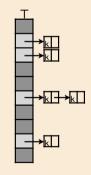
Randomized Algorithms II

Inge Li Gørtz

Thank you to Kevin Wayne and Philip Bille for inspiration to slides

Randomized algorithms

- Last weeks
 - Contention resolution
 - Global minimum cut
 - Expectation of random variables
 - Guessing cards
 - Quicksort
 - · Selection
- · Today
 - \cdot Hash functions and hash tables



6 •	٨	8	9 . ¥ ¥
٨	٨		XvX
Ý	∳ * 9	ΨΨ¥	

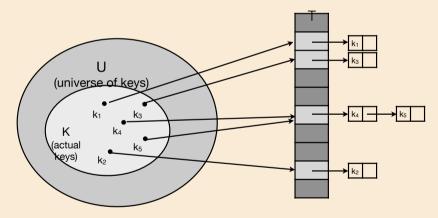
Hashing

Dictionaries

- Dictionary problem. Maintain a dynamic set of $S \subseteq U$ subject to the following operations:
 - Lookup(x): return true if $x \in S$ and false otherwise
 - Insert(x): Set $S = S \cup \{x\}$
 - Delete(x): Set $S = S \setminus \{x\}$
- Universe size. Typically $|U| = 2^{64}$ and |S| << |U|.
- Satellite information. Information associated with each element.
- Goal. A compact data structure with fast operations.
- Applications. Many! A key component in other data structures and algorithms.

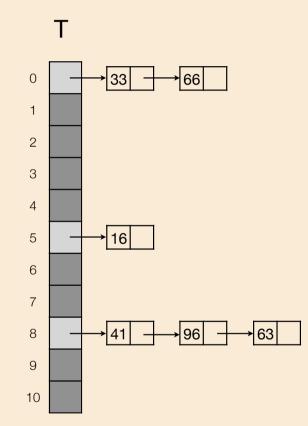
Chained Hashing

- · Chained hashing [Dumey 1956].
 - · n = |S|.
 - Hash function. Pick some crazy, chaotic, random function h that maps U to $\{0, ..., m-1\}$, where $m = \Theta(n)$.
 - Initialise an array A[0, ..., m-1].
 - A[i] stores a linked list containing the keys in S whose hash value is i.



Chained Hashing

- $S = \{16, 33, 41, 63, 66, 96\}$
- $U = \{0, ..., 99\}$
- $h(x) = x \mod 11$.



Uniform random hash functions

- *E.g.* $h(x) = x \mod 11$. Not crazy, chaotic, random.
- Suppose |U| ≥ n²: For any hash function h there will be a set S of n elements that all map to the same position!
 - => we end up with a single linked list.
- Solution: randomization.
 - For every element u ∈ U: select h(u) uniformly at random in {0, ..., m-1} independently from all other choices.
- Claim. The probability that h(u) = h(v) for two elements $u \neq v$ is 1/m.
- Proof.
 - m² possible choices for the pair of values (h(u),h(v)). All equally likely.
 - Exactly m of these gives a collision.

• Expected length of the linked list for h(x)?

Indikator random variable:

• Random variable L_x = length of linked list for x.

$$L_{x} = |\{y \in S \mid h(y) = h(x)\}|$$

 $I_{y} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases} \qquad L_{x} = \sum_{y \in S} I_{y}$

$$L_x = \sum_{y \in S} I_y \qquad E[I_y] = \Pr[h(y) = h(x)] = \frac{1}{m} \text{ for } x \neq y.$$

• The expected length of the linked list for x:

$$E[L_x] = E\left[\sum_{y \in S} I_y\right] = \sum_{y \in S} E[I_y] = 1 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} = 1 + (n-1) \cdot \frac{1}{m} = \Theta(1).$$

- Constant time and O(n) space for the hash table.
- But:
 - Need O(|U|) space for the hash function.
 - Need a lot of random bits to generate the hash function.
 - Need a lot of time to generate the hash function.
- \cdot Do we need a truly random hash function?
- \cdot When did we use the fact that h was random in our analysis?

• Expected length of the linked list for h(x)?

