
3D range minimum queries

Nicola Prezza

References and Reading

[1] Sections 7.2, 7.4.1 of: Navarro, Gonzalo. Compact data structures: A practical approach. Cambridge Univer-
sity Press, 2016.

Exercises

1 3D minimum range queries As seen in Section 7.4.1, 2n+o(n) bits are sufficient to determine, in O(log log n)
time, the index of a minimum element in any range of a given input array A[1, n] of integers (more advanced solu-
tions achieve even constant time within the same space). Note that this can be viewed as a geometric problem on
a two-dimensional grid: given a set of points 〈1, y1〉, . . . , 〈n, yn〉, return the x-coordinate of a point with minimum
y-coordinate in a given x-range [X , X + l].

We want now to generalize this problem to three dimensions. The input of our problem consists of a list of n
3D points 〈1, y1, z1〉, . . . , 〈n, yn, zn〉 on the 3D cube [1, n]× [1, n]× [1, n], where 1 ≤ yi , zi ≤ n for all i = 1, . . . , n
(note that x-coordinates are precisely 1,2, . . . , n). We want to build a data structure as space-efficient as possible1

supporting efficiently the following query: given a four-sided range on x-y coordinates, return the x coordinate of
a point with minimum z-coordinate in the range (if there is more than one such point, choose arbitrarily). More
formally: given a x-y range [X , X + lx]× [Y, Y + l y], return j, with X ≤ j ≤ X + lx and Y ≤ y j ≤ Y + l y , such that
z j ≤ zk for all k satisfying X ≤ k ≤ X + lx and Y ≤ yk ≤ Y + l y .

Example

4
6

5
2 3

1

The example depicts a cube [1, 6]×[1,6]×[1, 6] populated with the 6 points 〈1,5, 6〉, 〈2, 3,2〉, 〈3,1, 1〉, 〈4, 4,5〉,
〈5,6, 4〉, 〈6,3, 3〉 (note: x-y coordinates are represented as usual on a square, while z coordinates are encoded in
the numbers stored in the cells). These are the results of some example queries:

• Input: [2, 4]× [2, 5]. Output: 2

• Input: [2, 4]× [1, 5]. Output: 3

• Input: [3, 6]× [2, 6]. Output: 6

1note that, since x-coordinates are 1, . . . , n, the information-theoretic minimum number of bits needed to store such a cube is 2n log n. Try
to get as close as possible to this quantity.

1


