
02247 Compiler Construction
Spring 2023

Alceste Scalas
<alcsc@dtu.dk>

May 08, 2023

This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License

mailto:alcsc@dtu.dk
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/




Contents

0 Module 0: Overview of the Course and Assessment 3
0.1 What is a Compiler? . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
0.2 Course Objectives and Rationale . . . . . . . . . . . . . . . . . . . . 5
0.3 A Taste of Hygge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.4 Tools and Programming Languages Used During the Course . . . . . 8
0.5 Assessment: Group Project and Oral Group Examination . . . . . . . 9
0.6 Group Work Organisation: Some Suggestions . . . . . . . . . . . . . 11

1 Module 1: Introduction to RISC-V 13
1.1 What is RISC-V? And Why Is It Relevant? . . . . . . . . . . . . . . . 13
1.2 Base and Floating-Point Registers . . . . . . . . . . . . . . . . . . . . 14
1.3 A Few RISC-V Assembly Instructions . . . . . . . . . . . . . . . . . . 15
1.4 RISC-V Assembly Program Structure . . . . . . . . . . . . . . . . . . 19
1.5 RARS — RISC-V Assembler and Runtime Simulator . . . . . . . . . . 22
1.6 References and Further Readings . . . . . . . . . . . . . . . . . . . . 24
1.7 Lab Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Module 2: The Hygge0 Language Specification 29
2.1 Formal Syntax of Hygge0 . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Formal Semantics of Hygge0 . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Type-Checking Hygge0 Programs . . . . . . . . . . . . . . . . . . . . 43
2.4 References and Further Readings . . . . . . . . . . . . . . . . . . . . 52
2.5 Lab Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Module 3: Hands-On with hyggec 55
3.1 Quick Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 The Compiler Phases of hyggec . . . . . . . . . . . . . . . . . . . . . 55
3.3 Overview of the hyggec Source Tree . . . . . . . . . . . . . . . . . . 57
3.4 The Abstract Syntax Tree . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 The Lexer and Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.6 The Built-In Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.7 Types and Type Checking . . . . . . . . . . . . . . . . . . . . . . . . 74
3.8 Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

i



3.9 The Test Suite of hyggec . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.10 Example: Extending Hygge0 and hyggec with a Subtraction Operator 86
3.11 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Module 4: Lab Day 99

5 Module 5: Mutability and Loops 101
5.1 Overall Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Mutable Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 “While” Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.4 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Module 6: Functions and the RISC-V Calling Convention 129
6.1 Overall Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.4 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.5 The RISC-V Memory Layout, Stack, and Calling Convention . . . . . 138
6.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.7 Limitations of the Current Specification and Code Generation . . . . 168
6.8 References and Further Readings . . . . . . . . . . . . . . . . . . . . 168
6.9 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Module 7: Structured Data Types and the Heap 177
7.1 Overall Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
7.2 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.3 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.4 Typing Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
7.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.6 References and Further Readings . . . . . . . . . . . . . . . . . . . . 194
7.7 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

8 Module 8: Lab Day 201

9 Module 9: Closures 203
9.1 Overall Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
9.2 What is a Closure? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
9.3 Closures that Capture Immutable Variables . . . . . . . . . . . . . . 209
9.4 Closures that Capture Mutable Variables . . . . . . . . . . . . . . . . 213
9.5 Closures that Capture Top-Level Variables . . . . . . . . . . . . . . . 216
9.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
9.7 References and Further Readings . . . . . . . . . . . . . . . . . . . . 219
9.8 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

10 Module 10: Discriminated Unions and Recursive Types 227
10.1 Discriminated Union Types and Pattern Matching . . . . . . . . . . . 227
10.2 Recursive Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
10.3 References and Further Readings . . . . . . . . . . . . . . . . . . . . 244
10.4 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

ii



11 Module 11: Intermediate Representations and Register Allocation 249
11.1 Overall Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
11.2 What is an Intermediate Representation (IR)? . . . . . . . . . . . . . 250
11.3 Administrative Normal Form (ANF) . . . . . . . . . . . . . . . . . . . 251
11.4 Transformation of a Hygge Expression into ANF . . . . . . . . . . . 254
11.5 ANF-Based Linear Register Allocation . . . . . . . . . . . . . . . . . 261
11.6 Implementation: ANF Transformation and Register Allocation in

hyggec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
11.7 References and Further Readings . . . . . . . . . . . . . . . . . . . . 275
11.8 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

12 Module 12: Optimisation 279
12.1 Overall Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
12.2 Partial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
12.3 Copy Propagation and Common Subexpression Elimination (CSE) . 288
12.4 Peephole Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . 292
12.5 References and Further Readings . . . . . . . . . . . . . . . . . . . . 295
12.6 Project Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

A ChangeLog 299

iii



iv



02247 Compiler Construction, Spring 2023

These are the lecture notes of the course 02247Compiler Construction at DTUCompute.

These lecture notes are also available in HTML format, readable on a browser1.

Important: The home page for this course (with course plan, calendar, groups, project
submission…) is on DTU Learn: https://learn.inside.dtu.dk/d2l/home/145305

These lecture notes will be updated throughout the course. The latest updates are listed
in the ChangeLog.

1 http://courses.compute.dtu.dk/02247/f23

1

http://courses.compute.dtu.dk/02247/f23
https://learn.inside.dtu.dk/d2l/home/145305


02247 Compiler Construction, Spring 2023

2



0
Module 0: Overview of the Course and Assessment

Here is an overview of what you will learn in this course, which tools will be used,
and how you will be assessed. This module discusses, in particular, the Tools and Pro-
gramming Languages Used During the Course and the Assessment: Group Project and Oral
Group Examination.

0.1 What is a Compiler?

A compiler is a translator from code written in a source language, into code written in a
target language. Typically, the source language operates at a higher level of abstraction,
whereas the target language operates at a lower level of abstraction. For example:

• compiling C++ code into C code (a common approach of the early C++ compilers);

• compiling C code into x86 assembly;

• compiling TypeScript into WebAssembly;

• compiling Java code into Java Virtual Machine bytecode;

• compiling F# into .NET Common Language Runtime bytecode;

• …

When the source and target languages have similar levels of abstraction, we typically
use the term transpiler instead of compiler.

A compiler typically performs the source-to-target language translation in a series of
phases: each phase takes as input a representation of the code being compiled, and out-
puts another representation. This way, an overall complex source-to-target translation
is broken down into simpler steps, each one having a distinct purpose.

