SIAM J. DISCRETE MATH. (© 2005 Society for Industrial and Applied Mathematics
Vol. 19, No. 2, pp. 448-462

LABELING SCHEMES FOR SMALL DISTANCES IN TREES*

STEPHEN ALSTRUPT, PHILIP BILLE', AND THEIS RAUHE!

Abstract. We consider labeling schemes for trees, supporting various relationships between
nodes at small distance. For instance, we show that given a tree T" and an integer k we can assign
labels to each node of 7" such that given the label of two nodes we can decide, from these two labels
alone, if the distance between v and w is at most k£ and, if so, compute it. For trees with n nodes
and k > 2, we give a lower bound on the maximum label length of logn + Q(loglogn) bits, and for
constant k, we give an upper bound of log n+ O(loglogn). Bounds for ancestor, sibling, connectivity,
and bi- and triconnectivity labeling schemes are also presented.

Key words. labeling schemes, trees
AMS subject classifications. 68R10, 68WO01

DOI. 10.1137/S0895480103433409

1. Introduction. Motivated by applications in XML search engines, network
routing, and implicit graph representation, several labeling schemes for trees have
been developed, among these [16, 22, 13, 10, 26, 1, 3, 8]. Given a tree, a labeling
scheme assigns a label, which is a binary string, to each node v of the tree. Then,
given only the labels of two nodes we can compute some predefined function of the
two nodes. The main objective is to minimize the mazimum label length, i.e., the
maximum number of bits used in a label.

In this paper we consider labeling schemes for various relationships between nodes
of small distance in trees. For instance, we show, by giving upper and lower bounds,
that a labeling scheme supporting parent and sibling queries requires labels of length
log n+©(loglogn).! This improves a recent bound by Kaplan and Milo [18] of logn +
O(v/logn).

More generally, we say that two nodes v and w with nearest common ancestor
z are (ki, ka)-related if the distance from v to z is k1 and the distance from w to z
is ko. For a positive integer k, a k-relationship labeling scheme is a labeling scheme
for trees which supports tests for whether v and w are (ki, k2)-related for all nodes
v and w and all positive integers kq, ke < k. In particular, a 1-relationship labeling
scheme supports tests for whether two nodes are (0, 0)-, (0,1)-, (1,0)-, or (1, 1)-related,
that is, whether two nodes are identical, one is the parent of the other, or they are
siblings. For trees with n nodes we show, for £ = 1, a lower bound on the label
length of logn + Q(loglogn), and for fixed, constant k& we give an upper bound of
logn + O(loglogn).

As noted in [18], a k-relationship labeling scheme can be used to test whether
the distance between two nodes is at most k, and if this is the case we can compute the
distance exactly. We call a labeling scheme with this property a k-restricted dis-
tance labeling scheme. We give a lower bound showing that for k = 2, a k-restricted

*Received by the editors August 15, 2003; accepted for publication (in revised form) November
29, 2004; published electronically November 4, 2005. An extended abstract of this paper appeared
in Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, 2003.

http://www.siam.org/journals/sidma/19-2/43340.html

fIT University of Copenhagen, Rued Langgardsvej 7, DK-2300 Copenhagen S, Denmark
(stephen@itu.dk, beetle@itu.dk, theis@itu.dk).

log refers to the binary logarithm and log* is the number of times log should be iterated to get
a constant.

448

LABELING SCHEMES FOR SMALL DISTANCES IN TREES 449

distance labeling scheme requires labels of length logn 4+ Q(loglogn). Hence, for
constant k, our k-relationship labeling scheme gives a k-restricted distance labeling
scheme which is optimal to within a factor of loglogn. This result improves a recent
upper bound of logn+ O(y/logn) for k-relationship and k-restricted distance labeling
schemes given in [18]. In contrast to the results for restricted distances, Gavoille et
al. [13] show that a labeling scheme for computing the distance between any pair of
nodes in a tree must use labels of length ©(log” n). In [10] it is shown that even if the
distances are allowed to be approximated to within a factor of (1 + 1/logn) we still
need labels of length ©(log nloglogn). Our result shows that for restricted distances
much smaller labels suffice. A 1-restricted labeling scheme supports tests for whether
two nodes are identical or adjacent. Such a labeling scheme, called an adjacency
labeling scheme, was recently given for trees in [4], with label length bounded by
logn 4+ O(log" n). Thus, there is a provable gap between the label length of 1- and
2-restricted distance labeling schemes.

The above lower bounds are the result of a more general new technique which
we use to obtain lower bounds for several types of labeling schemes, and for many of
these we give matching upper bounds. Apart from the above results we present the
following.

1.1. Bi- and triconnectivity labeling schemes. As an application of our
k-relationship labeling scheme we obtain a labeling scheme for general graphs for bi-
connectivity (or 2-vertex connectivity) queries. Recently, Katz et al. [21] considered
labeling schemes for 1-, 2-; 3-, and m-vertex connectivity. They gave a labeling scheme
for biconnectivity using 3logn bits. We show, giving upper and lower bounds, that
labels of length log n+©(log log n) are required. The labeling scheme for triconnectiv-
ity (or 3-vertex connectivity) in [21] uses the biconnectivity labeling scheme and has
label length bounded by 5logn. Using our biconnectivity labeling scheme we obtain
a triconnectivity labeling scheme using labels of length 3logn + O(loglogn).

1.2. Ancestor labeling schemes. For trees with n nodes we show that a la-
beling scheme for ancestor queries must use labels of length log n 4+ Q(loglogn). This
is the first nontrivial lower bound for the problem. Upper bounds using 2 [logn]| bits
were given in [27, 17, 23]. Recently, Abiteboul, Kaplan, and Milo [1] gave an ancestor
labeling scheme using labels of length 3/2logn + O(loglogn). Subsequently, this was
improved by Alstrup and Rauhe [3], bounding the label length to logn + O(y/logn).

If no two nodes are assigned to the same label, we say that the labels are unique.
The above labeling schemes all produce unique labels, whereas the lower bounds
also hold for labeling schemes that produce nonunique labels. However, the following
bounds show that there is a nontrivial complexity difference between labeling schemes
assigning unique and nonunique labels.

1.3. Sibling and connectivity labeling schemes. For sibling queries we give
a labeling scheme using labels of length [logn]. This labeling scheme will not assign
unique labels to the nodes of the tree. For the case where uniqueness is required, as
in [16], we give upper and lower bounds of logn + ©(loglog A) for trees of maximum
degree A. Extending the result for the sibling labeling scheme we give a labeling
scheme supporting connectivity queries for forests of n nodes using labels of length
[logn]. Again, these labels are not unique, and if uniqueness is required we show
that labels of length logn + ©(loglogn) are required.

