
Welcome to 02941: Physically Based Rendering and
Material Appearance Modelling

Jeppe Revall Frisvad

June 2023

Course responsible

▶ Jeppe Revall Frisvad
▶ Associate Professor, DTU Compute
▶ https://people.compute.dtu.dk/jerf/
▶ jerf@dtu.dk
▶ Lectures and exercises

https://people.compute.dtu.dk/jerf/

Course contents

Core elements:

▶ Radiative transfer.
▶ Visual effects: emission, diffuse and rough surface reflection, shadows, indirect

illumination (colour bleeding), caustics, participating media, translucency.
▶ Methods: path tracing, photon mapping, diffusion.

▶ Geometrical optics.
▶ Visual effects: reflection, refraction, absorption, dispersion, polarisation.
▶ Methods: path tracing, photon mapping, wave theory (refractive index, Fresnel).

▶ Light scattering.
▶ Visual effects: interference, diffraction, scattering by particles and microgeometry.
▶ Methods: Computing reflectance distribution functions and scattering properties.

Assessment

▶ Daily exercises.
▶ Each worksheet has deliverables which are part of your assessment.

Think of it as your lab journal.
▶ Your work should be collected in a pdf and submitted before the final deadline:

23:59 Friday 23 June 2023.

▶ One slide displaying results from the lab journal and/or project.
Presentation the last day, submission the day after.

▶ Your work is assessed in its entirety and you will receive a pass or not pass grade.

02941 Physically Based Rendering
Introduction

Jeppe Revall Frisvad

June 2023

Quiz: What is the origin of colours?

▶ Waves of light have different wavelengths which are perceived as different colours.

▶ Light from the sun is white (contains all wavelengths),
how come other colours appear in nature. . .

Quiz: Why are leaves green?

Quiz: Why are metals shiny, but not perfect mirrors?

https://en.wikipedia.org/wiki/Copper

Quiz: Why is lava red-hot?

https://en.wikipedia.org/wiki/Black-body radiation

https://en.wikipedia.org/wiki/Black-body_radiation

Quiz: Why is the sky blue, but red at sunset?

Quiz: Why rainbows?

https://people.compute.dtu.dk/jerf/papers/on LL.pdf

https://people.compute.dtu.dk/jerf/papers/on_LL.pdf

Quiz: Why are soap bubbles multicoloured?

https://www.soapbubble.dk/

What is physically based rendering?

▶ Rendering: the particular way in which something is performed. (Oxford
Advanced Learner’s Dictionary)

▶ Rendering an image: the particular way in which an image is generated.

▶ Photographic rendering: the particular way in which an image is generated
using a camera (including development).

▶ Computer graphics rendering: the particular way in which an image is
generated using a computer.

▶ Physically based rendering: a physically based way of computing an image.
▶ Think of a photographic rendering as a physical experiment.
▶ Physically based rendering is then an attempt to model photographic rendering

mathematically and computationally.
▶ The (unreachable) goal of the models is to predict the outcome of the physical

experiment: “taking a picture”.

Models needed for physically based rendering

▶ Consider the experiment: “taking a picture”.
▶ What do we need to model it?

▶ Camera
▶ Scene geometry
▶ Light sources
▶ Light propagation
▶ Light absorption and scattering

▶ Mathematical models for these physical phenomena are required as a minimum in
order to render an image.

▶ We can use very simple models, but, if we desire a high level of realism, more
complicated models are required.

▶ To get started, we will recall the simpler models (in opposite order).

Materials (light scattering and absorption)
▶ Optical properties (index of refraction, n(λ) = n′(λ) + i n′′(λ)).

▶ Reflectance distribution functions, S(xi , ω⃗i ; xo , ω⃗o).

xi xo

n1

n2

BSSRDF

n

x

ω’
ω

perfectly di�use BRDF: f (x, ,)d

n

x

ω’
ω

n

x

ω’

ω’ ω glossy BRDF: f (x, ,)g ω’ ω perfectly specular BRDF: f (x, ,)s ω’ ω

ω

Light propagation
▶ Visible light is electromagnetic waves of wavelengths (λ) from 380 nm to 780 nm.

▶ Electromagnetic waves propagate as rays of light for λ → 0.

▶ Rays of light follow the path of least time (Fermat).

▶ How does light propagate in air? In straight lines (almost).

▶ The parametrisation of a straight line in 3D (r(t) = x + tω⃗) is therefore a good,
simple model for light propagation.