Fig.1 outlines the basic phases of a compiler, what they receive as input, and what they
produce as output.

Note: The number of phases and nomenclature may vary between compilers; moreover,
a phase can be sometimes split into sub-phases, and two or more phases may be merged

3



02247 Compiler Construction, Spring 2023

into one.

Fig. 1: Basic phases of a compiler.

Let us explore the purpose of the phases in Fig.1 with an example. Consider the following
simple source program:

println(2 + 3) // Should print a number between 4 and 37

The lexing phase (a.k.a. tokenization) classifies groups of characters in the source pro-
gram, by recognising e.g. keywords, parentheses, literal integers, operators. Recog-
nised groups of characters are transformed into tokens, and irrelevant information in
the source program (e.g. white spaces, comments) can be discarded. For example, a
tokenization of the program above may look like:

PRINTLN; LPAR; LIT_INT 2; PLUS; LIT_INT 3; RPAR

The parsing phase reads a stream of tokens and applies a series of grammar rules
to reconstruct the syntactic structure of the source code, creating an Abstract Syn-
tax Tree (AST). An analogy with human languages is: each token represents a valid
word in a given language, and the parser checks whether a sequence of words forms
a grammatically-valid sentence. For example, the sequence of tokens above forms the
following AST, which means: there is a top-level PrintLn expression with an argument
sub-expression, which in turn is an Addition having two sub-expressions: an lhs (left-
hand side) which is an IntValue 2, and a rhs (right-hand side) which is an IntValue
3.

PrintLn
┗╾arg: Add

┣╾lhs: IntVal 2
┗╾rhs: IntVal 3

4 Module 0: Overview of the Course and Assessment



02247 Compiler Construction, Spring 2023

The analysis phase checks whether a given AST is “correct”, and produces an inter-
mediate representation (IR) useful for further compilation. The kind of analysis being
performed, and the details of the IR, may vary between compilers. A common scenario
is: the analysis is based on type checking, and the produced IR may be a typed AST
similar to the input AST, but augmented with type information. For example, the type-
checking of the AST above may produce the following typed AST:

PrintLn; type: unit
┗╾arg: Add; type: int

┣╾lhs: IntVal 2; type: int
┗╾rhs: IntVal 3; type: int

Finally, the code generation phase translates the intermediate representation into a tar-
get program. For example, if the compiler produces assembly code, then the program
generated from the typed AST above may look like:

.text:
li t0, 2
li t1, 3
add t0, t0, t1
addi sp, sp, -8
sw a7, 0(sp)
sw a0, 4(sp)
mv a0, t0
li a7, 1
ecall
lw a7, 0(sp)
lw a0, 4(sp)
addi sp, sp, 8
li a7, 10
ecall

0.2 Course Objectives and Rationale

This is a project-based course: you’ll learn how to design and extend a compiler by
working on a compiler, combining theory and hands-on experience. To this purpose,
we study how to compile a high-level programming language (with features found in
many “mainstream” programming languages) into low-level assembly code for a real-
world CPU architecture: RISC-V.

Themain learning tool for this course is a small high-level programming language called
Hygge (/ˈhygə/), designed for teaching compiler construction.

The Hygge language is designed to be easy to use and to parse, so we can focus on the
more interesting aspects of its compilation process. You can think of Hygge as a micro-
F# with a syntax reminiscent of C (see A Taste of Hygge). We will study how to translate
an Hygge program into an executable RISC-V assembly program.

Due to time constraints, this course does not attempt to build a Hygge compiler com-

0.2. Course Objectives and Rationale 5



02247 Compiler Construction, Spring 2023

pletely from scratch. Instead, we start from a skeleton (and incomplete) compiler called
hyggec. You will work on a group project to improve both the Hygge language and the
hyggec skeleton compiler, by designing and implementing various new features (either
suggested by the teacher, or proposed by you).

The aim of hyggec is to provide an approachable starting point for the course project:
its source code is compact and contains many comments, and it is designed to be easy to
debug and extend. Moreover, hyggec provides some handy facilities to speed up compiler
development: e.g. a pretty-printer, an internal API to create and combine fragments of
target RISC-V code, and an automatic testing framework.

0.3 A Taste of Hygge

At the beginning of the course, we will focus on a minimalistic fragment of the Hygge
programming language (called Hygge0) and explore how to compile it into RISC-V
assembly. Hygge0 is little more than a calculator: it only supports variables, a few
arithmetic operations, if-then-else, and reading/writing data from/to the terminal. An
Hygge0 program looks like the following:

1 let x: int = 1;
2 let y: int = 2;
3

4 if x < y then println("x is smaller than y")
5 else println("x is not smaller than y");
6

7 print("The result of x + y is: ");
8 println(x + y)

You will learn how to improve Hygge0 and its compiler by adding new simple program-
ming language constructs — in particular, new operators.

After this experience, we will explore the more complete Hygge programming language
(which builds upon Hygge0) and you will learn how to design and implement more
advanced features to fix its limitations and expand its capabilities. Towards the end of
the course, we will be able to compile into RISC-V and run some rather complex Hygge
programs, like the following:

1 // Define a list type as a labelled union type: either an empty list ('Nil'),
2 // or a list 'Elem'ent followed by the rest of the list.
3 type List = union {
4 Nil: unit;
5 Elem: struct {
6 value: int;
7 rest: List
8 }
9 };

10

11 // Is the given list empty?
(continues on next page)

6 Module 0: Overview of the Course and Assessment



02247 Compiler Construction, Spring 2023

(continued from previous page)
12 fun isEmpty(l: List): bool = {
13 match l with {
14 Nil{_} -> true;
15 Elem{_} -> false
16 }
17 };
18

19 // Create a list of ints starting with 'start' and ending with 'end' (included).
20 fun range(start: int, end: int): List = {
21 if (start < end or start = end)
22 then Elem{struct{value = start; rest = range(start+1, end)}}
23 else Nil{()}
24 };
25

26 // Compute and return the length of the given list.
27 fun length(l: List): int = {
28 match l with {
29 Nil{_} -> 0;
30 Elem{e} -> 1 + length(e.rest)
31 }
32 };
33