1.4. Related work. Adjacency labeling schemes were introduced by Breuer and
Folkman [5, 6], and efficient labeling schemes were considered by Kannan, Naor, and

450 STEPHEN ALSTRUP, PHILIP BILLE, AND THEIS RAUHE

Rudich in [16, 17]. In [22] distance labeling schemes were introduced, i.e., labeling
schemes that compute the distance between any pair of nodes. Distance labeling
schemes for various types of graphs are given in [22, 20, 13, 11], and distance label-
ing schemes computing approximate distances are given in [10, 25].

Recently, labeling schemes for various other relationships have been studied. La-
beling schemes are given for ancestor in [17, 1, 26, 3, 19, 8], for nearest common
ancestor in [2], and for connectivity in [21]. Efficient labeling schemes are also ap-
plicable to routing schemes; see, e.g., [23, 26]. A survey on labeling schemes can be
found in [12].

1.5. Outline. In section 2 we give some preliminaries, and in sections 3, 4, and
5 we present the upper bounds on relationship, bi- and triconnectivity, connectivity,
and sibling labeling schemes. Lower bounds for these schemes are shown in section
6 together with lower bounds for ancestor labeling schemes and the above-mentioned
lower bound technique.

2. Preliminaries. For a graph G we denote the set of nodes and edges by V(G)
and E(G). Let T be a rooted tree with n nodes. The degree of a node v € V(T),
deg(v), is the number of children of v and the degree of T, deg(T), is given by
deg(T) = max,ey(r)deg(v). Note that an edge (v,parent(v)) does not contribute
to deg(v). The distance between two nodes v,w € V(T'), denoted by dist(v,w), is
the number of edges on the unique simple path between v and w. The depth of
v is the distance between v and the root of T. We let T(v) denote the subtree of
T rooted at a node v € V(T). If w € V(T(v)), then v is an ancestor of w, and
it w e V(T(v))\{v}, then v is a proper ancestor of w. If v is (proper) ancestor
of w, then w is a (proper) descendant of v. A node z is a common ancestor of v
and w if it is an ancestor of v and w. The nearest common ancestor of v and w,
nca(v,w), is the common ancestor of v and w of largest depth. For a node v of
depth d and i < d, the ith level ancestor of v, A(v,i), is the ancestor of v of depth
d — i. We call the nodes A(v,1) and A(v,2) the parent (denoted parent(v)) and
grandparent of v, respectively. Two nodes are siblings if they have the same parent.
A node with no children is a leaf and otherwise is an internal node. Two nodes in
a forest are connected if and only if there is a path between them. A bit string
of length n is a sequence a = agay ...a,—1, where a; € {0,1}, 0 < i < n —1. For
0 < j < n—1 thesequences ag,... ,aj—1 and ap_j,... ,an—1 are the j most significant
bits and the j least significant bits, respectively. The standard binary representation
of a positive integer k is the unique bit string ag...a,—1, where r = [logk| and
k= Z;;é a;2" 7= The discrete logarithm of k is the number |logk|. For two
integers 7 and j, where i < j, let [4, j] be the interval {i,... ,j}.

2.1. Labeling schemes. A binary query (or simply query) is a mapping f :
V(G) x V(G) — X for some set X. A labeling scheme for a family of graphs F
supporting queries f1,..., fm (fi : V(G) x V(G) — X;) is a tuple (e,dy,... ,dy,) of
mappings, where e is called the encoder and d; is called the decoder for the ith query.
The encoder e defines a label assignment, eq, for all G € F, which is a mapping of
V(G) into bit strings called labels. Given the labels of two nodes v and w, the ith
decoder, d;, computes the ith query, i.e., d;(eq(v),eq(w)) = fi(v,w). If the label
assignment eq is an injective mapping for all G € F, we say that the labeling scheme
assigns unique labels to the nodes. A labeling scheme has label length bounded by s
if the maximum length of the labels assigned to a node in any G € F is bounded by
s. We say that a labeling scheme can be computed in time ¢ if there is an encoder e

LABELING SCHEMES FOR SMALL DISTANCES IN TREES 451

such that for any G € F, e assigns labels to all nodes in G in time t.
3. Upper bound for relationship labeling schemes.

3.1. A 1-relationship labeling scheme. In this section we give a 1-relationship
labeling scheme, which will serve as a basis for our k-relationship labeling scheme in
the next section. As a consequence, some of the lemmas shown below will be more
general than required for a 1l-relationship labeling scheme. Our labeling scheme as-
signs unique labels to each node and supports both parent and sibling queries. As
described, a labeling scheme with these properties implies a 1-relationship labeling
scheme. The labeling scheme has label length bounded by logn + O(loglogn) for
trees with n nodes.

Some of the ideas in this section are inspired by [4]. There a simple labeling scheme
supporting parent (but not sibling) queries is given with labels of length bounded by
logn+0O(loglogn). Subsequently, they use this result to construct a more complicated
labeling scheme with labels of length bounded by logn + O(log™ n). In this section
we instead generalize the simple labeling scheme supporting parent queries to also
handle sibling queries within the same bounds. As noted in the introduction we later
show that our labels are the smallest possible within a factor of loglogn.

Let 7,, denote the family of rooted trees with n nodes. Let T € 7,,. As in [14]
we partition T into disjoint paths. For a node v € V(T) let size(v) = |V (T'(v))|. We
classify each node of T as either heavy or light as follows. The root is light. For
each internal node v we pick a child w of v of maximum size among the children of
v and classify w as heavy. The remaining children are light. We call an edge to a
light child a light edge and an edge to a heavy child a heavy edge. For an internal
node v, let heavy(v) denote the heavy child of v. Define the light subtree, L(w),
rooted at the node w as follows. If w is an internal node, then L(w) is the subtree
obtained from T'(w) by cutting away T'(heavy(w)), and if w is a leaf L(w) = T'(w).
Let lightsize(v) = |V (L(v))|. The light depth of a node v, lightdepth(v), is the number
of light edges on the path from v to the root.

LEMMA 1 (see [14]). For any tree T with n nodes lightdepth(v) < logn + O(1)
foranyveT.

The nearest light ancestor of v (possibly v itself) is denoted apex(v). By removing
the light edges T is partitioned into heavy paths.

A key ingredient of the scheme is preorder numbers. Order the tree T' such that
the rightmost child of each internal node is the heavy node. The light children need
not be in any particular order. A preorder depth first traversal of T is obtained by
first visiting the root and then recursively visiting the children of the root from left
to right. The preorder number, pre(v), is the number of nodes visited before v in this
traversal, i.e., the root will have number 0 and the rightmost leaf will have number
n — 1. The labels assigned by our labeling scheme will encode pre(v) in the label of v
using [logn] bits. This will ensure that the labels are unique. In the rest of the label
we will encode various smaller fields using no more than O(loglogn) bits in total. In
the following we show how to test, for two nodes v and w, if one is the parent of the
other or if they are siblings based on whether v and w are light or heavy nodes.

First define a node w to be a significant ancestor of v if v € L(w). Note that a
node is its own significant ancestor. We have the following relation between significant
ancestors and the preorder numbering.