Light sources

▶ A light source is described by a spectrum of light Le,λ(x , ω⃗o) which is emitted
from each point on the emissive object.

▶ A simple model is a light source that from each point emits the same amount of
light in all directions and at all wavelengths, Le,λ = const.

▶ The spectrum of heat-based light sources can be estimated using Planck’s law of
radiation. Examples:

▶ The surface geometry of light sources is modelled in the same way as other
geometry in the scene.

Scene geometry

▶ Surface geometry is often modelled by a collection triangles some of which share
edges (a triangle mesh).

▶ Triangles provide a discrete representation of an arbitrary surface.

Teapot example:

wireframe faces shaded

▶ Triangles are useful as they are defined by only three vertices.

And ray-triangle intersection is simple.

Camera
▶ A camera consists of a light sensitive area, a processing unit, and a storage for

saving the captured images.

▶ The simplest model of a camera is a rectangle, which models the light sensitive
area (the chip/film), placed in front of an eye point where light is gathered.

▶ We can use this model in two different ways:
▶ Follow rays from the eye point through the rectangle and onwards (ray casting).
▶ Project the geometry on the image plane and find the geometry that ends up in the

rectangle (rasterization).

The light sensitive Charge-Coupled Device (CCD) chip
▶ A CCD chip is an array of light sensitive cavities.

▶ A digital camera therefore has a resolution W × H measured in number of pixels.

▶ A pixel corresponds to a small area on the chip.

▶ Several light sensitive cavities contribute to each pixel because the light
measurement is divided into red, green, and blue.

▶ Conversion from this colour pattern to an RGB image is called demosaicing.

The lens as an angle and a distance

▶ The lens system determines how large the field of view is.

▶ The field of view is an angle ϕ.

φ
d

h = 2d tan
(
ϕ
2

)

▶ The lens also determines the distance d from the eye point to the image plane
wherein the light sensitive area is placed in the model.

▶ The distance d is called the camera constant.

▶ Since the size of the chip is constant, d determines the zoom level of the camera.

Ray generation
▶ Camera description:

Extrinsic parameters Intrinsic parameters

e Eye point ϕ Vertical field of view
p View point d Camera constant
u⃗ Up direction W ,H Camera resolution

▶ Sketch of ray generation:

e
p

u
v

image plane

film
ray

pixel (i, j)

d h
φ

e

film

▶ Given pixel index (i , j), we find the direction ω⃗ of a ray through that pixel.

02941 Physically Based Rendering
Ray tracing direct illumination

Jeppe Revall Frisvad

June 2023

What is a ray?
▶ Parametrisation of a straight line: r(t) = e + t ω⃗ , t ∈ [0,∞).

▶ Camera provides origin (e) and direction (ω⃗) of “eye rays”.

▶ The user sets origin and direction when tracing rays recursively.

▶ But we need more properties:
▶ Minimum and maximum distances (tmin and tmax) for numerics and visibility.
▶ Info on what was hit and where (hit normal, position, distance, material, etc.).
▶ A counter to tell us the trace depth: how many reflections and refractions in a path

(no. of recursions).

Ray-triangle intersection
▶ Ray: r(t) = o + t ω⃗, t ∈ [tmin, tmax].

▶ Triangle: v0, v1, v2.

v0

v1

v2

r

o
ω

t
e0

e1

▶ Edges and normal:

e0 = v1 − v0, e1 = v0 − v2, n = e0 × e1.

▶ Barycentric coordinates:

r(u, v ,w) = uv0 + vv1 + wv2 = (1− v − w)v0 + vv1 + wv2

= v0 + ve0 − we1 .

▶ The ray intersects the triangle’s plane at t ′ =
(v0 − o) · n

ω⃗ · n
.

▶ Find r(t ′)− v0 and decompose it into portions along the edges e0 and e1 to get v
and w . Then check

v ≥ 0 , w ≥ 0 , v + w ≤ 1 .

Spatial subdivision

▶ To model arbitrary geometry with triangles, we need many triangles.

▶ A million triangles and a million pixels are common numbers.

▶ Testing all triangles for all pixels requires 1012 ray-triangle intersection tests.

▶ If we do a million tests per millisecond, it will still take more than 15 minutes.

▶ This is prohibitive. We need to find the relevant triangles.

▶ Spatial data structures offer logarithmic
complexity instead of linear.

▶ A million tests become twenty operations(
log2 10

6 ≈ 20
)
.

▶ 15 minutes become 20 milliseconds.

Gargoyle embedded in oct tree [Hughes et al. 2014].

