Welcome to 02941: Physically Based Rendering and Material Appearance Modelling

Jeppe Revall Frisvad

June 2023

Course responsible

Jeppe Revall Frisvad

- Associate Professor, DTU Compute
- https://people.compute.dtu.dk/jerf/
- jerf@dtu.dk
- Lectures and exercises

Course contents

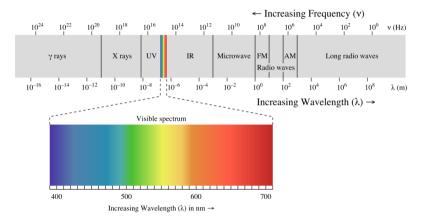
Core elements:

- Radiative transfer.
 - Visual effects: emission, diffuse and rough surface reflection, shadows, indirect illumination (colour bleeding), caustics, participating media, translucency.
 - Methods: path tracing, photon mapping, diffusion.
- Geometrical optics.
 - ▶ Visual effects: reflection, refraction, absorption, dispersion, polarisation.
 - Methods: path tracing, photon mapping, wave theory (refractive index, Fresnel).
- Light scattering.
 - Visual effects: interference, diffraction, scattering by particles and microgeometry.
 - Methods: Computing reflectance distribution functions and scattering properties.

Assessment

Daily exercises.

- Each worksheet has *deliverables* which are part of your assessment. Think of it as your lab journal.
- Your work should be collected in a pdf and submitted before the final deadline: 23:59 Friday 23 June 2023.
- One slide displaying results from the lab journal and/or project. Presentation the last day, submission the day after.
- > Your work is assessed in its entirety and you will receive a *pass* or *not pass* grade.


02941 Physically Based Rendering Introduction

Jeppe Revall Frisvad

June 2023

Quiz: What is the origin of colours?

▶ Waves of light have different wavelengths which are perceived as different colours.

Light from the sun is white (contains all wavelengths), how come other colours appear in nature...

Quiz: Why are leaves green?

Quiz: Why are metals shiny, but not perfect mirrors?

https://en.wikipedia.org/wiki/Copper

Quiz: Why is lava red-hot?

 $https://en.wikipedia.org/wiki/Black-body_radiation$

Quiz: Why is the sky blue, but red at sunset?

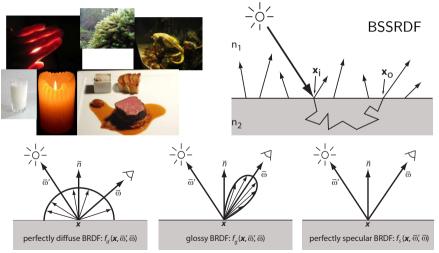
Quiz: Why rainbows?

 $https://people.compute.dtu.dk/jerf/papers/on_LL.pdf$

Quiz: Why are soap bubbles multicoloured?

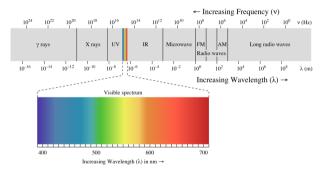
https://www.soapbubble.dk/

What is physically based rendering?


- Rendering: the particular way in which something is performed. (Oxford Advanced Learner's Dictionary)
- **Rendering an image**: the particular way in which an image is generated.
- Photographic rendering: the particular way in which an image is generated using a camera (including development).
- Computer graphics rendering: the particular way in which an image is generated using a computer.
- > Physically based rendering: a physically based way of computing an image.
 - Think of a photographic rendering as a physical experiment.
 - Physically based rendering is then an attempt to model photographic rendering mathematically and computationally.
 - The (unreachable) goal of the models is to predict the outcome of the physical experiment: "taking a picture".

Models needed for physically based rendering

- Consider the experiment: "taking a picture".
- What do we need to model it?
 - Camera
 - Scene geometry
 - Light sources
 - Light propagation
 - Light absorption and scattering
- Mathematical models for these physical phenomena are required as a minimum in order to render an image.
- We can use very simple models, but, if we desire a high level of realism, more complicated models are required.
- ► To get started, we will recall the simpler models (in opposite order).


Materials (light scattering and absorption)

- Optical properties (index of refraction, $n(\lambda) = n'(\lambda) + i n''(\lambda)$).
- ▶ Reflectance distribution functions, $S(\mathbf{x}_i, \vec{\omega}_i; \mathbf{x}_o, \vec{\omega}_o)$.

Light propagation

> Visible light is electromagnetic waves of wavelengths (λ) from 380 nm to 780 nm.