LEMMA 2. For all nodes v and w, v € L(w) if and only if pre(v) € [pre(w),
pre(w) + lightsize(w) — 1].

452 STEPHEN ALSTRUP, PHILIP BILLE, AND THEIS RAUHE

Proof. If w is a leaf, then v = w and lightsize(w) = 1. Hence, pre(w) = pre(v) =
pre(w)+lightsize(w) —1 and the result follows. So assume w is an internal node. Then,
in a preorder traversal, v is visited at the time of w or after and before heavy(w) if and
only if pre(w) < pre(v) < pre(heavy(w)). Since pre(heavy(w)) = pre(w)-+lightsize(w)
the result follows. 0

Consider the binary representation of pre(v) for an internal node v. Let f(v) =
|log lightsize(v) |. We define the significant preorder number, spre(v), as the smallest
number greater than or equal pre(v) which is a multiple of 27 (v) | Equivalently,

pre(v) if pre(v) mod 27(®) =0,
spre(v) = .
{pre(v) — (pre(v) mod 2/ 4 2/(*) otherwise.
The following lemma states the relations we need between the preorder and significant
preorder numbers.
LEMMA 3. For all nodes v and w the following hold:
(i) spre(v) € [pre(v), pre(v) + lightsize(v) — 1].
(ii) v = w if and only if lightdepth(v) = lightdepth(w) and spre(v) = spre(w).
(iii) If lightdepth(v) = lightdepth(w), then pre(w) < pre(v) if and only if
spre(w) < spre(v).

Proof. (i) If pre(v) mod 27() = 0, then spre(v) = pre(v), and since lightsize(v) >
1 for all v the result follows. Otherwise 1 < pre(v) mod 2/(") < 2/(*) — 1. Hence,
spre(v) > pre(v) — (27 — 1) 4 2/(") = pre(v) + 1 and spre(v) < pre(v) — 1+ 27 <
pre(v) — 1 + lightsize(v).

(ii) If v = w, the conditions are clearly satisfied. Conversely, assume that v # w
and the conditions are satisfied. Since v # w and lightdepth(v) = lightdepth(w) we
have that v € L(w) and w ¢ L(v). Then, by Lemma 2 pre(v) ¢ [pre(w), pre(w) +
lightsize(w) — 1] and pre(w) ¢ [pre(v), pre(v) +lightsize(v) — 1], and hence these inter-
vals must be disjoint. However, since spre(v) = spre(w) we have, by (i), the contradic-
tion that spre(v) € [pre(v), pre(v) + lightsize(v) — 1] and spre(v) € [pre(w), pre(w) +
lightsize(w) — 1].

(iii) Assume that lightdepth(v) = lightdepth(w). If pre(w) < pre(v), then v &
L(w). By Lemma 2, pre(v) ¢ [pre(w), pre(w) + lightsize(w) — 1] and since pre(w) <
pre(v) we have pre(w) + lightsize(w) — 1 < pre(v). By (i) it follows that spre(w) <
spre(v). Conversely, since spre(w) < spre(v) and lightdepth(v) = lightdepth(w) we
have by (ii) that v # w. Furthermore, as in the proof of (ii), this implies that
the intervals [pre(v),pre(v) + lightsize(v) — 1] and [pre(w), pre(w) + lightsize(w) —
1] are disjoint. By (i), spre(v) € [pre(v), pre(v) + lightsize(v) — 1] and spre(w) €
[pre(w), pre(w) + lightsize(w) — 1] and since these intervals are disjoint and spre(w) <
spre(v) we have that pre(w) < pre(v). ad

Note that by Lemma 3(ii) it follows that any node v is uniquely identified by
spre(v) and lightdepth(v). The following lemma shows that the significant pre-
order number of a significant ancestor can be represented efficiently. In particular,
spre(parent(v)) can be represented efficiently if v is a light node.

LEMMA 4. Given pre(v) we can represent spre(w) for each significant ancestor
w of v using only loglogn + O(1) bits per significant ancestor.

Proof. Let w be a significant ancestor of v. Since lightsize(w) < 2/(®)+1 there can
be, apart from spre(w), at most one other number in the interval [pre(w), pre(w) +
lightsize(w) — 1] with all the f(w) least significant bits set to zero, i.e., the number
spre(w) + 2/ Let pre/(v) be pre(v) with all the f(w) least significant bits set to
zero. Since w is a significant ancestor of v, v € L(w) and thus, by Lemma 2, pre(v) €

LABELING SCHEMES FOR SMALL DISTANCES IN TREES 453

[pre(w), pre(w) + lightsize(w) — 1]. Hence, pre/(v) will be either spre(w) — 2/(®),
spre(w) or spre(w) + 2/(*) and therefore spre(w) is either pre/(v) + 27() pre/(v), or
pre’ (v)—2/(), Clearly, representing f(w) and two extra bits to distinguish these three
cases we can compute spre(w) from pre(v). This can be represented by [loglogn]| + 2
bits since f(w) is bounded by logn. 0

For each light node v we will encode lightdepth(v), spre(v), and spre(parent(v)) in
the label of v. By Lemma 1 lightdepth(v) < logn+ O(1) and can thus be represented
using loglogn + O(1) bits. Since the labels encode pre(v) and v is light, we have by
Lemma 4 that spre(v) and spre(parent(v)) can also be represented using loglogn +
O(1) bits. By Lemma 3(ii), lightdepth(v) together with spre(v) uniquely identifies
the node v. This immediately implies the following.

LEMMA 5. For a light node v and internal node w, w is the parent of v if and
only if lightdepth(v) = lightdepth(w) 4+ 1 and spre(parent(v)) = spre(w).

LEMMA 6. For two light nodes v and w, w and v are siblings if and only if
lightdepth(v) = lightdepth(w) and spre(parent(v)) = spre(parent(w)).

Next we show how to handle the remaining cases. Define diff_parent(v) = spre(v)—
spre(parent(v)) and leave it undefined for the root. Similarly, for internal nodes, de-
fine diff_heavy(v) = spre(heavy(v)) — spre(v) and leave it undefined for leaves. The
following lemma shows how the discrete logarithm of diff_parent(v) and diff heavy(v)
can be used to test for parenthood between two nodes on a heavy path. Since the
discrete logarithm is bounded by logn, only [loglogn]| bits are needed to represent
each of these numbers.