34 // Display the elements of the given list: show the elements between square
35 // brackets, with a semicolon between consecutive elements, and a final newline.
36 fun display(l: List): unit = {
37 // Internal helper function to display each list element
38 fun displayRec(l: List): unit = {
39 match l with {
40 Nil{_} -> ();
41 Elem{e} -> {
42 print(e.value);
43 if not isEmpty(e.rest) then print("; ")
44 else ();
45 displayRec(e.rest)
46 }
47 }
48 };
49 print("[");
50 displayRec(l);
51 println("]")
52 };
53

54 // Map the given function over the given list
55 fun map(f: (int) -> int, l: List): List = {
56 match l with {
57 Nil{_} -> Nil{()};
58 Elem{e} -> Elem{struct{ value = f(e.value);
59 rest = map(f, e.rest) }}
60 }

(continues on next page)

0.3. A Taste of Hygge 7



02247 Compiler Construction, Spring 2023

(continued from previous page)
61 };
62

63 let l: List = range(1, 42);
64 print("The length of the list 'l' is: ");
65 println(length(l));
66

67 print("The elements of the list 'l' are: ");
68 display(l);
69

70 // Create a list 'l2' by adding 1 to each element of 'l'
71 let l2: List = map(fun(x: int) -> x + 1, l);
72 print("The elements of the list 'l2' are: ");
73 display(l2)

0.4 Tools and Programming Languages Used During
the Course

This section summarises what Software Requirements you should install to follow the
course, and provides some pointers about the F# Programming Language.

0.4.1 Software Requirements

To run andmodify theHygge compiler, and to use the tools recommended for this course,
you will need to install on your computer:

• .NET 6.0 - https://dotnet.microsoft.com/en-us/download/dotnet/6.0

• Java (version 17 recommended) - https://www.oracle.com/java/technologies/
downloads/#java17

Also highly recommended:

• Git - https://git-scm.com

0.4.2 F# Programming Language

The hyggec compiler is written in F#, and the lectures will often discuss how something
can be implemented in F#. Therefore, it is highly recommended to have (or acquire) some
experience with F#. Here are some useful resources.

• F# home page: https://dotnet.microsoft.com/en-us/languages/fsharp

• First steps with F#: https://learn.microsoft.com/en-gb/training/paths/
fsharp-first-steps

Some specific F# features will be used very often:

8 Module 0: Overview of the Course and Assessment

https://dotnet.microsoft.com/en-us/download/dotnet/6.0
https://www.oracle.com/java/technologies/downloads/#java17
https://www.oracle.com/java/technologies/downloads/#java17
https://git-scm.com
https://dotnet.microsoft.com/en-us/languages/fsharp
https://learn.microsoft.com/en-gb/training/paths/fsharp-first-steps
https://learn.microsoft.com/en-gb/training/paths/fsharp-first-steps


02247 Compiler Construction, Spring 2023

• Discriminated union types: https://learn.microsoft.com/en-us/dotnet/fsharp/
language-reference/discriminated-unions

• Records: https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/
records

• Pattern matching: https://learn.microsoft.com/en-us/dotnet/fsharp/
language-reference/pattern-matching

• Mapping over lists: https://bradcollins.com/2015/04/17/
f-friday-the-map-function

• Folding over lists: https://riptutorial.com/fsharp/example/7373/intro-to-folds–
with-a-handful-of-examples2

0.5 Assessment: Group Project and Oral Group Exam-
ination

This is a project-based course with work in groups (normally 5 people).

Your goal is to design and implement features that are not initially supported by the
Hygge language and compiler provided with the course materials. For the assessment,
your group will need to submit:

1. the source code of the improved compiler where you implemented such features
— including the test cases, and

2. a Project Report describing how you designed and implemented each feature.

The course ends with an Oral Group Examination.

You can choose between two possible project routes: the Standard Project Route or
the Custom Project Route.

0.5.1 Standard Project Route

You select some of the “Project Ideas” presented throughout the course, and realise them
by extending the Hygge language and hyggec compiler provided as part of the course.

You don’t need to implement all the Project Ideas presented during the course: whenever
a module presents a list of “Project Ideas” it will also specify how many of them you
should select for your project — and if you want to do more than that, you are welcome!
You can select the Project Ideas you like, without need to request the teacher’s approval.

2 https://riptutorial.com/fsharp/example/7373/intro-to-folds--with-a-handful-of-examples

0.5. Assessment: Group Project and Oral Group Examination 9

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/records
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/records
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching
https://bradcollins.com/2015/04/17/f-friday-the-map-function
https://bradcollins.com/2015/04/17/f-friday-the-map-function
https://riptutorial.com/fsharp/example/7373/intro-to-folds--with-a-handful-of-examples
https://riptutorial.com/fsharp/example/7373/intro-to-folds--with-a-handful-of-examples


02247 Compiler Construction, Spring 2023

0.5.2 Custom Project Route

Besides the standard Project Ideas discussed above, your group can propose variations,
and new and alternative project ideas. Your proposals are welcome! You’ll need to talk
about your proposal with the teacher and find an agreement before proceeding.

As an extreme, your group may even propose a radically different project — e.g. writing
a new compiler from scratch, or start from another language and/or compiler, instead
of the ones provided for the course. Note, however, that this project path is more risky:
it may require a much higher implementation effort, and it may clash with the course
timeline; moreover, the teacher and TAsmay not be able to help you in case of difficulties.
If you really want to pursue this possibility, talk about it with the teacher and find an
agreement before proceeding.

0.5.3 Project Report

To write the project report, you should use the LaTeX template available on DTU Learn,
which contains some examples and guidelines. The individual contributions of each
group member must be explained in the report, because the course grades are individ-
ual.

A few recommendations:

• when you show formal rules (for the syntax, semantics, type checking…) then you
may not need a long explanation (the rules may be enough);

• when showing code snippets, try to reduce them to the bare minimum that helps
you explain what you did. Instead of including long code snippets, you can refer
to the relevant files and functions in your project source code.

0.5.4 Oral Group Examination

The course ends with an oral group examination, with the following structure.

1. The oral exam will open with a 5-minutes group presentation of your project:
you should provide a brief overview of your work, and highlight the main fea-
tures, challenges, and anything you deem noteworthy. When preparing the pre-
sentation, consider that the teacher and external examiner will have already read
your project report: besides the overview and highlights, you can refer to it for
the technical details.