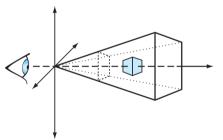
- Electromagnetic waves propagate as rays of light for $\lambda \rightarrow 0$.
- Rays of light follow the path of least time (Fermat).
- How does light propagate in air? In straight lines (almost).
- The parametrisation of a straight line in 3D ($\mathbf{r}(t) = \mathbf{x} + t\vec{\omega}$) is therefore a good, simple model for light propagation.

Light sources

- ► A light source is described by a spectrum of light L_{e,λ}(x, w_o) which is emitted from each point on the emissive object.
- A simple model is a light source that from each point emits the same amount of light in all directions and at all wavelengths, L_{e,λ} = const.
- The spectrum of heat-based light sources can be estimated using Planck's law of radiation. Examples:

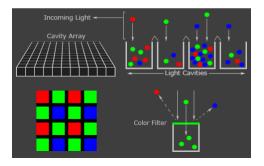
The surface geometry of light sources is modelled in the same way as other geometry in the scene.

Scene geometry

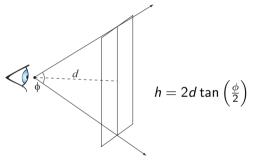

- Surface geometry is often modelled by a collection triangles some of which share edges (a triangle mesh).
- Triangles provide a discrete representation of an arbitrary surface.
 Teapot example:

Triangles are useful as they are defined by only three vertices.
 And ray-triangle intersection is simple.

Camera


- A camera consists of a light sensitive area, a processing unit, and a storage for saving the captured images.
- The simplest model of a camera is a rectangle, which models the light sensitive area (the chip/film), placed in front of an eye point where light is gathered.

- We can use this model in two different ways:
 - Follow rays from the eye point through the rectangle and onwards (ray casting).
 - Project the geometry on the image plane and find the geometry that ends up in the rectangle (rasterization).


The light sensitive Charge-Coupled Device (CCD) chip

- ► A CCD chip is an array of light sensitive cavities.
- A digital camera therefore has a resolution $W \times H$ measured in number of pixels.
- A pixel corresponds to a small area on the chip.
- Several light sensitive cavities contribute to each pixel because the light measurement is divided into red, green, and blue.
- Conversion from this colour pattern to an RGB image is called demosaicing.

The lens as an angle and a distance

- The lens system determines how large the field of view is.
- The field of view is an angle ϕ .

- The lens also determines the distance d from the eye point to the image plane wherein the light sensitive area is placed in the model.
- The distance d is called the camera constant.
- Since the size of the chip is constant, d determines the zoom level of the camera.

Ray generation

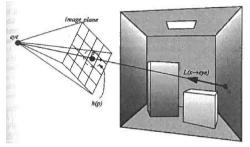
Camera description:

Extrinsic parameters		Intrinsic parameters			
e	Eye point	ϕ	Vertical field of view		
р	View point	d	Camera constant		
ū	Up direction	W, H	Camera resolution		

Sketch of ray generation:

• Given pixel index (i, j), we find the direction $\vec{\omega}$ of a ray through that pixel.

02941 Physically Based Rendering


Ray tracing direct illumination


Jeppe Revall Frisvad

June 2023

What is a ray?

- ▶ Parametrisation of a straight line: $r(t) = e + t \vec{\omega}$, $t \in [0, \infty)$.
- Camera provides origin (e) and direction ($\vec{\omega}$) of "eye rays".

- The user sets origin and direction when tracing rays recursively.
- But we need more properties:
 - Minimum and maximum distances (t_{min} and t_{max}) for numerics and visibility.
 - Info on what was hit and where (hit normal, position, distance, material, etc.).
 - A counter to tell us the trace depth: how many reflections and refractions in a path (no. of recursions).

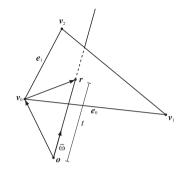
Ray-triangle intersection

► Ray:
$$\mathbf{r}(t) = \mathbf{o} + t \vec{\omega}, t \in [t_{\min}, t_{\max}].$$

Triangle: \mathbf{v}_0 , \mathbf{v}_1 , \mathbf{v}_2 .