LEMMA 7. For heavy node v and internal node w, w is the parent of v if and only
if spre(w) < spre(v), lightdepth(v) = lightdepth(w) and |log(spre(v) — spre(w))| =
|log diff _parent(v)]| = |log diff _heavy(w)]

Proof. For w = parent(v) it is straightforward, using Lemma 3, to verify that
the conditions are satisfied. Conversely, assume that a node w # parent(v) satis-
fies the conditions. Since spre(w) < spre(v) and lightdepth(v) = lightdepth(w), we
have by Lemma 3(iii) that pre(w) < pre(v), and therefore w cannot be a descen-
dant of v. Furthermore, w cannot be a descendant of any other sibling of v, because
then lightdepth(w) > lightdepth(v). It follows that w cannot be a descendant of
parent(v). Hence, in a preorder traversal of T' the node heavy(w) is visited before
parent(v) or heavy(w) = parent(v). That is, pre(heavy(w)) < pre(parent(v)) and by
Lemma 3(ii) and (iii), also spre(heavy(w)) < spre(parent(v)), and therefore spre(v) —
spre(w) > (spre(heavy(w)) —spre(w)) + (spre(v) —spre(parent(v))) = diff _heavy(w)+
diff_parent(v). By the identities [log(spre(v) — spre(w))] = [logdiff_parent(v)| =
|log diff _heavy(w)| this leads to the contradiction spre(v)—spre(w) > diff _heavy(w)+
diff,parent(v) > 2. 2|_10g diff_parent(v)| _ 2. 2_10g(spre(v)—spre(w))] > spre(v) _
spre(w). 0

Considering siblings instead, we immediately obtain the following corollary to
Lemma 7.

LEMMA 8. A heavy node v and light node w are siblings if and only if spre(parent
(w)) < spre(v), lightdepth(v) = lightdepth(w) — 1, and |log(spre(v) — spre(parent
(w)))] = |log diff_parent(v)| = |log diff_heavy(parent(w))].

Note that since any node has at most one heavy child, two heavy nodes v and w
are siblings if and only if v = w. Since the labels are unique it is trivial to handle this
case.

Combining the above lemmas we obtain the 1-relationship labeling scheme. For
T € 7, let the encoder ep(v),v € V(T), encode pre(v), lightdepth(v), spre(v),

454 STEPHEN ALSTRUP, PHILIP BILLE, AND THEIS RAUHE

|log diff _heavy(v)] and a type bit indicating if v is a light or heavy node. Further-
more, if v is a light node encode spre(parent(v)) and |log diff_heavy(parent(v))]. If v
is a heavy node encode |log diff parent(v)]. As described, pre(v) uses [logn| bits and
each of the other values uses log logn+O(1) bits each. For easy decoding we represent
each of the values in fixed sized fields in the label of v. The first [logn] bits stores
pre(v). The other values are represented, in five fields (we leave one field undefined
when v is a light node) of the same length, in the next 5loglogn + O(1) bits. At
the end of the label we store the type bit. We will assume that the decoder does not
know the value n, i.e., the decoder is not specialized to trees of size n but will work
with any tree, regardless of its size. Due to this restriction we cannot compute [logn]
directly and use this to extract the preorder number and then the rest of the fields.
Instead we use a self-delimiting code for [logn]. In particular, we prefix the label
with 110z, where z is the binary representation of the length of the field containing
pre(v). Since the length of pre(v) is [logn], we have added only 2 loglogn + O(1)
bits. Note that the unary prefix 11*/0 enables us to figure out the length of z. In
total the label length will be bounded by logn + O(loglogn). By uniqueness of the
labels and Lemmas 5 through 8, it is straightforward to construct decoders testing if
two nodes are (0,0)-, (0,1)-, (1,0)-, or (1,1)-related. In summary we have the next
theorem.

THEOREM 1. For trees with n nodes there is a 1-relationship labeling scheme with
label length bounded by logn + O(loglogn).

Finally, note that labels for all nodes in T' can be computed in O(n) time and
queries can be implemented in O(1) time per query assuming standard binary oper-
ations on a RAM.

3.2. A general k-relationship labeling scheme. In this section we generalize
the result of the previous section to a k-relationship labeling scheme. The scheme
extends the ideas of the first labeling scheme and has label length bounded by logn +
O(k?(loglogn + log k)), which for constant & is logn + O(loglogn).

We first extend the definition of diff _heavy(v) and diff_parent(v) as follows. If v
has a descendant u on the same heavy path as v of distance m, let diff_heavy(v,m) =
spre(u) — spre(v), and if there is no such node u let diff_heavy(v,m) = 2n, i.e., the
discrete logarithm of 2n will be |logn| + 1, indicating that this is not an actual
difference. Similarly, define diff_parent(v, m) for the ancestor on the same heavy path
of v of distance m. Furthermore, for a node v we define the index of v, index(v),
as the number of nodes with the same light depth as v and with smaller preorder
numbers than v. We will use the following generalization of Lemma 7.

LEMMA 9. For a heavy node v and internal node w, w and v are on the same heavy
path and w is an ancestor of v of distance m > 1 if and only if spre(w) < spre(v),
lightdepth(v) = lightdepth(w), |log(spre(v) — spre(w))| = |logdiff_parent(v,m)| =
|log diff_heavy(w, m)], and index(v) mod m = index(w) mod m.

Proof. Let x denote the ancestor of v of distance m on the heavy path of
v. Similarly, let y denote the descendant of w of distance m on the heavy path
of w. If z or y does not exist, then the conditions do not hold by definition of
diff_parent and diff _heavy. If they both exist and if = w (or equivalently y = v),
it is straightforward to check that the conditions are satisfied. Conversely, as-
sume that the conditions are satisfied and « # w. Since [log(spre(v) — spre(w))] =
|log diff_parent(v,m)| = |logdiff_heavy(w,m)]|, both z and y exist and are on the
same heavy paths as v and w, respectively. As in the proof of Lemma 7, we have
lightdepth(w) = lightdepth(y) = lightdepth(z) = lightdepth(v) and pre(w) < pre(v).

LABELING SCHEMES FOR SMALL DISTANCES IN TREES 455

Since index(w) mod m = index(y) mod m = index(z) mod m = index(v) mod m and
x # w, the paths from w to y and = to v are either disjoint or z = y. Thus
pre(y) < pre(x) and by Lemma 3(ii) and (iii) also spre(y) < spre(z). Therefore spre(v)
— spre(w) > diff _heavy(w, m) + diff_parent(v, m). By the identities |log(spre(v) —
spre(w))| = |log diff_parent(v, m)| = |log diff _heavy(w, m) |, we obtain the contradic-
tion spre(v)—spre(w) > diff_heavy(w,m)+diff_parent(v,m) > 2.2lleg diff-parent(v,m)] _
2 . 2llog(spre(v)=spre(w))] > gpre(v) — spre(w). d

The main idea in our labeling scheme is to store, in the label of v, pre(v) and
lightdepth(v) as before. Furthermore, for each significant ancestor w of v of distance
at most k we will represent spre(w) together with diff _heavy(w, m), diff_parent(w,m),
and index(w) mod m for 1 < m < k. Then, to test if two nodes v and w are (kq, k2)-
related we identify the heavy path containing the nearest common ancestor of v and
w and compute distances to and on this heavy path.

