Why Monte Carlo?
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The rendering equation
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Monte Carlo Integration e . . )
& is difficult, usually impossible, to solve analytically.

» Trapezoidal integration and Gaussian quadrature only works well for smooth
Jeppe Revall Frisvad low-dimensional integrals.
> The rendering equation is 5-dimensional and it usually involves discontinuities.

> There are (roughly) only three known mathematical methods for solving this type
June 2018 of problem:
» Truncated series expansion
> Finite basis (discretization)
» Sampling (random selection)

» Monte Carlo is probably the simplest way to use sampling.

Brush up on probability Properties of the probability density function

» A random variable X € A is a value X drawn from the sample space A of some
random process. » For uniform random variables, pdf(x) is constant.

> Applying a function f : X — Y to a random variable X results in a new random » Of particular interest is the continuous, uniform, random variable ¢ € [0, 1] which
variable Y. has the probability density function

» A uniform random variable takes on all values in its sampling space with equal " 0.1]
probability. _ or x € [0,

pdf(x) 0 otherwise

> Probability is the chance (represented by a real number in [0,1]) that something is

the case or that an event will occur. » Using the pdf, we can calculate the probability that a random variable lies inside

» The cumulative distribution function (cdf) is the probability that a random an interval:
variable X is smaller than or equal to a value x:

b
Pr{x € [a, b]} =/ pdf(x)dx .
P(x) =Pr{X <x} . a
> All probability density functions have the properties:
» The probability density function (pdf) is the relative probability for a random

variable X to take on a particular value x: pdf(x) >0 and /OO pdf(x)dx =1 .

pdf(x) = dl;ix) . -




Expected values and variance

> The expected value of a random variable X € A is the average value over the
distribution of values pdf(x):

E{X} = /Xpdf(x)dx .
A
> The expected value of an arbitrary function f(X) is then:
E{f(X)} = /f(x) pdf(x)dx .
A

» The variance is the expected deviation of the function from its expected value:

V{F(X)} = E{(F(X) = E{f(X)})?} .

» The expected value operator E is linear. Thus:

V{F(X)} = E{(F(X))*} = (ELFOO)?

The Monte Carlo estimator

» The law of large numbers:

N
1
Pr N E f(X;) = E{f(X)} p =1 for N — o0 .
Jj=1
“It is certain that the estimator goes to the expected value as the number of samples goes to infinity.”

» Approximating an arbitrary integral using N samples:

F /A F(x)dx = /A pz(fg) pdf(x) dx = E { pz(fég)}

using the law of large numbers
N
1 (X))
Fy=+= J
"N ; pdf(Xj) ’

where X are sampled on A and pdf(x) > 0 for all x € A.

Properties of variance

» The variance operator:

V{F(X)} = E{(F(X))*} — (E{F(X)})* .

V{-} is not a linear operator. For a scalar a, we have

\{

V{af(X)} = a2V{f(X)} .

v

And, furthermore,

E{(F(X) + F(Y))*} = (E{F(X) + F(V)})°

E{(F(X))? + (F(Y))? + 2f(OF(V)} — (E{F(X)})° — (E{FON}) — 2E{F(X)}E{F(Y)}
VRO + VIF(Y)} + 2E{F(X)F(Y)} — 2E{F(X)}E{F(V)}

V{F(X)} + V{f(Y)} + 2 Cov{f(X), f(Y)}

VEF(X) + f(V)}

v

Thus, if X and Y are uncorrelated (Cov{f(X),f(Y)} = 0), then the variance of
the sum is equal to the sum of the variances.

Monte Carlo error bound

» We found the estimator:

N
1 (X))
Fy= - i
N J; pdf(Xj)
» The standard deviation is the square root of the variance:
oy = (V{Fn})'?

and it is a probabilistic error bound for the estimator according to Chebyshev's
inequality:
Pr{|Fny — E{Fn}| > d0F,} <072 .

“The error is probably not too much larger than the standard deviation.”

“There is a less than 1% chance that the error is larger than 10 standard deviations.”

> The rate of convergence is then the ratio between the standard deviation of the
estimator of, and the standard deviation of a single sample oy .



Monte Carlo convergence An estimator for the rendering equation

> The standard deviation of the estimator: » The rendering equation:
1/2
s L Lo(x, @) = Le(x,di)+/ £(x, &, @) Li(x, &) cos O.d .
ory = (VIR = (VAE i8] 2
—
’ » The Monte Carlo estimator:
where f(X) N f-( iy —»)L ( —»/) 0
(i ~ . 1 r(x, &, @) Li(x, ;) cos
I pdf(x;) w(x,5) = Le(x. @) + N; T

» Continuing (while assuming that X; and thus Y; are uncorrelated)

with cosf = cD'J’ - i, where i is the surface normal at x.