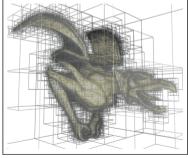
Edges and normal:

 $e_0 = v_1 - v_0, \ e_1 = v_0 - v_2, \ n = e_0 \times e_1.$


Barycentric coordinates:

$$\begin{aligned} \mathbf{r}(u, v, w) &= u \, \mathbf{v}_0 + v \, \mathbf{v}_1 + w \, \mathbf{v}_2 = (1 - v - w) \, \mathbf{v}_0 + v \, \mathbf{v}_1 + w \, \mathbf{v}_2 \\ &= \mathbf{v}_0 + v \, \mathbf{e}_0 - w \, \mathbf{e}_1 \, . \end{aligned}$$

• The ray intersects the triangle's plane at $t' = \frac{(\mathbf{v}_0 - \mathbf{o}) \cdot \mathbf{n}}{\vec{\omega} \cdot \mathbf{n}}$.


Find r(t') − v₀ and decompose it into portions along the edges e₀ and e₁ to get v and w. Then check

$$v\geq 0$$
 , $w\geq 0$, $v+w\leq 1$.

Spatial subdivision

- ► To model arbitrary geometry with triangles, we need many triangles.
- A million triangles and a million pixels are common numbers.
- ▶ Testing all triangles for all pixels requires 10¹² ray-triangle intersection tests.
- If we do a million tests per millisecond, it will still take more than 15 minutes.
- This is prohibitive. We need to find the relevant triangles.
- Spatial data structures offer logarithmic complexity instead of linear.
- A million tests become twenty operations $(\log_2 10^6 \approx 20).$
- 15 minutes become 20 milliseconds.

Gargoyle embedded in oct tree [Hughes et al. 2014].

Ray tracing

- What do you need in a ray tracer?
 - Camera (ray generation and lens effects)
 - Ray-object intersection (and accelleration)
 - Light distribution (different source types)
 - Visibility testing (for shadows)
 - Surface scattering (reflection models)
 - Recursive ray tracing (rays spawn new rays)
- ▶ How to use a ray tracer? Trace radiant energy.
- The energy travelling along a ray of direction $\vec{r} = -\vec{\omega}$ is measured in radiance (flux per projected area per solid angle).
- The outgoing radiance L_o at a surface point x is the sum of emitted radiance L_e and reflected radiance L_r:

$$L_o(\mathbf{x}, \vec{\omega}) = L_e(\mathbf{x}, \vec{\omega}) + L_r(\mathbf{x}, \vec{\omega})$$
.

• Reflected radiance is computed using the BRDF (f_r) and an estimate of incident radiance L_i at the surface point.

The rendering equation

Surface scattering is defined in terms of
 Radiance:

$$L = \frac{\mathrm{d}^2 \Phi}{\cos \theta \, \mathrm{d} A \, \mathrm{d} \omega} \; \; .$$

Irradiance:

$$E = rac{\mathrm{d}\Phi}{\mathrm{d}A} ~,~~\mathrm{d}E = L_i\cos heta\,\mathrm{d}\omega~.$$

► BRDF:
$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) = \frac{\mathrm{d}L_r(\mathbf{x}, \vec{\omega}_o)}{\mathrm{d}E(\mathbf{x}, \vec{\omega}_i)} .$$

• The rendering equation then emerges from $L_o = L_e + L_r$:

$$L_o(\boldsymbol{x}, \vec{\omega}_o) = L_e(\boldsymbol{x}, \vec{\omega}_o) + \int_{2\pi} f_r(\boldsymbol{x}, \vec{\omega}_i, \vec{\omega}_o) L_i(\boldsymbol{x}, \vec{\omega}_i) \cos \theta_i \, \mathrm{d}\omega_i \ .$$

▶ This is an integral equation. Integral equations are recursive in nature.

Surface scattering

Bidirectional Reflectance Distribution Functions (BRDFs)

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) = rac{\mathrm{d}L(\mathbf{x}, \vec{\omega}_o)}{\mathrm{d}E(\mathbf{x}, \vec{\omega}_i)}$$

Physically-based BRDFs must obey:

Reciprocity:

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) = f_r(\mathbf{x}, \vec{\omega}_o, \vec{\omega}_i)$$
.

Energy conservation:

$$\int_{2\pi} f_r(oldsymbol{x},ec{\omega}_i,ec{\omega}_o)\,\cos heta_o\,\mathrm{d}\omega_o\leq 1$$
 .

▶ The Lambertian (perfectly diffuse) BRDF scatters light equally in all directions

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) = \frac{
ho_d}{\pi}$$

where ρ_d is the bihemispherical diffuse reflectance $(d\Phi_r/d\Phi_i)$.