3.3. The encoder. We can now describe the encoder for our k-relationship
labeling scheme. For T' € 7, let the label er(v), v € V(T') encode pre(v) and
lightdepth(v). Furthermore, we store an ancestor table of s entries, where s is the
number of significant ancestors of distance at most k from v. If w is the ith significant
ancestor of v, the ith entry in the ancestor table will represent spre(w), dist(v,w),
and a single bit, called the apez bit, indicating whether the distance dist(w, apex(w))
is at most k. If this is so we store dist(w, apex(w)) and otherwise leave this field un-
defined. Furthermore, the ¢th entry also represents, for 1 < m < k, diff_heavy(w, m),
diff _parent(w, m) and index(w) mod m. Hence, number of bits used to represent an
entry is bounded by O(kloglogn + klogk) and thus the total number of bits used
for the ancestor table is at most O(k?(loglogn + log k)). Note that since w is the ith
significant ancestor we have that lightdepth(w) = lightdepth(v) — ¢ and hence this
information is implictly stored in the table.

For efficient computation of the queries we store a lookup table of k entries. The
ith entry stores the light depth of A(v,i). Hence the lookup table uses at most
O(kloglogn) bits. As before all the values are stored in fixed sized fields and we
prefix the label with small codes representing the length of pre(v) and each of tables.
In total the label length is bounded by log n+ O(k?(loglogn+log k)). Computing the
tables can be done in O(k) time per node after O(n) time preprocessing and hence
the labeling scheme can be computed in O(nk) time.

3.4. The decoder. In the following we present the decoder for our k-relationship
labeling scheme. We first present necessary and sufficient conditions for two nodes v
and w to be (ki, ko)-related and then show how to test these conditions using only
the labels of v and w.

LEMMA 10. Let v,w € T and distances ki and ko (not both zero) be given. Let
v’ be the significant ancestor of v such that lightdepth(v') = lightdepth(A(v, k1)) and
if v/ # v let v be the significant ancestor of v of light depth lightdepth(A(v, k1)) + 1.
Otherwise let v = v. Similarly, define w' and w” for w and ky. Then, v and w are
(K1, ka)-related if and only if one of the following disjoint conditions is satisfied:

(i) v = ', v, and w" are on different heavy paths, dist(v,v') = ki and
dist(w, w'") = ks.

(ii) v" andw’ are on same heavy path, v’ is a proper ancestor of w’, dist(w’,v") =
ko — dist(w,w’), and dist(v,v") = k.

(iii) v and w’ are on same heavy path, w' is a proper ancestor of v’, dist(v', w'") =
k1 — dist(v,v"), and dist(w,w’) = k.

456 STEPHEN ALSTRUP, PHILIP BILLE, AND THEIS RAUHE

V=w’'=z

é;

() (b)

Fic. 1. Cases for Lemma 10: (a) case (i), (b) case (ii).

Proof. The situation is illustrated in Figure 1. Let z = nca(v,w). If one of the
conditions is satisfied it is straightforward to check that v and w are (kq, ko)-related.
Conversely, if v and w are (kq, ko)-related, then z must be on the heavy path of v’
and w’ and z = v’ or z = w'. If z = v/ = w’, then z is a significant ancestor of both
v and w. Hence, since k; and ke are not both zero, v” and w” must be on different
heavy paths; otherwise there would be a common ancestor of larger depth than z
contradicting the assumption that z = nca(v,w). If z = v’ # w’, then v’ is a proper
ancestor of w’, and if z = w’ # v/, then w’ is a proper ancestor of v'. Since v and w
are (ki1, ko)-related the distance conditions are satisfied. O

Given only the labels of the nodes v and w we can test if they are (k1, k2)-related
for kq,ke < k as follows. First, since the labels are unique, it is trivial to test if v
and w are (0,0)-related. Hence, we will assume that k; and ko are not both zero.
We will show how to test each of the conditions in Lemma 10 using only the labels.
Using the lookup tables we first compute the entries in the ancestor tables for the
nodes v/, v", w’, and w”. Assume that the values stored at these entries of the tables
are available. Using Lemma 3(ii) we can check if v = w’. The distances dist(v,v’)
and dist(w,w’) are stored directly in the ancestor tables of v and w, and the first
three conditions in (ii) and (iii) can be checked using Lemma 9. What remains is to
describe how to test if v/ and w” are on different heavy paths. Since the distances
dist(v”, apex(v”)) and dist(w”, apex(w”)) are both smaller than k&, they are available
in the ancestor tables. If v" and w” are on the same heavy path their distance must
be |dist(v”, apex(v”)) — dist(w”, apex(w’))|, so we can use Lemma 9 to test whether
they are on the same heavy path and if so if they are this distance apart. Thus we
have shown that the conditions of Lemma 10 can be tested using only the labels of v
and w and so we can determine if v and w are (ki, ka)-related. In summary we have
shown the next theorem.

THEOREM 2. For trees with n nodes there is a k-relationship labeling scheme with
label length bounded by logn + O(k?(loglogn + logk)).

As noted, the k-relationship labeling scheme can be computed in O(nk) time and
due to the lookup and ancestor tables queries can be performed in O(1) time.

4. Upper bounds for bi- and triconnectivity labeling schemes. As an
application of our k-relationship labeling scheme of section 3 we give a labeling scheme
for biconnectivity. Subsequently, we use a reduction from [21] to obtain a labeling
scheme for triconnectivity. Both labeling schemes assign unique labels. For a graph
G with n nodes, the labeling scheme for bi- and triconnectivity uses labels of length

LABELING SCHEMES FOR SMALL DISTANCES IN TREES 457

bounded by logn + O(loglogn) and 3logn + O(loglogn), respectively.

We first give some preliminaries. Let G be a graph. A set of paths P connecting
two nodes v and w in G is vertex-disjoint if each node except v and w appears in at
most one path p € P. We define v and w to be m-vertex connected if there is a set of
vertex-disjoint paths of size m connecting v and w. We say that v and w are bi- or
triconnected if they are 2- or 3-vertex connected, respectively. A cut-node is a node
whose removal (and all incident edges) disconnects the graph. A block of a graph
G is a maximal connected subgraph without a cut-node. By maximality, different
blocks of G overlap in at most one node, which is then the cut-node. Using Menger’s
theorem (see, e.g., [9]), it can be shown that two nodes v,w € V(G) are biconnected
if and only if they are within the same block and the block has at least three nodes.

We define the block graph B of G. Each node in G is represented by a unique
node in B and each node in B either represents a node in GG or a block with at least
three nodes in G. The edges of B are defined as follows. Let v be a node in G and let
B(v) denote the set of blocks in G that contain v and have at least three nodes. For
each node representing a block b € B(v) there is an edge to the node representing v
in B. A node in B representing a node in G that is not contained in any block with
at least three nodes is not incident to any other node in B. By the maximality of
blocks we have the next lemma.

LEMMA 11. The block graph B of a graph G is a forest of unrooted trees.