2. Then, the exam will continue with questions to each group member. The main
objective is to assess your contribution to the project work: e.g. you may be asked
to clarify some aspect of your work, or discuss possible alternative approaches to
what you did. You will not be asked detailed technical questions about parts of the
project that were implemented by other teammembers. You may be asked general
questions about compiler concepts (e.g. what are the main phases of a compiler,
what is subtyping…).

10 Module 0: Overview of the Course and Assessment



02247 Compiler Construction, Spring 2023

0.6 Group Work Organisation: Some Suggestions

To succeed in your project, you will need to organise your group work. When working
on a compiler, there are two common (and somewhat opposite) approaches.

1. Phase-oriented: each groupmember specialises in a compiler phase (parsing, type
checking, …). When a new feature needs to be added to the compiler, the group
members contribute by taking care of the phase where they are specialised.

• Pros: easier organisation, because every group member tends to work on
different files in the compiler source tree.

• Cons: individual group members may not learn much outside the compiler
phase where they are specialised.

2. Feature-oriented: when a new feature needs to be added to the compiler, a subset
of the group (one or a few members) takes charge of it, and implements it across
all compiler phases (from lexing to code generation).

• Pros: every group member tends to work through all the compiler phases,
and learns something about all of them.

• Cons: requires more organisation, because multiple group members (work-
ing on different features) may need to modify at the same time the same files
in the compiler source tree.

As a group, you can adopt the approach you prefer: one of the above, or some hybrid be-
tween the two, or some variation, or something else entirely… It’s your choice — and you
don’t need the teacher’s approval to decide. In any case, the individual contributions
of each group member must be explained in the project report.

Note: If you choose approach 2 (feature-oriented), you may adopt something like the
Git Feature Branch Workflow to make your group coordination smoother:

• https://www.atlassian.com/git/tutorials/comparing-workflows/
feature-branch-workflow

The link above mentions Bitbucket, but you can realise the workflow in the same way
when using the DTU Compute GitLab service3, since it supports merge requests4.

Warning: Be aware that, if you choose approach 1 (phase-oriented), the lexing and
parsing phases have less weight in the course assessment with respect to the other
phases: therefore, as a group member, you may not want to only work on those
phases. The lexing/parsing assessment weight may increase if you propose some
related Project Idea (to be agreed with the teacher, see Custom Project Route).

3 https://lab.compute.dtu.dk
4 https://docs.gitlab.com/ee/user/project/merge_requests

0.6. Group Work Organisation: Some Suggestions 11

https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://lab.compute.dtu.dk
https://docs.gitlab.com/ee/user/project/merge_requests


02247 Compiler Construction, Spring 2023

12 Module 0: Overview of the Course and Assessment



1
Module 1: Introduction to RISC-V

In this module, you will learn the basics of assembly programming in RISC-V. This will
be necessary to understand the code generated by hyggec, and to implement code gen-
eration for new Hygge programming language constructs.

1.1 What is RISC-V? And Why Is It Relevant?

RISC-V is a modern Open Source Instruction Set Architecture (ISA) with an explosive
growth in popularity and adoption across all areas — hobbyists, academia, industry.

The first letters of “RISC-V” stand for Reduced Instruction-Set Computer: a CPU design
philosophy where processors have few instructions, but run them very efficiently. As a
comparison: the basic RISC-V ISA consists of 47 different instructions, whereas the x86
ISA consists of many hundreds of instructions.

RISC-V has a modular design: its base ISA has a rather limited set of registers and in-
structions, but various extensions expand the architecture capabilities by adding more
registers and instructions. Consequently, the RISC-V base ISA only supports very simple
integer arithmetic — and there is an extension that adds support for integer division and
multiplication, another extension for floating-point arithmetic, another for vector arith-
metic… With this design, the RISC-V architecture can scale from very small, low-cost
and low-power microcontrollers, to powerful multicore CPUs with built-in hardware
acceleration for numerical processing.

In this course we will use a combination of RISC-V extensions denoted RV32IMF:

• RV32I is the base instruction set with 32-bit registers and operations;

• M is the extension that adds integer division and multiplication operations;

• F is the extension that adds single-precision, 32-bit floating-point registers and
operations.

13



02247 Compiler Construction, Spring 2023

1.2 Base and Floating-Point Registers

Table 1.1 and Table 1.2 list, respectively, the 32 integer registers available in the base
32-bit RISC-V ISA, and the additional 32 registers introduced by the single-precision
floating-point extension. Each register has a size of 32 bits.

Table 1.1: 32-bit RISC-V base integer registers.
Base register
name

Symbolic
name

Description Saved
by

x0 zero Hard-wired zero —
x1 ra Return address Caller
x2 sp Stack pointer Callee
x3 gp Global pointer —
x4 tp Thread pointer —
x5 t0 Temporary / alternate link register Caller
x6 – x7 t1 – t2 Temporaries Caller
x8 s0 / fp Saved register / frame pointer Callee
x9 s1 Saved register Callee
x10 – x11 a0 – a1 Function arguments / return val-

ues
Caller

x12 – x17 a2 – a7 Function arguments Caller
x18 – x27 s2 – s11 Saved registers Callee
x28 – x31 t3 – t6 Temporaries Caller

Table 1.2: RISC-V single-precision floating-point registers.
Floating-point register
name

Symbolic
name

Description Saved
by

f0 – f7 ft0 – ft7 Floating-point temporaries Caller
f8 – f9 fs0 – f1 Floating-point saved registers Callee
f10 – f11 fa0 – fa1 Floating-point arguments/return

values
Caller

f12 – f17 fa2 – fa7 Floating-point arguments Caller
f18 – f27 fs2 – fs11 Floating-point saved registers Callee
f28 – f31 ft8 – ft11 Floating-point temporaries Caller

The register names are x0…x31 (for integer registers) and f0…f31 (for floating-point
registers). Their use is unrestricted: a program can write and read registers for any
purpose — with one exception: register x0 is immutable and always contains the value
0.

Each register also has a symbolic name that reflects its conventional use. For example:

• register x0 is also called zero;

• register x6 is also called t1, because it can be used to hold a temporary value that
may be later discarded;

14 Module 1: Introduction to RISC-V



02247 Compiler Construction, Spring 2023

• register x10 is also called a0, because it should be used to pass an argument when
calling a function; it should also be used to hold the function’s return value.

The conventional use of RISC-V registers is usually observed by compiler developers,
to ensure that the RISC-V code generated by one compiler can interoperate with code
generated by other compilers.

