=

kr · kr

n2i
=

kt · kt

n2t
. (4.46)

In a sense this shows how the relation k ·k = k20n
2 governs the propagation of a

plane wave in homogeneous matter (k0 = ω/c is the wave number in vacuum).
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Figure 4.2: A plane wave reflected and refracted on a surface z = 0 with
normal in the direction of the z-axis. The xz-plane is the plane of incidence.

Let us orient our coordinate system such that the tangent plane is the xy-plane
and the plane of incidence is the xz-plane. Confer Figure 4.2. Then at the
boundary, where z = 0, we have at the time t = 0

E⊥0ie
i(kx,ix+ky,iy) + E⊥0re

i(kx,rx+ky,ry) = E⊥0te
i(kx,tx+ky,ty) ,

This must hold for all x and y on the boundary, thus

kx,i = kx,r = kx,t and ky,i = ky,r = ky,t . (4.47)

Since ki and the normal to the surface at the point of incidence span the plane of
incidence, ki is parallel to it and therefore has no y component, that is, ky,i = 0.
Then according to our new result (4.47), we have

ky,i = ky,r = ky,t = 0 . (4.48)

In other words the reflected and transmitted waves lie in the plane of incidence.
Using Equation 4.46, we get

k2x,i + k2z,i = k2x,r + k2z,r ,

where the x components cancel out (cf. Equation 4.47), and the mathematical
solution is kz,r = kz,i or kz,r = −kz,i. The reflected wave was, however, defined
to be propagating in the same medium as the incident wave, and if kz,r has the
same sign as kz,i, the reflected wave is moving across the boundary. Therefore
the only solution that makes physical sense is

kz,r = −kz,i . (4.49)
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Equations 4.47, 4.48, and 4.49 summarise the law of reflection for plane waves:
The reflected wave lies in the plane of incidence, the (complex) angle of reflection
is equal to the (complex) angle of incidence.

The law of refraction is found in a similar way. From Equations 4.46 and 4.48
we have

kt · kt

n2t
=

ki · ki

n2i
.

Dividing by k2x,t = k2x,i (the equality is from Equation 4.47) and juggling the
terms around, the result is

ni sin Θi = nt sin Θt , (4.50)

where sin Θi = kx,i/
√
ki · ki is sine of the complex angle of incidence and

sin Θt = kx,t/
√
kt · kt is sine of the complex angle of refraction. We refer to

this result as the generalised Snell’s law . The law of refraction for plane waves
is thus: The refracted wave lies in the plane of incidence, the (complex) angle
of refraction follows the generalised Snell’s law (4.50).

From the plane wave Maxwell equations (4.36) we have:

H0 =
1

ωµ
k ×E0 .

Considering the x component of H0, and seing that H is also required to be
continuous across the boundary, we have

− kz,i
ωiµi

E⊥0i −
kz,r
ωrµi

E⊥0r = − kz,t
ωtµt

E⊥0t .

Recalling that the frequencies are equal (cf. Equation 4.44) and using the law
of reflection kz,r = −kz,i, another way to write this is

kz,iE
⊥
0i − kz,iE⊥0r = kz,t

µi

µt
E⊥0t .

If we neglect the relative difference in permeability between the materials and
insert our earlier result (4.45), this equation leads to

E⊥0r =
kz,i − kz,t
kz,i + kz,t

E⊥0i .

Dividing through by
√
ki · kiE

⊥
0i and again using Equation 4.46, we obtain the

Fresnel equation for the reflection of the ⊥-polarised component of the light:

r̃⊥ =
E⊥0r
E⊥0i

=
ni cos Θi − nt cos Θt

ni cos Θi + nt cos Θt
, (4.51)
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where cos Θi = kz,i/
√
ki · ki is cosine of the complex angle of incidence and

cos Θt = kz,t/
√
kt · kt is cosine of the complex angle of refraction. These com-

plex angles that we have now mentioned a few times, do not have the same
simple geometrical interpretation as real angles. Nevertheless, they are still
useful because cosine of a complex angle is the dot product of two normalised
complex vectors.

The ‖-polarised component is obtained in a similar fashion, but in this case
the electric field vector is no longer parallel to the tangential plane. To use
the condition which says that the tangential component of the electric vector is
continuous across the boundary, we have to project the ‖-polarised component
to the tangential plane using cosine of the complex angles, such that

E‖i cos Θi + E‖r cos Θr = E‖t cos Θt .