Using depth-first search [24], we can compute the block forest in linear time. We
root each tree in the forest as follows. If the tree contains only one node, this node is
the root. Otherwise the tree contains at least one node representing a block and we
arbitrarily root the tree in such a node. By B, we denote the rooted version of the
block forest B.

LEMMA 12. Two nodes v and w in G are biconnected in G if and only if, in the
block forest of rooted trees B,., either v and w are siblings, v is the grandparent of w,
or w s the grandparent of v.

Proof. If v and w are biconnected in G, then they are contained in the same block
with at least three nodes, and hence they are incident to the same node representing
a block. In B,., this implies that v and w are either siblings or one is the grandparent
of the other. Conversely, if v and w are siblings or one is the grandparent of the other
in B, then they are incident to the same node representing a block. Hence, they are
contained in the same block with at least three nodes and are thus biconnected. a

To test the conditions in Lemma 12 we extend our k-relationship labeling scheme
to handle the more general case of forests. Add an extra root node connected to
each root of the trees in the forest. This produces a tree where we then apply our
k-relationship labeling scheme. The modifications needed to handle a special root
node are straightforward to implement. Using a 2-relationship labeling scheme for
the forest B, we obtain by Lemma 12 the following theorem.

THEOREM 3. For graphs with n nodes there is a biconnectivity labeling scheme
that assigns unique labels with label length bounded by logn + O(loglogn).

Since we can compute the block forest B, in O(n) time, the labeling scheme can
be computed in O(n) time and with the 2-relationship labeling scheme queries can be
answered in O(1) time.

As noted in the introduction we can use our biconnectivity labeling scheme to
obtain a triconnectivity labeling scheme using a reduction from [21]. There a labeling
scheme for triconnectivity is given using labels of length bounded by 5logn. By
Lemmas 3.3, 3.4, and 3.6 in [21] and Theorem 3 we obtain the following improvement.

458 STEPHEN ALSTRUP, PHILIP BILLE, AND THEIS RAUHE

THEOREM 4. For graphs with n nodes there is a triconnectivity labeling scheme
that assigns unique labels with label length bounded by 3logn + O(loglogn).

5. Upper bounds for sibling and connectivity labeling schemes. In this
section we consider labeling schemes for sibling queries and connectivity queries in a
forest. First we consider sibling queries. If two nodes in the same tree can be given the
same label, we can label the nodes with labels of length [logn] as follows. Partition
the nodes into groups such that two nodes are siblings if and only if they belong to the
same group. This construction gives g < n groups, which are numbered 1,2,... ,g.
Nodes in the same group are given the same label, namely, the number of the group.
Now, two nodes are siblings if and only if they have the same label.

THEOREM 5. For trees with n nodes there is a sibling labeling scheme with label
length bounded by [logn].

Next we show how to assign unique labels for trees with maximum degree A.
We group the nodes as above. We assign to each node v two numbers: a group
number g(v) to answer sibling queries as above, and an individual number i(v) to
make its label unique. Two nodes in the same group will be given the same group
number. Assume we have g groups gi,92,...,9y. Let |g;| be the number of nodes
in g;. Using a Huffman code [15] we give each node in group g;, a group number of
length logn — log |g;| + O(1). The individual numbers given to the nodes in group g;
are simply 1,2, ... ,|g:|, of length log|g;| + O(1). In total we use logn + O(1) bits for
the group and individual numbers; however, coding these two numbers as one label,
we also need to be able to separate these two numbers given the label of a node. We
use the first O(loglog A) bits of the label to code the length of the individual number
as follows. The individual number in a tree with maximum degree A is at most A
and can be represented with at most ¢ = log A + O(1) bits. To represent the length
of the individual number we need O(log ¢) = O(loglog A) bits. Now, we also need to
represent the length of the bit string representing the length of the individual number,
but this can be done simply by using an unary code of length O(loglog A).

THEOREM 6. For trees with n nodes and mazimum degree A there is a sib-
ling labeling scheme that assigns unique labels with label length bounded by logn +
O(loglog A).

Using the same observations, grouping connected nodes, we get the next theorem.

THEOREM 7. For forests with n nodes there is a connectivity labeling scheme that
assigns unique labels with label length bounded by logn + O(loglogn).

It is straightforward to compute the above labeling schemes in O(n) time and
answer queries in O(1) time assuming standard binary operations on a RAM.

6. Lower bounds. In this section we present a lower bound technique and
subsequently give lower bounds for ancestor, connectivity, sibling, 1-relationship, 2-
restricted distance, and biconnectivity labeling schemes.

If v is an ancestor of w or w is an ancestor of v, we say that v and w are weak
ancestors. A lower bound for a weak ancestor labeling scheme is clearly a lower bound
for an ancestor labeling scheme. The lower bound presented in this paper is for weak
ancestor labeling schemes.

We will use the following technique to show this lower bound. First we give a
family of trees F 4 where each tree consists of cn nodes for a constant c. We then show
that any labeling scheme (which may use nonunique labels) for weak ancestor queries
needs to use Q(nlogn) different labels for F4. If m different labels are necessary,
then the label length must be at least logm. Since log(cnlogn) = logn+Q(loglogn),

LABELING SCHEMES FOR SMALL DISTANCES IN TREES 459

for any constant ¢, we establish the lower bound. A similar construction is used for
the other lower bounds.

In some cases, e.g., in [7], the goal is to minimize the average length of labels
instead of the maximum. We note that, using the above technique, our lower bounds
also hold for the average length of labels.

6.1. Lower bound technique. Let S be a set of elements and let e : S — D be
a function labeling S with elements from some domain D. We will assume |S| = nk,
where k is an integer < logn and n is a power of two. We define a partition P of &
into k boxes each of n elements. The elements in the ith box, 1 <1i < logn, denoted
by B, are partitioned into n/2¢ groups each of 2¢ elements.

LEMMA 13. Let S, e, and k be as described above. If there exists a partition P
such that the following two properties hold, then |D| = Q(nk):

(i) for two different elements s1,s2 € S, if s1 and sy belong to the same boz,
then e(s1) # e(s2),

(ii) for elements s1, 82,583,584 € S, if s1 and s2 belong to two different groups in
the same box, e(s1) = e(s3) and e(s2) = e(s4), then s3 and sy belong to two different
groups.

Proof. We will say the function e associates labels with the elements from S.
The elements associated with the same label are called neighbors. In the following we
give a strategy to choose a subset S’ of elements from S, guaranteeing that for all
s1,89 € S, where 57 # s, s1 and sg will not be neighbors. We call a strategy with
such a guarantee a safe strategy. The number of labels needed by e for & will be at
least the size of S’ since |D| > |S’| when S’ is chosen by a safe strategy. We say an
element is a marked element if it is chosen to belong to S’. Hence, no two elements
with the same label will be marked. If one or more elements from a group are marked
we say the group is marked. For a box B we let M (B) denote the number of marked
groups belonging to the box.