Direct illumination due to different light sources

► A directional light emits a constant radiance L_e in one particular direction $\vec{\omega}_e = -\vec{\omega}_i$ $L_r = \int_{2\pi} f_r L_i \cos \theta_i \, d\omega_i = f_r \, VL_e \left(-\vec{\omega}_e \cdot \vec{n} \right).$

A point light emits a constant intensity *l_e* in all directions from one particular point *x_e*

$$L_r = f_r \frac{V}{r^2} \left(\vec{\omega}_i \cdot \vec{n} \right) I_e, \qquad \begin{array}{c} r = \| \mathbf{x}_e - \mathbf{x} \| \\ \vec{\omega}_i = (\mathbf{x}_e - \mathbf{x})/r \end{array}.$$

 $\cos \theta_{e} = -\vec{\omega}_{i} \cdot \vec{n}_{e}$

An area light emits a cosine weighted radiance distribution from each differential element of area dA. We have $d\omega_i = \frac{\cos \theta_e}{r^2} dA_e$ and

$$L_r = \int f_r \, V L_e \, \cos \theta_i \, \frac{\cos \theta_e}{r^2} \mathrm{d} A_e$$

V is visibility.

Approximation for a distant area light

> An area light emits a cosine weighted radiance distribution from each area element

$$L_r = \int f_r \, V L_e \, \cos \theta_i \, \frac{\cos \theta_e}{r^2} dA_e \, . \qquad \overbrace{\cos \theta_e = -\vec{\omega}_i \cdot \vec{n}_e}^{\bar{n}} \int_{-\vec{n}_e}^{\vec{n}_e} \int_{-\vec{n}_e}^{\vec{n}_e} dA_e \, .$$

V is visibility.

Assuming the area light is distant, we can approximate its lighting of the scene using just one sample. Suppose we place it at the center of the bounding box x_e. Then

$$L_r = f_r \frac{V}{r^2} \left(\vec{\omega}_i \cdot \vec{n} \right) \underbrace{\sum_{\triangle=1}^{N} (-\vec{\omega}_i \cdot \vec{n}_{e\triangle}) L_{e\triangle} A_{\triangle}}_{I_e},$$

where N is the number of triangles in the area light and riangle is a triangle index.

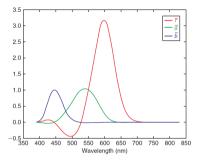
This is like a point light, but with a different intensity.

Sampling a triangle mesh (area lights, soft shadows)

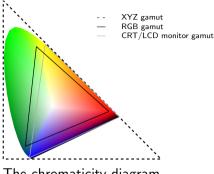
• Material:

$$f_r(\mathbf{x}, \vec{\omega}_i, \vec{\omega}_o) = \frac{\rho_d(\mathbf{x})}{\pi}$$
.

Sampler (triangle index Δ and area A_{Δ}):


$$egin{aligned} ec{\omega}_{i,q} &= rac{oldsymbol{x}_{\ell,q} - oldsymbol{x}}{\|oldsymbol{x}_{\ell,q} - oldsymbol{x}\|} \ \mathsf{pdf}(oldsymbol{x}_{\ell,q}) &= \mathsf{pdf}(riangle)\mathsf{pdf}(oldsymbol{x}_{\ell,q, riangle}) = rac{1}{N_{ riangle}}rac{1}{A_{ riangle}}\,. \end{aligned}$$

• Estimator (no. of triangles N_{Δ}):

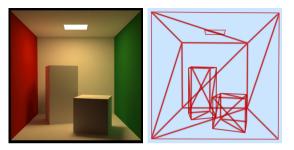

 $L_{r,q}(\mathbf{x}, \vec{\omega}_{q}) = f_{r,q} L_{i,q} \cos \theta_{i,q}$

$$= \frac{\rho_d(\mathbf{x})}{\pi} \underbrace{L_e(\mathbf{x}_{\ell,q}, -\vec{\omega}_{i,q})V(\mathbf{x}_{\ell,q}, \mathbf{x}) \frac{(-\vec{\omega}_{i,q} \cdot \vec{n}_e)}{\|\mathbf{x}_{\ell,q} - \mathbf{x}\|^2} N_{\Delta} A_{\Delta}(\vec{\omega}_{i,q} \cdot \vec{n})}_{L_{i,q}}.$$

Colorimetry (spectrum to RGB)