1 N 1/2 1 N 1/2 » The Lambertian BRDF:
o = | eViXYi] = eV (0, .5) = pafr .
=1 =1
! 12 ! » A good choice of pdf would be:
1
- (N V{Y}) - ﬁoy ‘ pdf(&}) = cosf/m .
» Worst case: Quadruple the samples to half the error.
Sampling a pdf (the inversion method) Sampling a pdf (the rejection method)
» How to draw samples X; from an arbitrary pdf:
1. Compute the cdf: P(x) = [ pdf(x')dx" .
2. Compute the inverse cdf: P7(x) - » Imagine a pdf which we cannot integrate to find the cdf.
3. Obtain a uniformly distributed random number £ € [0, 1]. . . .
4. Compute a sample: X; = P=1(¢) . » Knowing a function g with the property pdf(x) < c g(x), where ¢ > 1, we can use

rejection sampling with g instead of sampling the pdf directly.

» Example: Exponential distribution over sample space [0, c0)
pdf(x) = ae™ .
» Compute cdf: > Rejection sampling is the following algorithm:
x ’ » loop forever:
_ —ax /1 a—ax
Pl = /o 2 d=1-e . > §amp|e X from g(x) and & from [0, 1]
» Invert cdf: » > if £ < f(X)/(cg(X)) then return X
pix) = — M=)
a > Rejection sampling is only a good idea if ¢ g(x) is a tight bound for the pdf.
» To draw samples:
In(1-— I
x= =8 o y_ &

a a



Uniformly sampling a sphere Sampling a 2D joint density function

» The unit box is a (relatively) tight bound for the unit sphere. > Suppose we have a joint 2D density function pdf(x, y).
» Rejection sampling unit directions given by points on the unit sphere: » To sample pdf(x, y) using two independent random variables X and Y, we find
Vec3f direction; the marginal and the conditional density functions.
do » The marginal density function is
{
direction[0] = 2.0f*mt_random() - 1.0f; pdf(x) = /pdf(x7y) dy .
direction[1] = 2.0f*mt_random() - 1.0f;
direction[2] = 2.0f*mt_random() - 1.0f; » The conditional density function is

}

while(dot(direction, direction) > 1.0f); pdf(x, y)
. N . . .l pdf(y|x) = ——=~ .
direction = normalize(direction); pdf(x)
) » The inversion method is then applied to each of the marginal and conditional
> Pdf(wj) = Ir - density functions.
Cosine-weighted hemisphere sampling Ambient occlusion
» Sampling directions according to the distribution:
pdf(d}) = cosO/m , pdf(0, ¢) = cos@sinf/m .
» Compute the marginal and conditional density functions: 4‘»
27 ‘
0
pdf(f) = / 7 sin 6de =2cosfsind .
0 ™
cosfsinf/m 1
df(¢lf) = ————=—.
paf(410) 2cosfsing 27w
» The cdf for the marginal density function:
0 0
P(6) = 2/ cos® sin® do’ = 2 c(o_s cos@')dcos§’ =1 — cos2 0 » Using the Lambertian BRDF for materials, f, = pg/m; the cosine weighted
0 1 hemisphere for sampling, pdf(dij’-) = cosf/m; and a visibility term V for incident
P(pl0) = ¢/(27) . illumination, the Monte Carlo estimator for ambient occlusion is simply:
. . N =1 = =/ N
> Invert these to find the sampling strategy: . 1 f(x, o, &) Li(x,d:) cosd 1 .
Ln(x,@) = > s = pa(x) g > V(&) -
- -1 pdf() N <
wj = (6>¢) = (COS \/5717 271'52) . Jj=1 j=1



Sampling a triangle mesh

> Uniformly sample a triangle (pdf = 1/n, where n is the number of triangle faces in
the mesh).

» Uniformly sample a position on the triangle (pdf = 1/Aa, where Ap is the
triangle area):
1. Sample barycentric coordinates (u, v,w =1 — u — v):

u 1- \/{1
v = (1-&)WVa
&vea

2. Use the barycentric coordinates for linear interpolation of triangle vertices to obtain
a point on the triangle.

3. Use the barycentric coordinates for linear interpolation of triangle vertex normals to
obtain the normal at the sampled surface point.

w

Exercises

v

Implement the triangle mesh sampling.

v

Implement the Monte Carlo area light sampling.

v

Implement the cosine-weighted hemispherical sampling.

v

Implement the Monte Carlo ambient occlusion.

Soft shadows

» From solid angle to area: dw’ = %ﬂ”ghtdA.
> Using the Lambertian BRDF, f, = py/7, and triangle mesh sampling of a point x;
on the light, pdf = 1/(nAa ), the Monte Carlo estimator for area lights is:

N

Ly(x, &) = ”"T(")% D Le(xj = x)V(x; 4 x)
j=1

cos 6 cos Bjight
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