With this relation, and again requiring that H0 is continuous across the bound-
ary, we obtain

r̃‖ =
E
‖
0r

E
‖
0i

=
nt cos Θi − ni cos Θt

nt cos Θi + ni cos Θt
. (4.52)

The Fresnel equations (4.51,4.52) describe amplitude ratios, but often we are
only interested in the flow of energy. To translate the amplitude ratios into
energy ratios (reflectances), we square the absolute values [Born and Wolf 1999]
such that

R⊥ = |r̃⊥|2 and R‖ = |r̃‖|2 .

The reflected ⊥-polarised light is then the amount of incident ⊥-polarised light
times the reflectance R⊥, and the amount of reflected ‖-polarised light is the
amount of incident ‖-polarised light times the reflectance R‖. For unpolarised
light, the total reflectance is

R =
1

2
(R⊥ +R‖) .

The transmittances are one minus the reflectances:

T⊥ = 1−R⊥ , T‖ = 1−R‖ , T = 1−R .

The Fresnel equations illustrate that light may become polarised upon reflection.
Polarisation was, however, used mostly as a mathematical convenience in the
derivation of the Fresnel equations. Maxwell’s equations do not give us any
reason why polarisation is needed to model light. We can represent it in the
wave theory, but we cannot explain why it is of any physical consequence. The
photon spin is the reason why polarisation changes the properties of light. In
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Chapter 3 we saw that photons are spin one particles which cannot exist in
the rest state. Therefore only two angular momenta (−} and }) are possible
for photons. This means that two polarisation components (like the ⊥ and ‖
components chosen here) are appropriate.

This chapter has introduced several different ways to model electromagnetic ra-
diation. The ways have been of diminishing exactitude. We have used more
and more simplifications in order to describe a more and more macroscopic
case. Let us briefly explore at what levels the material in this chapter allows
us to construct rendering algorithms. As the most exact way of rendering us-
ing Maxwell’s equations, we should use the general solution (4.16–4.17) for the
microscopic equations (4.1–4.4). This solution involves only the simplifications
that we discussed in the previous chapter as compared to the quantum theory.
To succeed with such a renderer, we would have to model materials at an atomic
level. It might be possible to model materials at a slightly more macroscopic
level using the dipole approximation. We can derive current and charge den-
sities from such dipoles and use them for the integrations that find the vector
and scalar potentials of the field. One way to accomplish this integration is
using molecular dynamics [Rapaport 2004]. If we compute the vector and scalar
potentials for every patch on the image plane (every pixel), we can find the field
vectors and with those we can find the Poynting vector leading to the colour
values that we need. Of course we would need to evaluate the field at an ap-
propriate number of wavelengths distributed throughout the visible part of the
spectrum.

Taking one more step up the ladder towards a more feasible way of rendering
realistic images, we arrived at the macroscopic Maxwell equations (4.20–4.23).
The simplification was that we introduced two phenomenological vectors (the
polarisation and magnetisation vectors) in order to represent materials at a
more macroscopic level. Unfortunately we did not find an easier solution for the
general version of the macroscopic Maxwell equations. Mostly we used them
to move on to the time-harmonic Maxwell equations (4.30–4.33). The simpli-
fication at this point was that we introduced the isotropic material equations
(4.27–4.29). Beside assuming that the materials are isotropic these equations
also involve the simplifying assumptions that the permittivity, permeability, and
conductivity of the materials are proportional to the field vectors E and H. This
is certainly not true in general, but the class of materials for which it is true is
happily rather large. Unfortunately we did not find a simple general solution
for the time-harmonic Maxwell equations either. To find that, we would need
something more general than plane waves. When we move to geometrical optics
in the next chapter, we will be able to model a more general type of wave at
the cost of making assumptions about the wavelength. In this chapter we had
to assume that the materials are also homogeneous in order to fit a plane wave
solution to the time-harmonic equations.
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It is certainly possible to construct a rendering algorithm based on the plane
wave solution (4.34) of Maxwell’s equations. With the additional simplification
of using scalar waves this was indeed the solution employed by Moravec [1981]
in his wave-theoretical rendering scheme. I do not know if an implementation
of Moravec’s algorithm has been attempted on modern hardware, but I suppose
reasonable results would be obtained today in comparison to the less successful
results in the original paper. Moravec’s approach is to model waves by sweeping
a 2D array of complex values over an entire scene and storing new sources at
points where light is reflected. The reflected light is then propagated in the fol-
lowing sweep going in the opposite direction. The disadvantage of this approach
is that the scene must be modelled by finely sliced “object planes” parallel to
the image plane. Preferably there should be a plane for every half wavelength.
This is a highly impractical and very storage intensive way of representing ob-
jects. Extraction of the planes from an implicit surface representation might be
the way to go.