Indikator random variable:

• Random variable L_x = length of linked list for x.

$$L_{x} = |\{y \in S \mid h(y) = h(x)\}|$$

- $I_{y} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}$
- $L_x = \sum_{y \in S} I_y$ $E[I_y] = \Pr[h(y) = h(x)] = \frac{1}{m} \text{ for } x \neq y.$
- The expected length of the linked list for x:

$$E[L_x] = E\left[\sum_{y \in S} I_y\right] = \sum_{y \in S} E[I_y] = 1 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} = 1 + (n-1) \cdot \frac{1}{m} = \Theta(1).$$

Universal hash functions

- Universal hashing [Carter and Wegman 1979].
 - Let *H* be a family of functions mapping *U* to the set $\{0, ..., m-1\}$.
 - *H* is universal if for any $x, y \in U$, where $x \neq y$, and *h* chosen uniformly at random in *H*,

 $\Pr[h(x) = h(y)] \le 1/m.$

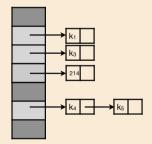
• Require that any $h \in H$ can be represented compactly and that we can compute the value h(u) efficiently for any $u \in U$.

- Positional number systems. For integers x and b, the base-b representation of x is x written in base b.
- Example.
 - $(10)_{10} = (1010)_2$ $(1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0)$
 - $(107)_{10} = (212)_7$ $(2 \cdot 7^2 + 1 \cdot 7^1 + 2 \cdot 7^0)$

• Hash function. Given a prime p and $a = (a_1 a_2 \dots a_r)_p$, define

$$h_a((x_1x_2...x_r)_p) = a_1x_1 + a_2x_2 + ... + a_rx_r \mod p$$

- Example.
 - p = 7
 - $a = (107)_{10} = (212)_7$
 - $x = (214)_{10} = (424)_7$
 - $h_a(x) = 2 \cdot 4 + 1 \cdot 2 + 2 \cdot 4 \mod 7 = 18 \mod 7 = 4$
- · Universal family.
 - $\cdot \ H = \{h_a \, | \, (a_1 a_2 \dots a_r)_p \in \{0, \dots, p-1\}^r \}$
 - Choose random hash function from H ~ choose random a.
 - H is universal (analysis next).
 - O(1) time evaluation.
 - O(1) space.
 - Fast construction.



Uniform Hashing

• Lemma 1. For any prime *p*, any integer $z \neq 0 \mod p$, and any two integers α, β :

 $\alpha z = \beta z \mod p \implies \alpha = \beta \mod p.$

- Proof.
 - Show $(\alpha \beta)$ is divisible by *p*:
 - $\cdot \alpha z = \beta z \mod p \implies (\alpha \beta)z = 0 \mod p.$
 - By assumption z not divisible by p.
 - Since p is prime $\alpha \beta$ must be divisible by p.
 - Thus $\alpha = \beta \mod p$ as claimed.

• Goal. For random $a = (a_1 a_2 \dots a_r)_p$, show that if $x \neq y$ then $\Pr[h_a(x) = h_a(y)] \leq 1/p$.

• Recall:
$$x = (x_1x_2...x_r)_p$$
 and $y = (y_1y_2...y_r)_p$:
 $x \neq y \Leftrightarrow (x_1x_2...x_r)_p \neq (y_1y_2...y_r)_p \Rightarrow x_j \neq y_j$ for some j .

• Lemma 2. Let j be such that $x_j \neq y_j$. Assume the coordinates a_i have been chosen for all $i \neq j$. The probability of choosing a_i such that $h_a(x) = h_a(y)$ is 1/p.

$$h_a(x) = h_a(y) \quad \Leftrightarrow \quad \sum_{i=1}^r a_i x_i \mod p = \sum_{i=1}^r a_i y_i \mod p \quad \Leftrightarrow \quad a_j(x_j - y_j) = \sum_{i \neq j} a_i (x_i - y_i) \mod p$$

$$\text{ There is exactly one value } 0 \le a_j$$

- Assume there was two such values a_j and a'_j .
 - Then $a_i z = a'_i z \mod p$.
 - Lemma 1 $\Rightarrow a_j = a'_j \mod p$. Since $a_j < p$ and $a'_j < p$ we have $a_j = a'_j$.
- Probability of choosing a_i such that $h_a(x) = h_a(y)$ is 1/p.

