02941 Physically Based Rendering

Monte Carlo Integration

Jeppe Revall Frisvad

June 2018

Brush up on probability

- ▶ A random variable $X \in A$ is a value X drawn from the sample space A of some random process.
- ▶ Applying a function $f: X \to Y$ to a random variable X results in a new random variable Y.
- ▶ A *uniform* random variable takes on all values in its sampling space with *equal* probability.
- ▶ *Probability* is the chance (represented by a real number in [0,1]) that something is the case or that an event will occur.
- ► The *cumulative distribution function* (cdf) is the probability that a random variable *X* is smaller than or equal to a value *x*:

$$P(x) = \Pr\{X \le x\} .$$

► The *probability density function* (pdf) is the relative probability for a random variable *X* to take on a particular value *x*:

$$pdf(x) = \frac{dP(x)}{dx}$$
.

Why Monte Carlo?

▶ The rendering equation

$$L_o(m{x},ec{\omega}) = L_e(m{x},ec{\omega}) + \int_{2\pi} f_r(m{x},ec{\omega}',ec{\omega}) L_i(m{x},ec{\omega}') \cos heta \, \mathrm{d}\omega'$$

is difficult, usually impossible, to solve analytically.

- ► Trapezoidal integration and Gaussian quadrature only works well for smooth low-dimensional integrals.
- ▶ The rendering equation is 5-dimensional and it usually involves discontinuities.
- ► There are (roughly) only three known mathematical methods for solving this type of problem:
 - ► Truncated series expansion
 - ► Finite basis (discretization)
 - Sampling (random selection)
- ▶ Monte Carlo is probably the simplest way to use sampling.

Properties of the probability density function

- ▶ For uniform random variables, pdf(x) is constant.
- ▶ Of particular interest is the continuous, uniform, random variable $\xi \in [0,1]$ which has the probability density function

$$pdf(x) = \begin{cases} 1 & \text{for } x \in [0,1] \\ 0 & \text{otherwise} \end{cases}$$

Using the pdf, we can calculate the probability that a random variable lies inside an interval:

$$\Pr\{x \in [a, b]\} = \int_a^b pdf(x) dx .$$

All probability density functions have the properties:

$$\operatorname{pdf}(x) \geq 0$$
 and $\int_{-\infty}^{\infty} \operatorname{pdf}(x) \, \mathrm{d}x = 1$.

Expected values and variance

▶ The *expected value* of a random variable $X \in A$ is the average value over the distribution of values pdf(x):

$$E\{X\} = \int_A x \operatorname{pdf}(x) dx .$$

▶ The expected value of an arbitrary function f(X) is then:

$$E\{f(X)\} = \int_{A} f(x) \operatorname{pdf}(x) dx .$$

▶ The *variance* is the expected deviation of the function from its expected value:

$$V\{f(X)\} = E\{(f(X) - E\{f(X)\})^2\}.$$

▶ The expected value operator *E* is linear. Thus:

$$V\{f(X)\} = E\{(f(X))^2\} - (E\{f(X)\})^2 .$$

The Monte Carlo estimator

► The law of large numbers:

$$\Pr\left\{\frac{1}{N}\sum_{j=1}^{N}f(X_{j})\to E\{f(X)\}\right\}=1\quad\text{for}\quad N\to\infty.$$

"It is certain that the estimator goes to the expected value as the number of samples goes to infinity."

▶ Approximating an arbitrary integral using *N* samples:

$$F = \int_{A} f(x) dx = \int_{A} \frac{f(x)}{pdf(x)} pdf(x) dx = E\left\{\frac{f(X)}{pdf(X)}\right\}$$

using the law of large numbers

$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{\mathsf{pdf}(X_i)} ,$$

where X_j are sampled on A and pdf(x) > 0 for all $x \in A$.

Properties of variance

► The variance operator:

$$V\{f(X)\} = E\{(f(X))^2\} - (E\{f(X)\})^2 .$$

 $V\{\cdot\}$ is not a linear operator. For a scalar a, we have

$$V\{a f(X)\} = a^2 V\{f(X)\}$$
.

And, furthermore,

```
\begin{split} V\{f(X) + f(Y)\} &= E\{(f(X) + f(Y))^2\} - (E\{f(X) + f(Y)\})^2 \\ &= E\{(f(X))^2 + (f(Y))^2 + 2f(X)f(Y)\} - (E\{f(X)\})^2 - (E\{f(Y)\})^2 - 2E\{f(X)\}E\{f(Y)\} \\ &= V\{f(X)\} + V\{f(Y)\} + 2E\{f(X)f(Y)\} - 2E\{f(X)\}E\{f(Y)\} \\ &= V\{f(X)\} + V\{f(Y)\} + 2Cov\{f(X), f(Y)\} \end{split}
```

▶ Thus, if X and Y are uncorrelated $(Cov\{f(X), f(Y)\} = 0)$, then the variance of the sum is equal to the sum of the variances.