Ray tracing
▶ What do you need in a ray tracer?

▶ Camera (ray generation and lens effects)
▶ Ray-object intersection (and accelleration)
▶ Light distribution (different source types)
▶ Visibility testing (for shadows)
▶ Surface scattering (reflection models)
▶ Recursive ray tracing (rays spawn new rays)

▶ How to use a ray tracer? Trace radiant energy.

▶ The energy travelling along a ray of direction r⃗ = −ω⃗ is measured in radiance
(flux per projected area per solid angle).

▶ The outgoing radiance Lo at a surface point x is the sum of emitted radiance Le
and reflected radiance Lr :

Lo(x , ω⃗) = Le(x , ω⃗) + Lr (x , ω⃗) .

▶ Reflected radiance is computed using the BRDF (fr) and an estimate of incident
radiance Li at the surface point.

The rendering equation

▶ Surface scattering is defined in terms of
▶ Radiance:

L =
d2Φ

cos θ dA dω
.

▶ Irradiance:

E =
dΦ

dA
, dE = Li cos θ dω .

▶ BRDF:

fr (x , ω⃗i , ω⃗o) =
dLr (x , ω⃗o)

dE (x , ω⃗i)
.

▶ The rendering equation then emerges from Lo = Le + Lr :

Lo(x , ω⃗o) = Le(x , ω⃗o) +

∫
2π

fr (x , ω⃗i , ω⃗o) Li (x , ω⃗i) cos θi dωi .

▶ This is an integral equation. Integral equations are recursive in nature.

Surface scattering
▶ Bidirectional Reflectance Distribution Functions (BRDFs)

fr (x , ω⃗i , ω⃗o) =
dL(x , ω⃗o)

dE (x , ω⃗i)
.

▶ Physically-based BRDFs must obey:
▶ Reciprocity:

fr (x , ω⃗i , ω⃗o) = fr (x , ω⃗o , ω⃗i) .

▶ Energy conservation: ∫
2π

fr (x , ω⃗i , ω⃗o) cos θo dωo ≤ 1 .

▶ The Lambertian (perfectly diffuse) BRDF scatters light equally in all directions

fr (x , ω⃗i , ω⃗o) =
ρd
π

.

where ρd is the bihemispherical diffuse reflectance (dΦr/dΦi).

Direct illumination due to different light sources
▶ A directional light emits a constant radiance Le in one particular direction

ω⃗e = −ω⃗i Le

ωe

Lr =

∫
2π

frLi cos θi dωi = fr VLe (−ω⃗e · n⃗) .

▶ A point light emits a constant intensity Ie in all directions from one particular
point xe

Ie
r

xeLr = fr
V

r2
(ω⃗i · n⃗) Ie ,

r = ∥xe − x∥
ω⃗i = (xe − x)/r

.

▶ An area light emits a cosine weighted radiance distribution from each differential
element of area dA. We have dωi =

cos θe
r2

dAe and

θi θe

n

ne

r
Lr =

∫
fr VLe cos θi

cos θe
r2

dAe .

cos θe = −ω⃗i · n⃗eV is visibility.

Approximation for a distant area light
▶ An area light emits a cosine weighted radiance distribution from each area element

θi θe

n

ne

r

Lr =

∫
fr VLe cos θi

cos θe
r2

dAe .

cos θe = −ω⃗i · n⃗e
V is visibility.

▶ Assuming the area light is distant, we can approximate its lighting of the scene
using just one sample. Suppose we place it at the center of the bounding box xe .
Then

Lr = fr
V

r2
(ω⃗i · n⃗)

N∑
△=1

(−ω⃗i · n⃗e△)Le△ A△︸ ︷︷ ︸
Ie

,

where N is the number of triangles in the area light and △ is a triangle index.

▶ This is like a point light, but with a different intensity.

Sampling a triangle mesh (area lights, soft shadows)

▶ Material:

fr (x , ω⃗i , ω⃗o) =
ρd(x)

π
.

▶ Sampler (triangle index ∆ and area A∆):

ω⃗i ,q =
xℓ,q − x

∥xℓ,q − x∥

pdf(xℓ,q) = pdf(△)pdf(xℓ,q,△) =
1

N∆

1

A△
.

▶ Estimator (no. of triangles N∆):

Lr ,q(x , ω⃗o) = fr ,qLi ,q cos θi ,q

=
ρd(x)

π
Le(xℓ,q,−ω⃗i ,q)V (xℓ,q, x)

(−ω⃗i ,q · n⃗e)
∥xℓ,q − x∥2

N∆A∆︸ ︷︷ ︸
Li,q

(ω⃗i ,q · n⃗) .