There is also another important register: the program counter pc, which always contains
the memory address of the instruction being executed by the CPU. Unlike the registers
listed above, the content of pc cannot be read or written directly: it is only retrieved or
updated by instructions that control the program execution — such as jumps (see A Few
RISC-V Assembly Instructions below).

Note: For now, we ignore the “Saved by” column in Table 1.1 and Table 1.2. We will
reprise it later in the course.

1.3 A Few RISC-V Assembly Instructions

We will not address all RISC-V assembly instructions in detail. Instead, we practice
with a few of them (listed in the following subsections) to write some RISC-V assembly
programs. This experience will be helpful to explore the rest of the RISC-V ISA and learn
how other instructions work.

A few remarks:

• a word in RISC-V is 32 bits (4 bytes) in size;

• all memory accesses must be 32-bit aligned (i.e. any memory address used to
read/write data or execute code must be a multiple of 32);

• a label represents a memory address in RISC-V assembly (this will be clearer when
we will discuss the RISC-V Assembly Program Structure).

Attention: Some of the assembly instructions below are marked as pseudo instruc-
tions: this means that they are not implemented in hardware. Instead, they are made
available (as a convenience) by most assemblers — which are programs that trans-
form RISC-V assembly code into actual RISC-V binary machine code. Therefore, a
RISC-V pseudo instruction may be translated by the assembler into multiple RISC-V
machine instructions.

The distinction between RISC-V machine instructions and pseudo instructions will
not be very relevant for this course — but you may notice that:

• when reading RISC-V documentation, some pseudo instructions may be dif-
ferent or absent; and

• when running or debugging RISC-V assembly code using RARS — RISC-V As-
sembler and Runtime Simulator (or other similar tools), the pseudo instructions

1.3. A Few RISC-V Assembly Instructions 15



02247 Compiler Construction, Spring 2023

are expanded into the corresponding machine instructions.

1.3.1 Load and Store Instructions

These instructions load data from memory into a register, copy data between registers,
or store data from a register into memory.

Syntax Name Description
li rd, val Load immediate Load into register rd the 32-

bit value val. (Pseudo in-
struction)

lw rd, label Load word Load into register rd the word
stored at memory address
label. (Pseudo instruction)

la rd, label Load absolute Load into register rd the
memory address label.
(Pseudo instruction)

mv rd, rs Move Move (i.e. copy) the content
of register rs into register rd.

sw rs2, offset(rs1) Store word Store the 32-bit value con-
tained in the register rs2 into
memory. The destination
memory address is computed
adding the value offset to
the content of register rs1.

1.3.2 Integer Arithmetic Instructions

These instructions operate on base integer registers.

Syntax Name Description
add rd, rs1, rs2 Addition Add the contents of registers

rs1 and rs2 and store the re-
sult in register rd.

sub rd, rs1, rs2 Subtraction Subtract the contents of regis-
ter rs2 from rs1 and store the
result in register rd.

mul rd, rs1, rs2 Multiplication Multiply the contents of reg-
isters rs2 and rs1 and store
the result in register rd.

div rd, rs1, rs2 Division Divide the content of register
rs1 by rs2 and store the result
in register rd.

16 Module 1: Introduction to RISC-V



02247 Compiler Construction, Spring 2023

1.3.3 Control Transfer Instructions

These instructions perform jumps, with or without conditions.

Syntax Name Description
j label Jump Jump to memory address

label and execute the
code stored there. (Pseudo
instruction)

beq rs1, rs2, label Branch if equal Compare the contents of reg-
isters rs1 and rs2, and jump
to label if they are equal.

bne rs1, rs2, label Branch if not equal Compare the contents of reg-
isters rs1 and rs2, and jump
to label if they are not equal.

blt rs1, rs2, label Branch if less than Compare the contents of reg-
isters rs1 and rs2, and jump
to label if the content of rs1
is smaller than the content of
rs2.

1.3.4 Single-Precision Floating-Point Instructions

These instructions include numerical operations between floating-point registers. There
are also instructions to transfer data between registers (fmv.w.x, fmv.s), and to compare
the contents of floating-point registers (feq.s, flt.s, fle.s).

Syntax Name Description
fmv.w.x rd, rs Integer to floating-

point register move
Move (copy) the content of in-
teger register rs into floating-
point register rd. The con-
tent of rs is expected to
be a single-precision floating-
point value in IEEE 754-20085
encoding.

fmv.s rd, rs Floating-point
to floating-point
register move

Move (copy) the content of
floating-point register rs into
floating-point register rd.

fadd.s rd, rs1, rs2 Floating-point addi-
tion

Add the contents of floating-
point registers rs1 and
rs2 and write the result in
floating-point register rd.

continues on next page

1.3. A Few RISC-V Assembly Instructions 17

https://doi.org/10.1109/IEEESTD.2008.4610935


02247 Compiler Construction, Spring 2023

Table 1.6 – continued from previous page
Syntax Name Description
fsub.s rd, rs1, rs2 Floating-point sub-

traction
Subtract the contents of
floating-point register rs2
from floating-point register
rs1 and write the result in
floating-point register rd.

fmul.s rd, rs1, rs2 Floating-point mul-
tiplication

Multiply the contents of
floating-point registers rs2
and rs1 and write the result
in floating-point register rd.

fdiv.s rd, rs1, rs2 Floating-point divi-
sion

Divide the content of floating-
point register rs1 by floating-
point register rs2 and write
the result in floating-point
register rd.

feq.s rd, rs1, rs2 Floating-point
equality comparison

Check whether the contents
of floating-point registers rs1
and rs2 are equal, and write
the result of the check into the
integer register rd: write 1 if
the check is true, and 0 other-
wise.

flt.s rd, rs1, rs2 Floating-point less-
than comparison

Check whether the content
of floating-point register rs1
is less than the content of
floating-point register rs2,
and write the result of the
check into the integer register
rd: write 1 if the check is
true, and 0 otherwise.

fle.s rd, rs1, rs2 Floating-point
less-or-equal com-
parison

Check whether the content of
floating-point register rs1 is
less than or equal to the con-
tent of floating-point register
rs2, andwrite the result of the
check into the integer register
rd: write 1 if the check is true,
and 0 otherwise.

