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Why Monte Carlo?

I The rendering equation

Lo(x , ~ω) = Le(x , ~ω) +

∫
2π

fr (x , ~ω′, ~ω)Li (x , ~ω
′) cos θ dω′

is difficult, usually impossible, to solve analytically.

I Trapezoidal integration and Gaussian quadrature only works well for smooth
low-dimensional integrals.

I The rendering equation is 5-dimensional and it usually involves discontinuities.
I There are (roughly) only three known mathematical methods for solving this type

of problem:
I Truncated series expansion
I Finite basis (discretization)
I Sampling (random selection)

I Monte Carlo is probably the simplest way to use sampling.

Brush up on probability

I A random variable X ∈ A is a value X drawn from the sample space A of some
random process.

I Applying a function f : X → Y to a random variable X results in a new random
variable Y .

I A uniform random variable takes on all values in its sampling space with equal
probability.

I Probability is the chance (represented by a real number in [0,1]) that something is
the case or that an event will occur.

I The cumulative distribution function (cdf) is the probability that a random
variable X is smaller than or equal to a value x :

P(x) = Pr{X ≤ x} .

I The probability density function (pdf) is the relative probability for a random
variable X to take on a particular value x :

pdf(x) =
dP(x)

dx
.

Properties of the probability density function

I For uniform random variables, pdf(x) is constant.

I Of particular interest is the continuous, uniform, random variable ξ ∈ [0, 1] which
has the probability density function

pdf(x) =

{
1 for x ∈ [0, 1]
0 otherwise

I Using the pdf, we can calculate the probability that a random variable lies inside
an interval:

Pr{x ∈ [a, b]} =

∫ b

a
pdf(x) dx .

I All probability density functions have the properties:

pdf(x) ≥ 0 and

∫ ∞
−∞

pdf(x) dx = 1 .



Expected values and variance

I The expected value of a random variable X ∈ A is the average value over the
distribution of values pdf(x):

E{X} =

∫
A
x pdf(x) dx .

I The expected value of an arbitrary function f (X ) is then:

E{f (X )} =

∫
A
f (x) pdf(x) dx .

I The variance is the expected deviation of the function from its expected value:

V {f (X )} = E
{

(f (X )− E{f (X )})2
}
.

I The expected value operator E is linear. Thus:

V {f (X )} = E{(f (X ))2} − (E{f (X )})2 .

Properties of variance

I The variance operator:

V {f (X )} = E{(f (X ))2} − (E{f (X )})2 .

I V {·} is not a linear operator. For a scalar a, we have

V {a f (X )} = a2V {f (X )} .

I And, furthermore,

V{f (X ) + f (Y )} = E{(f (X ) + f (Y ))2} − (E{f (X ) + f (Y )})2

= E{(f (X ))2 + (f (Y ))2 + 2f (X )f (Y )} − (E{f (X )})2 − (E{f (Y )})2 − 2E{f (X )}E{f (Y )}
= V{f (X )} + V{f (Y )} + 2E{f (X )f (Y )} − 2E{f (X )}E{f (Y )}
= V{f (X )} + V{f (Y )} + 2 Cov{f (X ), f (Y )}

I Thus, if X and Y are uncorrelated (Cov{f (X ), f (Y )} = 0), then the variance of
the sum is equal to the sum of the variances.

The Monte Carlo estimator

I The law of large numbers:

Pr

 1

N

N∑
j=1

f (Xj)→ E{f (X )}

 = 1 for N →∞ .

“It is certain that the estimator goes to the expected value as the number of samples goes to infinity.”

I Approximating an arbitrary integral using N samples:

F =

∫
A
f (x) dx =

∫
A

f (x)

pdf(x)
pdf(x) dx = E

{
f (X )

pdf(X )

}
using the law of large numbers

FN =
1

N

N∑
j=1

f (Xj)

pdf(Xj)
,

where Xj are sampled on A and pdf(x) > 0 for all x ∈ A.

Monte Carlo error bound

I We found the estimator:

FN =
1

N

N∑
j=1

f (Xj)

pdf(Xj)
.

I The standard deviation is the square root of the variance:

σFN
= (V {FN})1/2

and it is a probabilistic error bound for the estimator according to Chebyshev’s
inequality:

Pr {|FN − E{FN}| ≥ δσFN
} ≤ δ−2 .

“The error is probably not too much larger than the standard deviation.”

“There is a less than 1% chance that the error is larger than 10 standard deviations.”

I The rate of convergence is then the ratio between the standard deviation of the
estimator σFN

and the standard deviation of a single sample σY .



Monte Carlo convergence

I The standard deviation of the estimator:

σFN
= (V {FN})1/2 =

V

 1

N

N∑
j=1

Yj


1/2

,

where

Yj =
f (Xj)

pdf(Xj)
.

I Continuing (while assuming that Xj and thus Yj are uncorrelated)

σFN
=

 1

N2
V


N∑
j=1

Yj


1/2

=

 1

N2

N∑
j=1

V {Yj}

1/2

=

(
1

N
V {Y }

)1/2

=
1√
N
σY .

I Worst case: Quadruple the samples to half the error.

An estimator for the rendering equation

I The rendering equation:

Lo(x , ~ω) = Le(x , ~ω) +

∫
2π

fr (x , ~ω′, ~ω)Li (x , ~ω
′) cos θ dω′ .