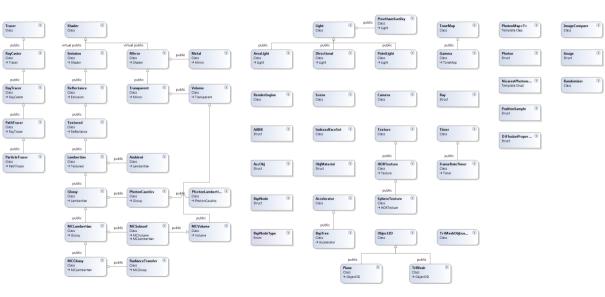
CIE color matching functions

The chromaticity diagram


$$R = \int_{\mathscr{V}} C(\lambda) \bar{r}(\lambda) \, \mathrm{d}\lambda \quad , \quad G = \int_{\mathscr{V}} C(\lambda) \bar{g}(\lambda) \, \mathrm{d}\lambda \quad , \quad B = \int_{\mathscr{V}} C(\lambda) \bar{b}(\lambda) \, \mathrm{d}\lambda \quad ,$$

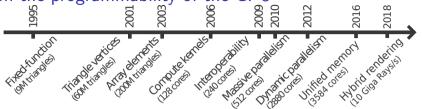
where \mathscr{V} is the interval of visible wavelengths and $C(\lambda)$ is the spectrum that we want to transform to RGB.

Exercises


- Find out how to set the material properties of objects in a scene. Change the diffuse reflectance (ρ_d).
- Load triangle meshes and material properties from files.
- Ray trace loaded meshes.
- Shade Lambertian materials using a directional light.
- Shade Lambertian materials using an area light.
- Compute visibility (V) by tracing shadow rays to light sources.

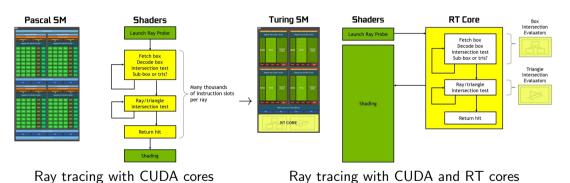
The Cornell box

- The Cornell box is a convenient test scene for developing rendering algorithms. https://www.graphics.cornell.edu/online/box/
- You can load the Cornell box (or other .obj files) into the ray tracing framework by supplying the following commandline arguments:
- CPU ../models/CornellBox.obj ../models/CornellBlocks.obj
- GPU ../../models/CornellBox.obj ../../models/CornellBlocks.obj
 - Loading the blocks is optional. You can load the box only and insert specular spheres to test more light paths.

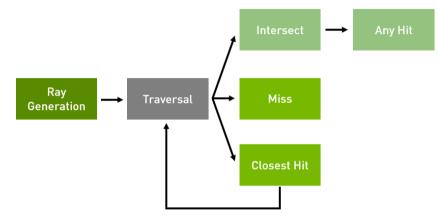

Implementing a ray tracer (Render Framework)

Files used in Worksheet 1 (Render Framework)

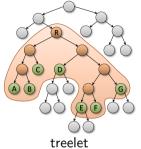
역] render Microsoft Voual Sudie File Est View Project Build Debug Team Naight Tools Test Analyze Window Help 이 이 이 경우 제품 보이 Project Patess · View32 · · ▶ Local Window Debugger · 플, 뉴 이 제품 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및 및					▼ P Quick Launch (Ctri+Q) P = S × Jeppe Revall Frisvad × JF
Opposite Deschanging ** Deschanging ** ************************************					Solution Leader Solution Carlor Soluti
Output Show copyrithms:				- # ×	2941户
C Ready	Ln 1	Col 1	Ch 1	INS	↑ Add to Source Control ◆

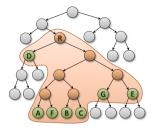

Timeline on the programmability of the GPU

- 1995 Fixed-function rasterization pipeline in hardware.
- 2001 Vertex shaders (first programmable part of the pipeline).
- 2003 Fragment/pixel shaders (GPGPU).
- 2006 Unified shaders (CUDA) and geometry shaders.
- 2008 Double precision arithmetics.
- 2009 Compute shaders (interoperability) and tesselation shaders.
- 2010 Streaming multiprocessor architecture. Programmable ray tracing pipeline on the GPU.
- 2012 Dynamic parallelism (threads spawn threads).
- 2016 Unified memory (on demand data migration and dynamic memory allocation).
- 2018 Hybrid rendering (CUDA cores, RT cores, DNN tensor cores).