Even if we do not want to construct a wave-based rendering algorithm, the
electromagnetic field theory is very useful for describing the interaction of light
and matter in a more detailed way than would be possible if we did not know
about it. The Fresnel equations are a good example of results that we cannot
derive without employing some wave theory. So this is the crux of the matter: we
need the wave theory (and in some cases even the quantum theory) to describe
the interaction of light and matter when the simpler rendering methods fail to
do so in sufficient detail. In this chapter we introduced the complex index of
refraction at a phenomenological level. To predict theoretical values for the
index of refraction, we would have to resort to a quantum description of matter.
Similarly, we have to resort to the electromagnetic field theory to predict the
phenomenological quantities which we use to describe the scattering of light in
conventional rendering algorithms.

In the following chapters, we will move to the theories used for rendering in
graphics today. You will see where the phenomenological description of scat-
tering comes in, and a scheme for theoretical prediction of phenomenological
scattering properties is presented (using Maxwell’s equations) in Part II. First
let us explore the most advanced ray theory available. It is often referred to as
geometrical optics, and it is derived from the theory described in this chapter.



Bibliography

Bohren, C. F., and Huffman, D. R. 1983. Absorption and Scattering of
Light by Small Particles. John Wiley & Sons, Inc.

Born, M., and Wolf, E. 1999. Principles of Optics: Electromagnetic Theory
of Propagation, Interference and Diffraction of Light, seventh (expanded) ed.
Cambridge University Press.

Feynman, R. P., Leighton, R. B., and Sands, M. 1963. The Feynman Lec-
tures on Physics: Mainly Mechanics, Radiation, and Heat. Addison-Wesley
Publishing Company, Reading, Massachusetts. The Definitive Edition pub-
lished by Pearson Addison Wesley in 2006.

Feynman, R. P., Leighton, R. B., and Sands, M. 1964. The Feynman
Lectures on Physics: Mainly Electromagnetism and Matter. Addison-Wesley
Publishing Company, Reading, Massachusetts. The Definitive Edition pub-
lished by Pearson Addison Wesley in 2006.

Maxwell, J. C. 1873. A Treatise on Electricity and Magnetism. Clarendon
Press. Two volumes.

Moravec, H. P. 1981. 3D graphics and the wave theory. Computer Graphics
(Proceedings of ACM SIGGRAPH 81) 15, 3 (July), 254–261.

Poynting, J. H. 1884. On the transfer of energy in the electromagnetic field.
Philosophical Transactions of the Royal Society of London 175 , 343–361.

Rapaport, D. C. 2004. The Art of Molecular Dynamics Simulation, second ed.
Cambridge University Press.



Index

absorption coefficient, 71

conductivity, 67
conductor, 68

diamagnetic, 68
dielectric, 68

electric susceptibility, 66
energy density, 63

Fresnel equations, 74, 75

homogeneous material, 69
homogeneous wave, 70

index of refraction, 70
inhomogeneous wave, 70
inverse square law, 65
isotropic material equations, 67, 68

law of reflection, 74
law of refraction, 74
Lorentz gauge, 65

magnetic, 68
magnetisation vector, 66
Maxwell’s equations

formal solution, 65
Lorentz gauge, 65
macroscopic, 67
microscopic, 62
plane waves, 70
time harmonic, 69

paramagnetic, 68
photon, 62, 63, 75, 76
polarisation, 75–76

vector, 66
Poynting’s vector, 63

reflectance, 75
refractive index, see index of refrac-

tion

Snell’s law
generalised, 74

wave vector, 68, 70


	4 Electromagnetic Radiation
	4.1 Microscopic Maxwell Equations
	4.2 Macroscopic Maxwell Equations
	4.3 Time-Harmonic Solution and Plane Waves
	4.4 Reflection and Refraction

	Bibliography
	Index