Monte Carlo error bound

▶ We found the estimator:

$$F_N = \frac{1}{N} \sum_{i=1}^N \frac{f(X_i)}{\mathsf{pdf}(X_i)} .$$

▶ The standard deviation is the square root of the variance:

$$\sigma_{F_N} = (V\{F_N\})^{1/2}$$

and it is a probabilistic error bound for the estimator according to Chebyshev's inequality:

$$\Pr\{|F_N - E\{F_N\}| \ge \delta \sigma_{F_N}\} \le \delta^{-2} .$$

▶ The rate of convergence is then the ratio between the standard deviation of the estimator σ_{F_N} and the standard deviation of a single sample σ_Y .

[&]quot;The error is probably not too much larger than the standard deviation."

[&]quot;There is a less than 1% chance that the error is larger than 10 standard deviations."

Monte Carlo convergence

▶ The standard deviation of the estimator:

$$\sigma_{F_N} = (V\{F_N\})^{1/2} = \left(V\left\{\frac{1}{N}\sum_{j=1}^N Y_j\right\}\right)^{1/2}$$
,

where

$$Y_j = \frac{f(X_j)}{\mathsf{pdf}(X_i)} .$$

 \triangleright Continuing (while assuming that X_i and thus Y_i are uncorrelated)

$$\sigma_{F_N} = \left(\frac{1}{N^2}V\left\{\sum_{j=1}^N Y_j\right\}\right)^{1/2} = \left(\frac{1}{N^2}\sum_{j=1}^N V\{Y_j\}\right)^{1/2}$$
$$= \left(\frac{1}{N}V\{Y\}\right)^{1/2} = \frac{1}{\sqrt{N}}\sigma_Y.$$

▶ Worst case: Quadruple the samples to half the error.

Sampling a pdf (the inversion method)

- ▶ How to draw samples X_i from an arbitrary pdf:
 - 1. Compute the cdf: $P(x) = \int_{-\infty}^{x} pdf(x') dx'$.
 - 2. Compute the inverse cdf: $P^{-1}(x)$.
 - 3. Obtain a uniformly distributed random number $\xi \in [0,1]$.
 - 4. Compute a sample: $X_i = P^{-1}(\xi)$.
- lacktriangle Example: Exponential distribution over sample space $[0,\infty)$

$$pdf(x) = ae^{-ax}$$
.

► Compute cdf:

$$P(x) = \int_0^x ae^{-ax'} dx' = 1 - e^{-ax}$$
.

► Invert cdf:

$$P^{-1}(x) = -\frac{\ln(1-x)}{a}$$
.

► To draw samples:

$$X = -\frac{\ln(1-\xi)}{a}$$
 or $X = -\frac{\ln \xi}{a}$.

An estimator for the rendering equation

► The rendering equation:

$$L_o(\mathbf{x}, \vec{\omega}) = L_e(\mathbf{x}, \vec{\omega}) + \int_{2\pi} f_r(\mathbf{x}, \vec{\omega}', \vec{\omega}) L_i(\mathbf{x}, \vec{\omega}') \cos \theta \, d\omega'$$
.

► The Monte Carlo estimator:

$$L_{N}(\mathbf{x},\vec{\omega}) = L_{e}(\mathbf{x},\vec{\omega}) + \frac{1}{N} \sum_{i=1}^{N} \frac{f_{r}(\mathbf{x},\vec{\omega}_{j}',\vec{\omega}) L_{i}(\mathbf{x},\vec{\omega}_{j}') \cos \theta}{\mathsf{pdf}(\vec{\omega}_{j}')}$$

with $\cos \theta = \vec{\omega}'_i \cdot \vec{n}$, where \vec{n} is the surface normal at \mathbf{x} .

The Lambertian BRDF:

$$f_r(\mathbf{x}, \vec{\omega}', \vec{\omega}) = \rho_d/\pi$$
.

► A good choice of pdf would be:

$$pdf(\vec{\omega}_i') = \cos \theta/\pi$$
.

Sampling a pdf (the rejection method)

- ▶ Imagine a pdf which we cannot integrate to find the cdf.
- ▶ Knowing a function g with the property pdf(x) < c g(x), where c > 1, we can use rejection sampling with g instead of sampling the pdf directly.
- Rejection sampling is the following algorithm:
- ▶ loop forever:
 - sample X from g(x) and ξ from [0,1]
 - if $\xi < f(X)/(c g(X))$ then return X
- ▶ Rejection sampling is only a good idea if cg(x) is a tight bound for the pdf.

