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Intro and Material

The goal of these exercises is to go through the main results presented in the paper. Be aware that some of the
solutions to the exercises are different than those described in the paper (they are actually simpler: we discovered
these simpler versions after publishing the paper), so you won'’t find everything in the paper (and, if you solve the
exercises yourself, you don’t actually need to read the paper).

If you still want to read the paper to get some ideas, in the exercises we go through the material of Lemma 2,
Lemma 3, Lemma 6, and Theorem 2.

Notation

Let r be the number of bits set in a bitvector of length n. To simplify notation, with t, =log(n/r) we will indicate
the time needed to perform rank/predecessor queries on the Elias-Fano representation of the bitvector. Plugging
this structure and wavelet trees in our (static) run-length string representation (see previous exercises), we obtain
a structure of O(r) words of space supporting rank, select, access queries in t, = t, +logo = log(n/r) +logo
time (where r now is the number of equal-letter runs in the string and o is the alphabet size). If we use this string
to represent the BWT, we obtain a basic run-length FM index supporting FL/LF function computation and count
queries.

Exercises

Let r be the number of equal-letter runs in the BWT of a text T of length n. Let m be the length of a pattern P. As
seen in the previous lectures and exercises, we can build a run-length FM-index taking O(r + n/s) words of space
and supporting these queries:

e Count the number of occurrences of P in T in O(m - t,) time
e Locate the occ occurrences of P in T in O((m +s - occ) - t ) time

Here, s is a sample rate: we sample the suffix array entries corresponding to one out of s text positions. To
extract a suffix array entry SA[i], we apply the LF mapping starting from position i at most s times. The goal of the
following exercise is to remove the dependency from s in space and query times: we will describe a suffix array
sampling of size r that supports locating each pattern occurrence in ¢, (predecessor) time.

1 Locatein predecessor time Consider the following suffix array sampling: we sample the first position of eve-
ry equal-letter run in the BWT' ?. Example: T = abracadabra$, BWT(T) = ard$rcaaaabb (sampled positions
are underlined). We store the text position corresponding to the sampled BWT positions: 11,10,7,12,3,5,8,1,9.

Lto be precise, in a suffix array sampling we sample the F column; in our case, we sample instead the L column.
2This is the first difference with the paper: in Lemma 2 of the paper, we store samples at the beginning and end of every run (not just at
the beginning).



1.1

1.2

Suppose that, using our run-length FM-index, we found the suffix array range [I, r] of a pattern P of length
m (i.e. suffix array positions SA[L, ..., ] contain all text occurrences of P). Show how to compute, in O(m-t,)
time, suffix array entry SA[1] 3. Hint: note that the longest common prefix between the suffixes starting in
SA[l] and SA[l — 1] must be shorter than m (otherwise SA[l —1] would be an occurrence of P). Think what
happens when applying the FL. mapping repeatedly starting from positions [ and [ — 1.

Our goal now is to compute efficiently SA[i + 1] given SA[i]. Since (from exercise 1.1) we know SA[l], this
will allow us to compute the whole range SA[l, ..., r] efficiently.

Suppose that now we are marking the last position of each BWT equal-letter run. Since we allow O(r) space,
we can associate to each marked position a constant number of memory words of information. Suppose we
know SA[i]. We want to compute SA[i + 1]. Look inside BWT[i,i + 1]: if the two characters are different,
then BWT[i] is marked. In this case, the information associated with BW T[i] could simply be the text
position x corresponding to BWT[i + 1]: then, SA[i + 1] = x + 1 and we are done.

On the other hand, if BWTT[i,i+ 1] = cc, for some ¢ € ¥, these BWT positions are not marked and therefore
the above strategy doesn’t seem to help. However, note that we could apply the LF mapping to BWT positions
i and i + 1, and repeat recursively the strategy (since BWT[i,i + 1] =cc, then LF(i + 1) = LF(i) + 1).

Clearly, if we directly implement the above strategy using the LF mapping, in the worst case we might have to
compute LF many times before finding a marked position. Can we avoid using the LF mapping at all and "skip"
directly to the marked position? Hint: we are "virtually" computing i, LF (i), LF(LF(i)) = LF?(i), LF3(i), ....
What are the text positions associated to those BWT positions? Remember that we know text position SA[i],
and that we are allowed storing O(r) extra words of information.

2 Trade-offs

2.1

2.2

Describe a compressed FM index taking O(r) words of space and able to locate the occ occurrences of a
pattern of length m in O(m - t; + occ - t,,) time.

Describe a compressed FM index taking more space and able to locate the occ occurrences of a pattern of
length m in optimal O(m + occ) time, under the assumption that o is constant.

3 Extract text Now we know how to support efficient count and locate queries, but we still miss a solution for
efficiently extracting text. Solve the following exercises:

3.1

3.2

Suppose we are marking the first position of every equal-letter BWT run. Now, mark the positions on the text
corresponding to those marked BWT positions. Prove the following Lemma: every text substring T[i..j] has
at least one occurrence T[i’..j’] = T[i..j] such that T[i’..j’] contains a marked position (hint: we essentially
already proved this in exercise 1.1).

Let j be a marked text position, and let e < logn. Consider the substring S = T[j —2°..j — 1] (for simplicity,
assume that j —2° > 1) preceding position j. The property of exercise 3.1 tells us that the two halves of
S, each of length 2¢7!, have at least one occurrence crossing some other marked positions. The reasoning
can be applied recursively to these (shorter) substrings, yielding substrings of length 2¢~2 surrounding some
marked position. Exploit this observation and propose a structure of size O(r logn) words that permits to
extract any T[i] in O(logn) time.

SThis is the second difference with the paper: in Lemma 2, we only guarantee to find a SA[i], for some [ < i < r. In this exercise, we are
guaranteed to find SA[1].