We first mark elements from the box By and next for B; in order of decreasing
i. All elements in By will be marked. From the first property of Lemma 13 there
are no neighbors in the same box and the marking is therefore safe. When marking
elements from the remaining boxes B;, i < k, we keep the invariant that M (B;) <
n/2t71. Hence, we will mark elements from at most half of the groups belonging
to Bl

Let F(i) be the set of groups belonging to the boxes B;, j > 4, and let M (F())
be the number of marked groups belonging to F (7). Since we keep the invariant that
M(B;) < n/2"* for i < k, we have that for i < k, M(F(i)) < n/2k—|—2?;i1 n/2it1 =
n/2¢. Next, we describe how to mark elements from B;, after marking elements from
Bj, j > . If a group in B; includes an element with a marked neighbor in B;, j > 1,
we say the group is closed. If a group is not closed it is open.

Let s1,s2 € B; belong to two different groups. If s; has a marked neighbor s3
and so has a marked neighbor s4, then by the second property of Lemma 13, sj3
and s4 must belong to two different marked groups from F(i + 1). Hence, for each
closed group in B; we can associate a marked group from F'(i 4+ 1) which will not be
associated to any other group in B;. Since the number of groups in B; is n/2% and we
keep the invariant that M (F(i+1)) < n/2°FL at least n/2"! of the groups in B; will
be open. Since the elements from the open groups do not have a marked neighbor
and none of them are neighbors by the first property of Lemma 13 it is safe to mark
all elements from the n/2*! open groups of B;. This way we maintain the invariant
of marking elements from at most half of the groups in B;, ¢ < k. Summarizing, we

460 STEPHEN ALSTRUP, PHILIP BILLE, AND THEIS RAUHE

mark all elements in By, and half the elements from the remaining k¥ — 1 boxes. In
total we mark Q(nk) elements. d

In the following sections we will define different families of graphs for which the
nodes from these graphs can be partitioned such that the labeling obeys the properties
given in Lemma 13.

6.2. Ancestor labeling schemes. To show a lower bound for a weak ancestor
labeling scheme we give a family F4 of logn trees {T1,T5,... ,Tiogn}, each of size
2n+ 1. We show that for a subset S of the nodes from F 4, where |S| = nlogn, there
is a partition P of S, such that any e must obey the two properties in Lemma 13.
This implies that at least (nlogn) labels are needed and will conclude our proof.

The tree T; in F.4 consists of a root node with n/2¢ children. Each child v is the
root of a path p(v) of length 2!. Furthermore, each node on these paths has a child
which is a leaf not belonging to the path.

We have |V (T;)| = 2(n/2%)2¢4+1 = 2n+1. We let S be the subset of nodes from F4
which belongs to a path p(v), where v is a child of one of the root nodes in the family.
Hence, |S| = nlogn. Box B; is the subset of nodes from S which belongs to the tree T;.
The nodes from box B; are partitioned into groups such that two nodes from the same
group belong to the same path. Next we show that the two properties from Lemma 13
must be fulfilled for any weak ancestor labeling scheme (e, d) in this partition.

Consider the first property. Let si,s0 € B;, s1 # so. If s; and sy are weak
ancestors, choose sy to be the node closer to the root. On the other hand, if s; and
so are not weak ancestors, then choose sy arbitrarily. Let ¢ be the leaf in T; which is
the child of s5. Note that in both cases s; and ¢ are not weak ancestors and therefore
d(e(s1),e(c)) # d(e(s2),e(c)), which implies that e(s1) # e(s2).

Next we consider the second property. Let si,s9,83,84 € S, where s; and sg
belong to two different groups in the same box. This implies that s; and so are not
weak ancestors. Hence, if e(s1) = e(s3) and e(s3) = e(s4), then s3 and s4 are not
weak ancestors and therefore s3 and s4 must belong to different groups.

THEOREM 8. A weak ancestor labeling scheme for trees with n nodes needs label
of length logn + Q(loglogn).

6.3. Connectivity labeling schemes. In this section we consider the minimum
label length required to answer connectivity queries in a forest if the labels assigned
to the nodes must be unique. Let F¢ be the family of logn forests F;, 1 < i < logn,
where F} consist of 2/°2"~% paths of length 2¢°. We have |V (F;)| = n. We let S be the
nodes from F¢. Box B; is the nodes from F;. The nodes in B; are partitioned into
groups such that connected nodes are in the same group.

The first property from Lemma 13 follows trivially from our assumption that the
labels assigned to a forest F; are unique. Let s1,s9,83,84 € S. If s; and s, belong
to two different groups from the same box B;, s; and sy are not connected in Fj.
If s3 and s4 are in the same group, s3 and s4 are connected in some forest, and
d(e(s1),e(s2)) should therefore be different from d(e(ss),e(s4)), which cannot be the
case if e(s1) = e(s3) and e(s2) = e(s4).

THEOREM 9. A connectivity labeling scheme for forests with n nodes that assigns
unique labels needs labels of length logn + Q(loglogn).

6.4. Sibling labeling schemes. In this section we consider the minimum label
length required to answer sibling queries in a tree if the labels assigned to the nodes
must be unique. We consider a forest of trees Fs(k) of k trees T;, 1 < i < k < logn.
Let B(j) be a complete balanced binary rooted tree with 27 leaves and 27! —1 nodes.

LABELING SCHEMES FOR SMALL DISTANCES IN TREES 461

The tree T; consists of a tree B = B(logn — i), where each leaf from B in T} has 2¢
children. These children are the set S. The box B; consists of the subset of nodes
from S which comes from T;. The nodes in box B; are partitioned into groups such
that two nodes which belong to the same group are siblings. The first property from
Lemma 13 follows trivially from our assumption that the labels assigned to a tree are
unique. Let s1,$2,53,54 € S. Since s; and sy does not belong to the same group, s;
and so are not siblings. If s3 and s4 belongs to the same group, s3 and s4 are siblings.
Therefore d(e(s1),e(s2)) should be different from d(e(ss), e(s4)), which cannot be the
case if e(s1) = e(s3) and e(s2) = e(s4). The maximum degree A of a tree in Fs(k) is
2% and |S| = nk, giving the next theorem.

THEOREM 10. A sibling labeling scheme for trees with n nodes and mazximum
degree A that assigns unique labels needs labels of length logn + Q(loglog A).

6.5. 1l-relationship and 2-restricted distance labeling schemes. In this
section we consider the minimum label length required to answer 1-relationship and
2-restricted distance queries in a tree. To show the bound for 1-relationship labeling
schemes we show that a labeling scheme for answering both parent and sibling queries
needs to use labels of length log +Q(loglogn). Let Fsp be the forest Fs(logn) to
which we have added a child to each leaf in the forest Fs(logn). We let S be the
same subset of nodes as in the previous section. Let s1,ss belong to the same box,
$1 # 82, and let ¢ be the child of s;. Since ss is not a parent to ¢, s; and sy must be
assigned different labels. Hence, the first property of Lemma 13 is satisfied.