Ray tracing with RT cores

Software Emulation for BVH Search

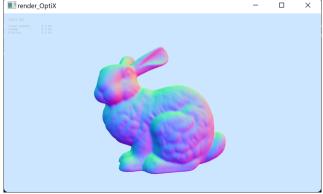

Hardware Acceleration Replaces Software Emulation


GPU ray tracing (OptiX)

- ▶ The camera model is used for the "Ray Generation" program.
- Ray-object intersection is in the "Intersect" program (hardwired for triangles).
- ▶ The shader is implemented in the "Closest Hit" program.

Treelet restructuring bounding volume hierarchy for spatial subdivision

reorganized treelet


- Practical GPU-based bounding volume hierarchy (BVH) builder.
 - 1. Build a low-quality BVH (parallel linear BVH).
 - 2. Optimize node topology by parallel treelet restructuring (keeping leaves and their subtrees intact).
 - 3. Post-process for fast traversal.

References

- Karras, T., and Aila, T. Fast parallel construction of high-guality bounding volume hierarchies. In Proceedings of HPG 2013, pp. 89–99. ACM, July 2013.

Simplest closest hit program

```
extern "C" __global__ void __closesthit__normals()
{
    const HitGroupData* hit_group_data = reinterpret_cast<HitGroupData*>(optixGetSbtDataPointer());
    const LocalGeometry geom = getLocalGeometry(hit_group_data->geometry_data);
    float3 result = normalize(geom.N)*0.5f + 0.5f;
    setPayloadResult(result);
}
```


Files used in Worksheet 1 (Render OptiX Framework)

184 con 185 fla 186 1 187 1 188 1 189 // 190 con 191 con		 dosesthit volume() 	O Solution Explorer	
render 182 183 184 185 185 187 188 189 // 190 coi 191 coi				
182 // 183 // 184 con 185 fla 186 1 187 1 188 1 189 // 190 con 191 con	(manual sector)		-+ COAN 10-	
183 /// 184 con 185 fl4 186 1 187 1 188 1 189 /// 190 con 191 con		1. The second second		
185 f14 186 1 187 188 189 // 190 con 191 con	/ Retrieve material data		Search Solution Explorer	r (Ctrl+'')
185 f14 186 1 187 188 189 // 190 con 191 con	const float3& emission = hit group data->mtl inside.emission;		P S offw	
186 187 188 189 // 190 con 191 con	loat3 rho d = hit group data->mtl inside.base color tex		▶ 🕤 imqui	
187 188 189 // 190 con 191 con	? make_float3(tex2D <float4>(hit_group_data->mtl_inside.base_color_tex, geom.UV.x, geom.UV.y))</float4>		> Soptprops	
188 189 // 190 cor 191 cor	: hit group data-antl inside.rho d;		4 S render	
189 // 190 con 191 con			► ■ References	
190 cor 191 cor	/ Retrieve hit info		Keterences Keterences Keterences	
191 co	onst float3& x = geom.P:			
	const float3 n = normalize(geom.N);		📕 🔺 😜 CUDA Files	
	loat3 result = emission;		In the shaders.	
	const float tmin = 1.0e-4f;		📕 🔺 🜳 Header File	
	onst float tmax = 1.0e16f;		AreaLight	
195			complex	
	def DIRECT		Direction	nal.h
	/ Implement Lambertian reflection here, include shadow rays,		P ervmap	h
198 1 //			Internet.	1
	/ Output:		HDRLoa	
	/ result (payload: result is the reflected radiance)		Imicrofac	
201 //			Di ObjScen	
	/ / Relevant data fields that are available (see above):		▶ ⊡ guaterni	
	/ rho d (difuse reflectance of the material)			
	/ x (position where the ray hit the object)		QuatTra D Sampler	
	/ n (normal where the ray hit the object)			
	/ lp.lights (array of directional light sources)		Solution Explorer	hannes
	/ lp.handle (spatial data structure handle for tracing new rays)		addition exprorem on c	
208 //			Properties	
	/ // Hint: Use the function traceOcclusion to trace a shadow ray.			
210	, miler use the function of dedectastan to crace a shadow ray r		· 20 94 /	
211 #end:	14			
	def INDIRECT		🗄 Misc	
	/ Indirect illumination		Content	False
214			+ File Type	
	5 <u>▲</u> 0 ← → 4		Ln: 700 Ch: 1 SPC CRLF Full Path	
			Included In Project	True
tput				
ow output from:	 影響者 墨麗 			
			Misc	
or List Output Fi	Find Symbol Results			