Uniformly sampling a sphere

- ▶ The unit box is a (relatively) tight bound for the unit sphere.
- ▶ Rejection sampling unit directions given by points on the unit sphere:

```
Vec3f direction;
do
{
    direction[0] = 2.0f*mt_random() - 1.0f;
    direction[1] = 2.0f*mt_random() - 1.0f;
    direction[2] = 2.0f*mt_random() - 1.0f;
}
while(dot(direction, direction) > 1.0f);
direction = normalize(direction);
```

 $ightharpoonup \operatorname{pdf}(\vec{\omega}_i') = \frac{1}{4\pi} \ .$

Cosine-weighted hemisphere sampling

- ► Sampling directions according to the distribution: $pdf(\vec{\omega}_i') = \cos\theta/\pi$, $pdf(\theta,\phi) = \cos\theta\sin\theta/\pi$.
- ► Compute the marginal and conditional density functions:

$$\mathsf{pdf}(\theta) \ = \ \int_0^{2\pi} \frac{\cos \theta}{\pi} \sin \theta \, \mathrm{d}\phi = 2 \cos \theta \sin \theta \ .$$

$$\mathsf{pdf}(\phi|\theta) \ = \ \frac{\cos \theta \sin \theta/\pi}{2 \cos \theta \sin \theta} = \frac{1}{2\pi} \ .$$

▶ The cdf for the marginal density function:

$$P(\theta) = 2 \int_0^{\theta} \cos \theta' \sin \theta' \, d\theta' = 2 \int_1^{\cos \theta} (-\cos \theta') \, d\cos \theta' = 1 - \cos^2 \theta$$

$$P(\phi|\theta) = \phi/(2\pi) .$$

▶ Invert these to find the sampling strategy:

$$\vec{\omega}_{i}' = (\theta, \phi) = (\cos^{-1}\sqrt{\xi_{1}}, 2\pi\xi_{2})$$
.

Sampling a 2D joint density function

- ▶ Suppose we have a joint 2D density function pdf(x, y).
- ▶ To sample pdf(x, y) using two independent random variables X and Y, we find the *marginal* and the *conditional* density functions.
- ▶ The marginal density function is

$$pdf(x) = \int pdf(x, y) dy$$
.

▶ The conditional density function is

$$pdf(y|x) = \frac{pdf(x,y)}{pdf(x)}$$
.

► The inversion method is then applied to each of the marginal and conditional density functions.

Ambient occlusion

▶ Using the Lambertian BRDF for materials, $f_r = \rho_d/\pi$; the cosine weighted hemisphere for sampling, $pdf(\vec{\omega}_j') = \cos\theta/\pi$; and a visibility term V for incident illumination, the Monte Carlo estimator for ambient occlusion is simply:

$$L_N(\mathbf{x}, \vec{\omega}) = \frac{1}{N} \sum_{i=1}^N \frac{f_r(\mathbf{x}, \vec{\omega}_j', \vec{\omega}) L_i(\mathbf{x}, \vec{\omega}_j') \cos \theta}{\mathsf{pdf}(\vec{\omega}_j')} = \rho_d(\mathbf{x}) \frac{1}{N} \sum_{i=1}^N V(\vec{\omega}_j') .$$

Sampling a triangle mesh

- ▶ Uniformly sample a triangle (pdf = 1/n, where n is the number of triangle faces in the mesh).
- Uniformly sample a position on the triangle (pdf = $1/A_{\Delta}$, where A_{Δ} is the triangle area):
 - 1. Sample barycentric coordinates (u, v, w = 1 u v):

$$u = 1 - \sqrt{\xi_1}$$

$$v = (1 - \xi_2)\sqrt{\xi_1}$$

$$w = \xi_2\sqrt{\xi_1}$$

- 2. Use the barycentric coordinates for linear interpolation of triangle vertices to obtain a point on the triangle.
- 3. Use the barycentric coordinates for linear interpolation of triangle vertex normals to obtain the normal at the sampled surface point.

Exercises

- ▶ Implement the triangle mesh sampling.
- ▶ Implement the Monte Carlo area light sampling.
- ▶ Implement the cosine-weighted hemispherical sampling.
- ▶ Implement the Monte Carlo ambient occlusion.

Soft shadows

- From solid angle to area: $d\omega' = \frac{\cos\theta_{\text{light}}}{r^2} dA$.
- ▶ Using the Lambertian BRDF, $f_r = \rho_d/\pi$, and triangle mesh sampling of a point x_j on the light, pdf = $1/(nA_{\Delta,j})$, the Monte Carlo estimator for area lights is:

$$L_N(\mathbf{x}, \vec{\omega}) = \frac{\rho_d(\mathbf{x})}{\pi} \frac{1}{N} \sum_{i=1}^N L_e(\mathbf{x}_j \to \mathbf{x}) V(\mathbf{x}_j \leftrightarrow \mathbf{x}) \frac{\cos \theta \cos \theta_{\text{light}}}{\|\mathbf{x} - \mathbf{x}_j\|^2} n A_{\Delta,j} .$$