Randomized Algorithms ||

Inge Li Gortz

Randomized algorithms

- Last weeks
-+ Contention resolution
+ Global minimum cut
-+ Expectation of random variables
- Guessing cards
+ Quicksort
- Selection

«» >
<>
>
<>
re%
ss%e

+ Today

- Hash functions and hash tables

Hashing

Dictionaries

Dictionary problem. Maintain a dynamic set of S ¢ U subject to the following operations:
-+ Lookup(x): return true if x € S and false otherwise

- Insert(x): Set S =S u {x}

- Delete(x): Set S = S\ {x}

- Universe size. Typically |U| = 2264 and [S]| << |U|.

Satellite information. Information associated with each element.

- Goal. A compact data structure with fast operations.

Applications. Many! A key component in other data structures and algorithms

Chained Hashing

+ Chained hashing [Dumey 1956].
- n=|[S|.

+ Hash function. Pick some crazy, chaotic, random function h that maps U to {0, ..., m-1}, where
m = O(n).

- Initialise an array A[O, ..., m-1].
- AJi] stores a linked list containing the keys in S whose hash value is i.

Chained Hashing

T
o [l 3l]
,

- S={16, 33, 41, 63, 66, 96} 2 [

- U={0,...,99} 8 :
q

* h(x) =x mod 11. N =

®
|

ERnERreE o

Uniform random hash functions

+ E.g. h(x) = x mod 11. Not crazy, chaotic, random.
- Suppose |U| = n2: For any hash function h there will be a set S of n elements that all map to the
same position!
=> we end up with a single linked list.

+ Solution: randomization.
- For every element u € U: select h(u) uniformly at random in {0, ..., m-1} independently from
all other choices.

+ Claim. The probability that h(u) = h(v) for two elements u # v is 1/m.

+ Proof.
- m?2 possible choices for the pair of values (h(u),h(v)). All equally likely.
- Exactly m of these gives a collision.

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?
- Random variable L, = length of linked list for x. L.=|{yeS|hQ) =hx}|
- Indikator random variable:

L=)L

yes

e {1 it h(x) = h(y) E[L] = Pr[h(y) = h(x)] =

Y 0 otherwise

- The expected length of the linked list for x:

1 1
= YEL] =1+ Y — = 1l+@=1)-—=06().

YES yeS\{x}

A= £ [z }

yeS

1
— for x #y.
m

Chained Hashing with Random Hash Function

-+ Constant time and O(n) space for the hash table.

* But:
- Need O(|U|) space for the hash function.
+ Need a lot of random bits to generate the hash function.
- Need a lot of time to generate the hash function.

- Do we need a truly random hash function?

- When did we use the fact that h was random in our analysis?

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?

- Random variable L, = length of linked list for x. L. =|{yeS|hQ) =hx)}|

- Indikator random variable:

_J1 ifh()=h©) L =% _ _ _ 1
Iy {0 otherwise * ; 4 E[Iy] =[Prih0) = h)] = m for x#5.

+ The expected length of the linked list for x:

E[L] = 5[21‘} = YEL =1+ Y % = 1+(n—1)~%=@)(1).

yes yes yes\{x}

Universal hash functions

+ Universal hashing [Carter and Wegman 1979].
- Let H be a family of functions mapping U to the set {0,...,m — 1}.
- His universal if for any x, y € U, where x # y, and h chosen uniformly at random in H,

Pr[h(x) = h(y)] < 1/m.

- Require that any & € H can be represented compactly and that we can compute the value h(u)

efficiently forany u € U.

Universal Hashing
- Positional number systems. For integers x and b, the base-b representation of x is x written in base
b.

- Example.
+ (10)10=(1010)2 (1:23+0-22+1:21+0-20)

- (10790 = (@127 (2:72+1-71 +2:79)

Universal Hashing

- Hash function. Given a prime p and a = (a1az...ar)p , define
h((x%;...X,),) = a1 + ax, + ... + a,x, mod p

- Example.
o p=7
ca=(107)0 = (212)7
* X =(214)10 = (424)7
chax)=2-4+1-2+2-4mod7 = 18mod7 = 4

+ Universal family.
- H={n(aa,...a), € {0,....p — 1}"}
+ Choose random hash function from H ~ choose random a.
+ His universal (analysis next).
+ O(1) time evaluation.
+ O(1) space.
+ Fast construction.