THEOREM 11. A 1-relationship labeling for trees with n nodes needs labels of
length logn + Q(loglogn).

For 2-restricted distance labeling schemes we use Fsp and the same partition as
above. Let s1, s belong to the same box, s1 # s3, and let ¢ be the child of s;. Since
the distance from s; to ¢ is 1 and the distance from sy to ¢ is 3, s1 and so must be
assigned different labels. Furthermore, the distance between two nodes in S is 2 if
and only if they are siblings, and by the same observations as in the sibling labeling
scheme the result follows.

THEOREM 12. A 2-restricted distance labeling scheme for trees with n nodes needs
labels of length logn + Q(loglogn).

6.6. Biconnectivity labeling schemes. In this section we consider the mini-
mum label length required to answer biconnectivity queries in a graph. Let G; be the
graph consisting of 2! disjoint cycles C; = {c1, ... ,ci } each of length n/2¢. Further-
more, for each node v € V(C;), G; contain two nodes v, vy € V(C;) connected with
each other and v. Let Fg be the family G;,1 <i <logn — 2, and let S be the set of
nodes in C;,1 < i <logn — 2. Then |S| = n(logn —2). The box B; is the nodes in S
from G, and two nodes are in the same group if they are biconnected. Note that cy-
cles of length less than 3 are not biconnected and therefore the restriction i < logn—2
is important. Let s1, s € S belong to the same box, s; # s3 and let v; and vy be the
nodes connected to s; but not on the cycle containing s,. Since vy and v, are bicon-
nected with s but not s, e(s1) # e(s2). Let s1, s2, 83,54 € S, where s; and sy belong
to different groups in the same box. This implies that s; and so are not biconnected
and if e(s1) = e(s3) and e(s2) = e(s4), s3 and s4 must also belong to different groups.

THEOREM 13. A biconnectivity labeling scheme for graphs with n nodes needs
labels of length logn + Q(loglogn).

Acknowledgments. We thank the anonymous reviewers for the very insightful
and useful comments and Inge Li Gogrtz for proofreading.

462

M.

M.

o o a @

M.

M.

N.

STEPHEN ALSTRUP, PHILIP BILLE, AND THEIS RAUHE

REFERENCES

. ABITEBOUL, H. KAPLAN, AND T. MiLo, Compact labeling schemes for ancestor queries, in

Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, 2001,
pp. 547-556.

. ArstruP, C. GAVOILLE, H. KAPLAN, AND T. RAUHE, Nearest common ancestors: A survey

and a new distributed algorithm, in Proceedings of the 14th Annual ACM Symposium on
Parallel Algorithms and Architecture, 2002.

. ALSTRUP AND T. RAUHE, Improved labeling schemes for ancestor queries, in Proceedings of

the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

. ALSTRUP AND T. RAUHE, Small induced universal graphs and compact implicit graph repre-

sentations, in Proceedings of the 43rd Annual IEEE Symposium on Foundations of Com-
puter Science, 2002.

A. BREUER, Coding vertezes of a graph, IEEE Trans. Inform. Theory, 12 (1966), pp. 148—
153.

A. BREUER AND J. FOLKMAN, An unexpected result on coding vertices of a graph, J. Math.
Anal. Appl., 20 (1967), pp. 583-600.

. CoHEN, E. HALPERIN, H. KAPLAN, AND U. ZWICK, Reachability and distance queries via

2-hop labels, in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 2002.

. CoHEN, H. KAPLAN, AND T. MILO, Labeling dynamic XML trees, in Proceedings of the 21st

Annual ACM Symposium on Principles of Database Systems, 2002.

. DIESTEL, Graph Theory, Springer-Verlag, New York, 2000.
. GavoiLLE, M. Karz, N. Karz, C. PAuL, AND D. PELEG, Approxzimate distance labeling

schemes, in Proceedings of the 9th Annual European Symposium on Algorithms, Lecture
Notes in Comput. Sci. 2161, Springer-Verlag, New York, 2001, pp. 476—488.

. GAVOILLE AND C. PAUL, Split decomposition and distance labeling: An optimal scheme for

distance hereditary graphs, in Proceedings of the 9th European Conference on Combina-
torics, Graph Theory and Applications, 2001.

. GAVOILLE AND D. PELEG, Compact and localized distributed data structures, Distributed

Computing, 16 (2003), pp. 111-120.

. GAVOILLE, D. PELEG, S. PERENNES, AND R. RAz, Distance labeling in graphs, in Proceedings

of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, 2001.

. HAREL AND R. E. TARJAN, Fast algorithms for finding nearest common ancestors, SIAM J.
Comput., 13 (1984), pp. 338-355.

. A. HUFFMAN, A method for construction of minimum-redundancy codes, in Proceedings of
the Institute of Radio Engineers, 1952.

. KANNAN, M. NAOR, AND S. RUDICH, Implicit representation of graphs, in Proceedings of

20th Annual ACM Symposium on Theory of Computing, 1988.

. KANNAN, M. NAOR, AND S. RUDICH, Implicit representation of graphs, SIAM J. Discrete

Math., 5 (1992), pp. 596-603.

KAPLAN AND T. MiLo, Short and simple labels for small distances and other functions, in
Proceedings of the 7th Workshop on Algorithms and Data Structures, Lecture Notes in
Comput. Sci. 2125, Springer-Verlag, New York, 2001.

. KapLAN, T. MILO, AND R. SHABO, A comparison of labeling schemes for ancestor queries,
in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

KaAtz, N. KATZ, AND D. PELEG, Distance labeling schemes for well-separated graph classes,
in Proceedings of the 17th Symposium on Theoretical Aspects of Computer Science, Lecture
Notes in Comput. Sci. 1170, Springer-Verlag, New York, 2000.

Karz, N. A. KaTz, A. KORMAN, AND D. PELEG, Labeling schemes for flow and connectivity,
in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, 2002.

. PELEG, Proximity-preserving labeling schemes and their applications, in Graph-Theoretic
Concepts in Computer Science, 25th International Workshop, Lecture Notes in Comput.
Sci. 1665, Springer-Verlag, New York, 1999, pp. 30-41.

SANTORO AND R. KHATIB, Labeling and implicit routing in networks, Comput. J., 28 (1985),

pp. 5-8.

R. E. TARJAN, Depth-first search and linear graph algorithms, SIAM J. Comput., 1 (1972),

pp. 146-160.

M. THORUP AND U. ZWICK, Approzimate distance oracles, in Proceedings of the 13th Annual

ACM Symposium on Theory of Computing, 2001, pp. 1-10.

M. THORUP AND U. Zwick, Compact routing schemes, in Proceedings of the 13th Annual ACM

Symposium on Parallel Algorithms and Architecture, Vol. 13, 2001.

A. K. TSAKALIDIS, Maintaining order in a generalized linked list, Acta Inform., 21 (1984), pp.

101-112.