= C

- Lemma 2. Let *j* be such that $x_j \neq y_j$. Assume the coordinates a_i have been chosen for all $i \neq j$. The probability of choosing a_j such that $h_a(x) = h_a(y)$ is 1/p.
- Theorem. For random $a = (a_1 a_2 \dots a_r)_p$, if $x \neq y$ then $\Pr[h_a(x) = h_a(y)] = 1/p \, .$
- Proof.
 - *E* : the event that $h_a(x) = h_a(y)$.
 - F_b : the event that the values a_i for $i \neq j$ gets the sequence of values b.
 - Lemma 2 shows that $\Pr[E | F_b] = 1/p$ for all *b*.
 - ・Thus

$$\Pr[E] = \sum_{b} \Pr[E \mid F_{b}] \cdot \Pr[F_{b}] = \sum_{b} \frac{1}{p} \cdot \Pr[F_{b}] = -\frac{1}{p} \sum_{b} \cdot \Pr[F_{b}] = \frac{1}{p}$$

• Expected length of the linked list for h(x)?

Indikator random variable:

• Random variable L_x = length of linked list for x.

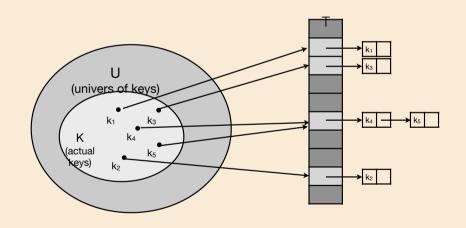
$$L_{x} = |\{y \in S \mid h(y) = h(x)\}|$$

- $I_{y} = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases} \qquad L_{x} = \sum_{y \in S} I_{y} \qquad E[I_{y}] = \Pr[h(y) = h(x)] = \frac{1}{m} \text{ for } x \neq y.$
- The expected length of the linked list for x:

$$E[L_x] = E\left[\sum_{y \in S} I_y\right] = \sum_{y \in S} E[I_y] = 1 + \sum_{y \in S \setminus \{x\}} \frac{1}{m} = 1 + (n-1) \cdot \frac{1}{m} = \Theta(1).$$

Dictionaries

- Theorem. We can solve the dictionary problem (without special assumptions) in:
 - O(n) space.
 - · O(1) expected time per operation (lookup, insert, delete).



- Other universal families.
 - For prime p > 0.

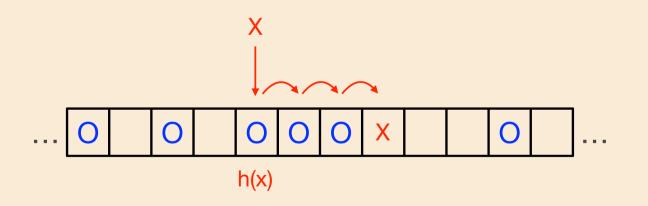
$$\label{eq:hab} \begin{split} h_{a,b}(x) &= ax + b \mod p \\ H &= \{h_{a,b} \mid a \in \{1, \dots, p-1\}, \, b \in \{0, \dots, p-1\}\}\,. \end{split}$$

• Hash function from k-bit numbers to l-bit numbers.

$$h_a(x) = (ax \mod 2^k) \gg (k - l)$$
$$H = \{h_a \mid a \text{ is an odd integer in } \{1, \dots, 2^k - 1\}\}$$

Open Addressing

- \cdot Use a single array for data structure
- linear probing:
 - Insert(x): if h(x) not empty insert at next free slot.
 - Search(x): start from h(x). Search for x until you find it or you find a free slot.



Open Addressing

- Use a single array for data structure
- linear probing:
 - Insert(x): if h(x) not empty insert at next free slot.
 - Search(x): start from h(x). Search for x until you find it or you find a free slot.

 \bigcirc

 \cap

• Delete(x): Find x and mark it deleted.

. . . .

- Insertions treat tombstones as free. Queries do not.
- Rebuild occasionally (approximately every n operations).
- Keep elements sorted by hash => faster queries.

 \bigcirc

tombstone

 \square