Uniform Hashing

- Lemma 1. For any prime p, any integer z # 0 mod p, and any two integers a, 3:
az=pz modp = a=p modp.

+ Proof.
- Show (a — p) is divisible by p:
caz=pfz modp = (a—f)z=0 mod p.
- By assumption z not divisible by p.
- Since p is prime a@ — # must be divisible by p.
- Thusa = f mod p as claimed.

Universal Hashing

. Goal. For random a = (alaZ...ar)p, show that if x # y then Pr[h,(x) = h,(y)] < 1/p.
. Recall: x = (xlxz...xr)p and y = (ylyz...yr)p:

x#y & (0%...x), F (1Y), = X; # y; for some j.

- Lemma 2. Let j be such that x; # y;. Assume the coordinates g; have been chosen for all i # j. The probability of
choosing a; such that h,(x) = h,(y) is 1/p.

r r
Ch=h() & Yax modp =Y ay mdp & aly—y|= a0;—y)|modp
i=1 i=1 i#

+ There is exactly one value 0 < a; < p that satisfies ajz = ¢ mod p. fixed value z # 0 fixed value since

- Assume there was two such values @; and aj’. el b fories)
=@
- Then g;z =ajz mod p.
- Lemma 1= g; =a; mod p.Since q; < p and a/ < p we have g; = a].

- Probability of choosing a; such that h,(x) = h,(y)is 1/p.

Universal Hashing

- Lemma 2. Let j be such that X; #* ;- Assume the coordinates aihave been chosen foralli #j. The

probability of choosing a; such that /1,(x) = h,(y) is 1/p.

- Theorem. For random a = (4,4,...4,),,, if x # y then

Prh,(x) = h,(»)] = 1/p.

+ Proof.

- E: the event that /,(x) = h,(y).

- F} : the event that the values g, for i # j gets the sequence of values b.
- Lemma 2 shows that Pr[E|F},] = 1/p for all b.
- Thus

1 1 1
Pr[E] =) PHE | F)] - Pr[F,] =) . Pr[F,]= = > Y -PrlFyl= >
b b b

Chained Hashing with Random Hash Function

- Expected length of the linked list for h(x)?
- Random variable L, = length of linked list for x. L=|{yeS|h}y) =hx)}|

+ Indikator random variable:

Dictionaries

1 i = 1
L= { it h(x) = h(y) L=Y1, EIL) = PrlA(y) = h(x)] = — for x # .

0 otherwise

- The expected length of the linked list for x:

yes yes yes\{x}

E[L] = E[Zg} = YEL] =1+) % = 1+(n—1)%=@(1).

-+ Theorem. We can solve the dictionary problem (without special assumptions) in:
- O(n) space.
- O(1) expected time per operation (lookup, insert, delete).

Universal Hashing

+ Other universal families.
+ For prime p > 0.

h,,(x) = ax+b mod p
H={h,,|lae(l,.,p—1},b€{0,.,p—1}}.

+ Hash function from k-bit numbers to [-bit numbers.
h,(x) = (ax mod 2%) > (k- 1)
H = {h, | ais an odd integer in {1,...25=1}}

Open Addressing

- Use a single array for data structure
- linear probing:
- Insert(x): if h(x) not empty insert at next free slot.
- Search(x): start from h(x). Search for x until you find it or you find a free slot.

X
l/‘\/’\/’\

-[e[Tol Tololol<[T To[.-
h(x)

Open Addressing

+ Use a single array for data structure

+ linear probing:
+ Insert(x): if h(x) not empty insert at next free slot.
+ Search(x): start from h(x). Search for x until you find it or you find a free slot.
- Delete(x): Find x and mark it deleted.

- Insertions treat tombstones as free. Queries do not.
- Rebuild occasionally (approximately every n operations).
-+ Keep elements sorted by hash => faster queries. tombstone

-[e[ToT Tolo[o[&[e] To[.-