Colorimetry (spectrum to RGB)

CIE color matching functions The chromaticity diagram

- - XYZ gamut
— RGB gamut
— CRT/LCD monitor gamut

R =

∫
V
C (λ)r̄(λ) dλ , G =

∫
V
C (λ)ḡ(λ) dλ , B =

∫
V
C (λ)b̄(λ) dλ ,

where V is the interval of visible wavelengths and C (λ) is the spectrum that we
want to transform to RGB.

Exercises

▶ Find out how to set the material properties of objects in a scene.
Change the diffuse reflectance (ρd).

▶ Load triangle meshes and material properties from files.

▶ Ray trace loaded meshes.

▶ Shade Lambertian materials using a directional light.

▶ Shade Lambertian materials using an area light.

▶ Compute visibility (V) by tracing shadow rays to light sources.

The Cornell box

▶ The Cornell box is a convenient test scene for developing rendering algorithms.
https://www.graphics.cornell.edu/online/box/

▶ You can load the Cornell box (or other .obj files) into the ray tracing framework
by supplying the following commandline arguments:

CPU ../models/CornellBox.obj ../models/CornellBlocks.obj

GPU ../../models/CornellBox.obj ../../models/CornellBlocks.obj

▶ Loading the blocks is optional. You can load the box only and insert specular
spheres to test more light paths.

https://www.graphics.cornell.edu/online/box/

Implementing a ray tracer (Render Framework)

Files used in Worksheet 1 (Render Framework)

Timeline on the programmability of the GPU

19
95

20
01

20
03

20
06

20
09

20
10

20
12

Fix
ed

-fu
nc

tio
n

(9M
 tr
ian

gle
s)

Tri
an

gle
 ve

rti
ce

s

(60
M tr

ian
gle

s)

Ar
ray

 el
em

en
ts

(20
0M

 tr
ian

gle
s)

Co
m
pu

te
 ke

rn
els

(12
8co

res
)

Int
ero

pe
rab

ilit
y

(24
0 c

or
es
)

Mas
siv

e p
ara

lle
lis
m

(51
2 c

or
es
)

Dyn
am

ic
pa

ral
lel

ism

(28
80

 co
res

)

(3
58

4
co

re
s)

20
16

20
1

8

Hyb
rid

re
nd

er
ing

(1
0

Giga
 R

ay
s/s

)

Unifi
ed

 m
em

or
y

1995 Fixed-function rasterization pipeline in hardware.

2001 Vertex shaders (first programmable part of the pipeline).

2003 Fragment/pixel shaders (GPGPU).

2006 Unified shaders (CUDA) and geometry shaders.

2008 Double precision arithmetics.

2009 Compute shaders (interoperability) and tesselation shaders.

2010 Streaming multiprocessor architecture. Programmable ray tracing pipeline on the GPU.

2012 Dynamic parallelism (threads spawn threads).

2016 Unified memory (on demand data migration and dynamic memory allocation).

2018 Hybrid rendering (CUDA cores, RT cores, DNN tensor cores).

Ray tracing with RT cores

→

Ray tracing with CUDA cores Ray tracing with CUDA and RT cores

GPU ray tracing (OptiX)

▶ The camera model is used for the “Ray Generation” program.

▶ Ray-object intersection is in the “Intersect” program (hardwired for triangles).

▶ The shader is implemented in the “Closest Hit” program.

Treelet restructuring bounding volume hierarchy for spatial subdivision

→

treelet reorganized treelet

▶ Practical GPU-based bounding volume hierarchy (BVH) builder.

1. Build a low-quality BVH (parallel linear BVH).
2. Optimize node topology by parallel treelet restructuring

(keeping leaves and their subtrees intact).
3. Post-process for fast traversal.

References

- Karras, T., and Aila, T. Fast parallel construction of high-quality bounding volume hierarchies. In Proceedings of HPG 2013, pp. 89–99.
ACM, July 2013.

Simplest closest hit program
extern "C" __global__ void __closesthit__normals()
{
 const HitGroupData* hit_group_data = reinterpret_cast<HitGroupData*>(optixGetSbtDataPointer());
 const LocalGeometry geom = getLocalGeometry(hit_group_data->geometry_data);

 float3 result = normalize(geom.N)*0.5f + 0.5f;
 setPayloadResult(result);
}

Files used in Worksheet 1 (Render OptiX Framework)