5 https://doi.org/10.1109/IEEESTD.2008.4610935

18 Module 1: Introduction to RISC-V



02247 Compiler Construction, Spring 2023

1.3.5 System Instructions

These instructions allow a RISC-V assembly program to interact with the surrounding
operating system.

Syntax Name Description
ebreak Environment break Stop the execution. This in-

struction acts as a breakpoint,
and is used e.g. to let debug-
gers take control of a running
program.

ecall Environment call Perform a system call. This
will become clearer in when
wewill discuss the RISC-V As-
sembly Program Structure and
RARS—RISC-V Assembler and
Runtime Simulator .

1.4 RISC-V Assembly Program Structure

Example 1 shows simple RISC-V assembly program.

Example 1 (A simple RISC-V assembly program)

1 # A simple program that adds two integers (one stored in memory, the other
2 # immediate), stores the result in memory, and exits.
3

4 .data # The next items are stored in the Data memory segment
5 value: # Label for the memory address of the value below
6 .word 3 # Allocate a word (size: 4 bytes) and initialise it to value 3
7 result: # Label for the memory address of the value below
8 .word 0 # Allocate a word (size: 4 bytes) and initialise it to value 0
9

10 .text # The next items are stored in the Text memory segment
11 lw t0, value # Load word at the memory addres 'value' in register t0
12 li t1, 42 # Load the immediate value 42 in register t1
13 add t2, t0, t1 # Add contents of t0 and t1, store result in t2
14 la t3, result # Load the memory address of label 'result' in t3
15 sw t2, 0(t3) # Store word in t2 in memory address in t3 (offset 0)
16

17 li a7, 10 # Load the immediate value 10 in register a7
18 ecall # Perform syscall. In RARS, if a7 is 10, this means: "Exit"

When a program runs on a RISC-V architecture, its memory is divided into segments.
The two principal segments are:

1.4. RISC-V Assembly Program Structure 19



02247 Compiler Construction, Spring 2023

• Text segment, which contains the program’s machine code executed by the CPU
(therefore, the pc register should always contain a memory address within this
segment);

• Data segment, which contains data used by the program.

The RISC-V assembly program in Example 1 uses the .data and .text directives (respec-
tively on lines 4 and 10) to place contents in the corresponding segments: such contents
can be either values (lines 5–8) or machine code generated from assembly instructions
(lines 11–18).

Moreover, the RISC-V assembly program in Example 1 uses labels to represent memory
addresses. For example, line 5 says that the label called value is an alias for the memory
address of the content defined on line 6. Then, the program uses the label value to access
that content and load it into a register (line 11). When the assembly program is given to
an assembler to generate the corresponding RISC-Vmachine code, each label is replaced
by an actual, 32-bit-aligned memory address.

The last two lines of the RISC-V assembly program in Example 1 perform a system call
that exits from the running program: we will see the precise meaning shortly, when
discussing RARS — RISC-V Assembler and Runtime Simulator .

Example 2 shows another RISC-V assembly program, featuring a loop (based on condi-
tional jumps) and the use of floating-point values and operations.

Example 2 (A RISC-V assembly program with floats and a loop)

1 # A program that increments a single-precision floating-point value
2 # (starting from 1.0) by adding 10 times the value 0.1. Before each
3 # increment, the program prints on the console a message reporting the
4 # current value. Then, the program exits.
5

6 .data # The next items are stored in the Data memory segment
7 msg: # Label for the mem addr of the first char of the string below
8 .string "The current value is: " # Allocate a string, in C-style: a
9 # sequence of characters in adjacent

10 # memory addresses, terminated with 0
11

12 .text # The next items are stored in the Text memory segment
13 li t0, 0x3f800000 # Load this immediate value into register t0
14 # The value above is the 32-bit hexadecimal representation of
15 # the single-precision floating-point number 1.0.
16 # To convert values between floating-point and hex, see e.g.:
17 # https://www.h-schmidt.net/FloatConverter/IEEE754.html
18 fmv.w.x ft0, t0 # Move the content of t0 into floating-point reg ft0
19 # Register ft0 contains the value we will increment
20

21 li t0, 0x3dcccccd # Load this immediate value into register t0
22 # The value above is the 32-bit hexadecimal representation of
23 # the single-precision floating-point number 0.1
24 fmv.w.x ft1, t0 # Move the content of t0 into floating-point reg ft1

(continues on next page)

20 Module 1: Introduction to RISC-V



02247 Compiler Construction, Spring 2023

(continued from previous page)
25 # Register ft1 contains the increment we will add to ft0
26

27 li t0, 0 # Load value 0 into register t0 (used as counter)
28 li t1, 1 # Load value 1 into register t1 (used as counter increment)
29 li t2, 10 # Load value 10 into register t2 (number of increments)
30

31 loop_begin: # Label for memory location of the beginning of the loop
32 la a0, msg # Load address of label 'msg' into a0, for printing below
33 li a7, 4 # Load immediate value 4 into register a7
34 ecall # Syscall. In RARS, if a7=4, this means: "PrintString"
35

36 li a7, 2 # Load value 2 into register a7
37 fmv.s fa0, ft0 # Copy float value in ft0 into fa0, for printing below
38 ecall # Syscall. In RARS, if a7=2, this means: "PrintFloat"
39

40 li a0, '\n' # Load value of char '\n' into a0, for printing below
41 li a7, 11 # Load immediate value 11 into register a7
42 ecall # Syscall. In RARS, if a7=11, this means: "PrintChar"
43

44 beq t0, t2, loop_end # If t0 and t2 are equal, jump to loop_end
45

46 fadd.s ft0, ft0, ft1 # Increment the floating-point value: add the
47 # contents of floating point registers ft0 and
48 # ft1, write the result in ft0
49

50 add t0, t0, t1 # Increment loop couunter: add t0 and t1, result in t0
51

52 j loop_begin # Jump to the beginning of the loop
53

54 loop_end: # Label for memory location of the end of the loop
55 li a7, 10 # Load the immediate value 10 in register a7
56 ecall # Perform syscall. In RARS, if a7 is 10, this means: "Exit"

Example 2 highlights some more characteristics of RISC-V assembly programming:

• we can store strings in memory (lines 7 and 8) and then access them (line 32);

• to load an immediate floating-point value into a floating-point register, we first
load its “raw” byte representation into a base register (lines 13, 21) and then copy
the value into a floating-point register (lines 18, 24);

• we use system calls for printing various types of data (lines 34, 38, 42): they are
made available by RARS — RISC-V Assembler and Runtime Simulator .