I The Monte Carlo estimator:

LN(x , ~ω) = Le(x , ~ω) +
1

N

N∑
j=1

fr (x , ~ω′j , ~ω)Li (x , ~ω
′
j) cos θ

pdf(~ω′j)

with cos θ = ~ω′j · ~n, where ~n is the surface normal at x .

I The Lambertian BRDF:
fr (x , ~ω′, ~ω) = ρd/π .

I A good choice of pdf would be:

pdf(~ω′j) = cos θ/π .

Sampling a pdf (the inversion method)
I How to draw samples Xi from an arbitrary pdf:

1. Compute the cdf: P(x) =
∫ x

−∞ pdf(x ′) dx ′ .

2. Compute the inverse cdf: P−1(x) .
3. Obtain a uniformly distributed random number ξ ∈ [0, 1].
4. Compute a sample: Xi = P−1(ξ) .

I Example: Exponential distribution over sample space [0,∞)

pdf(x) = ae−ax .

I Compute cdf:

P(x) =

∫ x

0
ae−ax

′
dx ′ = 1− e−ax .

I Invert cdf:

P−1(x) = − ln(1− x)

a
.

I To draw samples:

X = − ln(1− ξ)

a
or X = − ln ξ

a
.

Sampling a pdf (the rejection method)

I Imagine a pdf which we cannot integrate to find the cdf.

I Knowing a function g with the property pdf(x) < c g(x), where c > 1, we can use
rejection sampling with g instead of sampling the pdf directly.

I Rejection sampling is the following algorithm:
I loop forever:

I sample X from g(x) and ξ from [0, 1]
I if ξ < f (X )/(c g(X )) then return X

I Rejection sampling is only a good idea if c g(x) is a tight bound for the pdf.



Uniformly sampling a sphere

I The unit box is a (relatively) tight bound for the unit sphere.

I Rejection sampling unit directions given by points on the unit sphere:

Vec3f direction;

do

{
direction[0] = 2.0f*mt random() - 1.0f;

direction[1] = 2.0f*mt random() - 1.0f;

direction[2] = 2.0f*mt random() - 1.0f;

}
while(dot(direction, direction) > 1.0f);

direction = normalize(direction);

I pdf(~ω′j) = 1
4π .

Sampling a 2D joint density function

I Suppose we have a joint 2D density function pdf(x , y).

I To sample pdf(x , y) using two independent random variables X and Y , we find
the marginal and the conditional density functions.

I The marginal density function is

pdf(x) =

∫
pdf(x , y) dy .

I The conditional density function is

pdf(y |x) =
pdf(x , y)

pdf(x)
.

I The inversion method is then applied to each of the marginal and conditional
density functions.

Cosine-weighted hemisphere sampling

I Sampling directions according to the distribution:
pdf(~ω′j) = cos θ/π , pdf(θ, φ) = cos θ sin θ/π .

I Compute the marginal and conditional density functions:

pdf(θ) =

∫ 2π

0

cos θ

π
sin θ dφ = 2 cos θ sin θ .

pdf(φ|θ) =
cos θ sin θ/π

2 cos θ sin θ
=

1

2π
.

I The cdf for the marginal density function:

P(θ) = 2

∫ θ

0
cos θ′ sin θ′ dθ′ = 2

∫ cos θ

1
(− cos θ′) dcos θ′ = 1− cos2 θ

P(φ|θ) = φ/(2π) .

I Invert these to find the sampling strategy:

~ω′j = (θ, φ) = (cos−1
√
ξ1, 2πξ2) .

Ambient occlusion

I Using the Lambertian BRDF for materials, fr = ρd/π; the cosine weighted
hemisphere for sampling, pdf(~ω′j) = cos θ/π; and a visibility term V for incident
illumination, the Monte Carlo estimator for ambient occlusion is simply:

LN(x , ~ω) =
1

N

N∑
j=1

fr (x , ~ω′j , ~ω)Li (x , ~ω
′
j) cos θ

pdf(~ω′j)
= ρd(x)

1

N

N∑
j=1

V (~ω′j) .



Sampling a triangle mesh

I Uniformly sample a triangle (pdf = 1/n, where n is the number of triangle faces in
the mesh).

I Uniformly sample a position on the triangle (pdf = 1/A∆, where A∆ is the
triangle area):

1. Sample barycentric coordinates (u, v ,w = 1− u − v):

u = 1−
√
ξ1

v = (1− ξ2)
√
ξ1

w = ξ2

√
ξ1

2. Use the barycentric coordinates for linear interpolation of triangle vertices to obtain
a point on the triangle.

3. Use the barycentric coordinates for linear interpolation of triangle vertex normals to
obtain the normal at the sampled surface point.

Soft shadows

I From solid angle to area: dω′ =
cos θlight

r2 dA.

I Using the Lambertian BRDF, fr = ρd/π, and triangle mesh sampling of a point xj

on the light, pdf = 1/(nA∆,j), the Monte Carlo estimator for area lights is:

LN(x , ~ω) =
ρd(x)

π

1

N

N∑
j=1

Le(xj → x)V (xj ↔ x)
cos θ cos θlight

‖x − xj‖2
nA∆,j .

Exercises

I Implement the triangle mesh sampling.

I Implement the Monte Carlo area light sampling.

I Implement the cosine-weighted hemispherical sampling.

I Implement the Monte Carlo ambient occlusion.