1.4. RISC-V Assembly Program Structure 21



02247 Compiler Construction, Spring 2023

1.5 RARS — RISC-V Assembler and Runtime Simulator

To run a RISC-V assembly program, we need to:

1. process the assembly program with an assembler that translates it into the corre-
sponding RISC-V binary machine code; and

2. execute the RISC-V binary machine code using either real RISC-V hardware, or
a RISC-V emulator.

In this course we will use the RISC-V assembler and emulator RARS, which implements
both functionalities above, and includes very useful features for debugging RISC-V as-
sembly programs.

1.5.1 Downloading and Running RARS

RARS is available at:

• https://github.com/TheThirdOne/rars

The instructions below are based on the RARS “continuous” build released on 28 June
2022:

• https://github.com/TheThirdOne/rars/releases/tag/continuous

To see RARS in action, you can follow these steps.

1. Download the file rars_27a7c1f.jar from the link above.

2. Launch RARS from a terminal: java -jar rars_27a7c1f.jar

3. On the main RARS program window, click on the menu “File” → “New”.

4. Copy & paste the code of Example 1 in the “Edit” area.

5. Save the code being edited (this step is necessary to proceed): “File”→ “Save as…”.

6. Assemble the RISC-V assembly code, generating RISC-V machine code: click on
the menu “Run” → “Assemble”

The main area of the RARS program window will now switch from the “Edit” to the
“Execute” view. You should now see:

• the Text memory segment of the running program:

– the “Source” column shows each instruction in your RISC-V assembly code

– the “Basic” column shows the corresponding RISC-V machine instructions
(you may see how pseudo instructions are expanded)

– the “Code” column shows the corresponding binary machine code

– the “Address” column shows the memory address of each machine instruc-
tion

– the “Bkpt” column can be used to place a breakpoint (e.g. for debugging)

22 Module 1: Introduction to RISC-V

https://github.com/TheThirdOne/rars
https://github.com/TheThirdOne/rars/releases/tag/continuous


02247 Compiler Construction, Spring 2023

• the Data memory segment of the running program

• the RISC-V registers (base and floating-point)

• a “Run I/O” console with program execution information, and the program in-
put/output

Tip: Before proceeding, you can make the register contents easier to read: click on the
menu “Settings” and deselect the option “Values displayed as hexadecimal”.

You can now execute your program: if you hover with your mouse cursor on the icons
in the toolbar, a pop-up will show their functionality. Note, in particular, that you can:

• run the current program until it terminates, and pause or stop its execution. You
can use the “Run I/O” console to:

– see the running program output, and its termination status;

– provide inputs to the running program;

• perform a single execution step: RARS will highlight the current instruction, and
which register or memory location have been modified;

• undo the program execution, one step at a time (very useful for debugging);

• reset the memory and registers, thus restarting the program execution.

Tip: The RARS documentation is available on its Wiki:

• https://github.com/TheThirdOne/rars/wiki

You can also get a very handy quick reference help by clicking on the RARSmenu: “Help”
→ “Help”.

1.5.2 RARS System Calls

Besides emulating a RISC-V CPU, RARS also simulates some bits of an operating system
— and RISC-V assembly programs can interact with this mini-OS by performing system
calls (a.k.a. syscalls) using the instruction ecall. This allows the running program to
access various services — e.g. read inputs from the “Run I/O” console, produce outputs,
read or write files, terminate execution, even play MIDI music (!)…

To perform a system call, a RISC-V assembly program needs to:

• load the desired syscall number into register a7;

• load the syscall arguments (if any) into other registers (depending onwhich syscall
is selected in a7);

• perform the syscall, with the instruction ecall;

1.5. RARS — RISC-V Assembler and Runtime Simulator 23

https://github.com/TheThirdOne/rars/wiki


02247 Compiler Construction, Spring 2023

• after the syscall returns, some registers (depending on which syscall is selected in
a7) may be updated with its result.

The RARS syscalls are documented here:

• https://github.com/TheThirdOne/rars/wiki/Environment-Calls

They are also listed in the quick reference help, available by clicking on the RARS menu:
“Help” → “Help”.

1.6 References and Further Readings

The official RISC-V specification documents all the details of the ISA. It also documents
ISA extensions, including floating-point.

• RISC-V ISA Specification (ratified), Volume 1 (Unprivileged spec). Available at:
https://riscv.org/technical/specifications

Note: The main intended audience of the RISC-V ISA specification are CPU de-
signers and implementers; many of its details (e.g. how RISC-V instructions are
encoded in bits) are not crucial for RISC-V assembly programming.

A very useful reference for RISC-V assembly programming is provided by the Shakti
initiative at IIT-Madras (India), which develops RISC-V CPUs and products.

• Shakti ASM manual. Available at: http://shakti.org.in/documentation.html

– See, in particular, chapters 1, 2, 4, 5.

Note: As of January 2023, the Shakti ASM manual does not cover floating-point
instructions (but this might change in later editions).

There are also several quick reference cards for RISC-V assembly, which summarise the
ISA in a few A4 pages. For example:

• James Zhu’s RISC-V Reference Card. Available at: https://github.com/jameslzhu/
riscv-card

There are also other RISC-V emulators, besides RARS. Some of them run in a browser, and
do not require any software installation: they can be quite handy for experiments, but
their features can be quite limited and sometimes incompatible with RARS. For example:

• Keyhan Vakil’s Venus RISC-V simulator. Available at: https://venus.kvakil.me/

Important: Besides the links above, you can findmore RISC-V documentation, tutorials,
and tools on theWeb — and newmaterials are published very frequently. If you find any
other good resource that you would recommend, you are welcome to share it on Piazza!

24 Module 1: Introduction to RISC-V

https://github.com/TheThirdOne/rars/wiki/Environment-Calls
https://riscv.org/technical/specifications
http://shakti.org.in/documentation.html
https://github.com/jameslzhu/riscv-card
https://github.com/jameslzhu/riscv-card
https://venus.kvakil.me/


02247 Compiler Construction, Spring 2023

1.7 Lab Exercises

Note: The following exercises are not assessed: their purpose is to practice with RISC-V
assembly programming, and become familiar with RARS. This experience will be useful
when dealing with code generation in the rest of the course.

You are welcome (and encouraged!) to discuss the exercises and your solutions with
your fellow students — either in person, or on Piazza.

You should be able to solve all exercises by only using the RISC-V instructions listed in
A Few RISC-V Assembly Instructions — but feel free to browse the References and Further
Readings and experiment with other instructions.

Exercise 1 (Minimising register usage)

Adjust the RISC-V assembly code in Example 1 so that it computes the same result by
only using registers t0 and t1 (plus register a7 for the final syscall).

Hint: The source and destination registers of RISC-V instructions can overlap. For
instance, see the code in Example 2, line 50…

Exercise 2 (Adding integers read from the console)

Write a RISC-V assembly program that reads two integer values from the console, com-
putes their sum, and prints it on screen.

Hint: You will need to use the ReadInt and PrintInt RARS syscalls: see the documen-
tation6.

Consider that, after the ReadInt syscall, the integer value read from the console is avail-
able in register a0. If you call ReadInt again, a0 is overwritten with the new console
input…

Exercise 3 (Adding floats read from the console)

Write a RISC-V assembly program that reads two float values from the console, computes
their sum, and prints it on screen.

Hint: The solution is similar to Exercise 2 — except that you will need to use the
6 https://github.com/TheThirdOne/rars/wiki/Environment-Calls

1.7. Lab Exercises 25

https://github.com/TheThirdOne/rars/wiki/Environment-Calls
https://github.com/TheThirdOne/rars/wiki/Environment-Calls


02247 Compiler Construction, Spring 2023

ReadFloat and PrintFloat RARS syscall: see the documentation7.

Exercise 4 (Comparing integers)

Write a RISC-V assembly program that reads two integer values from the console, and
prints on the console a message saying whether the two values are equal, or the first is
greater than the second, or vice versa.

Hint: See the hints of Exercise 2. Moreover:

• To print a message on the console, you will need to use the PrintString RARS
syscall, as in Example 2.

• To print different messages depending on which value is greater, you will need to
use conditional branch instructions.

Exercise 5 (Comparing floats)

Write a RISC-V assembly program that reads two single-precision floating-point values
from the console, and prints on the console a message saying whether the two values
are equal, or the first is greater than the second, or vice versa.

Hint: You can use the solution of Exercise 2 as a starting point. However:

• To print a float on the console, you will need to use the PrintFloat RARS syscall,
as in Example 2.

• To print different messages depending on which value is greater, you will need to
use both floating-point comparison instructions and conditional branch instruc-
tions. Therefore, the resulting code can be quite different from the solution of
Exercise 2…

Exercise 6 (Factorial)

Write a RISC-V assembly program that reads an integer 𝑛 from the console, and checks
whether it is positive. If 𝑛 is positive, the program computes and prints on the console
the factorial 𝑛!, defined as:

𝑛! = 𝑛 × (𝑛 − 1) × ⋯ × 2 × 1

7 https://github.com/TheThirdOne/rars/wiki/Environment-Calls

26 Module 1: Introduction to RISC-V

https://github.com/TheThirdOne/rars/wiki/Environment-Calls


02247 Compiler Construction, Spring 2023

Exercise 7 (Sum of 𝑛 floats read from the console)

Write a RISC-V assembly program that reads an integer 𝑛 from the console, and checks
whether it is positive. If 𝑛 is positive, the program reads 𝑛 single-precision floating-point
values from the console, and prints their sum on the console.

Exercise 8 (Approximation of Pi)

Write a RISC-V assembly program that reads an integer 𝑛 from the console, and checks
whether it is positive. If 𝑛 is positive, the program computes and prints on the console
the approximation of 𝜋 calculated using the Taylor expansion up to the 𝑛th term:

𝜋 ≈ 4 (
𝑛−1
∑
𝑖=0

(−1)𝑖

2𝑖 + 1) = 4 (1
1 − 1

3 + 1
5 − 1

7 + ⋯ + (−1)𝑛

2𝑛 + 1)

1.7. Lab Exercises 27



02247 Compiler Construction, Spring 2023

28 Module 1: Introduction to RISC-V



2
Module 2: The Hygge0 Language Specification

Thismodule explains the formal syntax, semantics, and typing system of theHygge0 pro-
gramming language. Besides the focus on Hygge0, the broader objective of this module
is to learn (or revise) some key concepts of programming language theory: grammars,
syntax trees, structural semantics, type checking. These concepts provide us with the
foundations for implementing a compiler — and we will see that they are very recognis-
able in the hyggec compiler internals. Moreover, programming languages theory gives
us the tools to reason on how a program is expected to run, and whether a programming
language is correctly designed.

Example 3 (A Sample of Hygge0)

Here is an example of Hygge0 program: our goal in this module is to specify how a
program like this can be checked for syntactic correctness, how it should behave when
executed, and how it can be type-checked to avoid many forms of runtime error.

1 let x: int = 1; // Variable declaration
2

3 type MyInt = int; // Type declaration
4

5 let y: MyInt = {
6 println("Initialising y");
7 2: int // Type ascription
8 };
9

10 if x < y then println("x is smaller than y")
11 else println("x is not smaller than y");
12

13 print("The result of x + y is: ");
14 println(x + y);
15 assert(x + y < 42) // Assertion

Note: Unlike Hygge0, most programming languages do not have a formal specification:
their intended behaviour is only explained using (many pages of) English prose.

29



02247 Compiler Construction, Spring 2023

A noteworthy exception is WebAssembly: it includes an extensive formal specification8,
and this serves as an inspiration for the specification of Hygge0 (although the specifica-
tion of WebAssembly is much more complex!).

2.1 Formal Syntax of Hygge0

Definition 1 below specifies the syntax the Hygge0 programming language, as a context-
free grammar. If we take a sequence of symbols (e.g. characters read from a text file),
the grammar below determines whether that sequence represents a syntactically-valid
Hygge0 expression. A Hygge0 program consists of just one expression, possibly contain-
ing many sub-expressions.

Definition 1 (Formal Grammar of Hygge0)

We define an identifier as any sequence of characters that:

1. is non-empty,

2. contains letters, numbers, or the character _, and

3. does not begin with a number.

The grammar for Hygge0 expressions 𝑒 and values 𝑣 below uses some identifiers to de-
note specific operations and values (e.g. “and”, “print”, “assert”, “true”…): those identi-

8 https://webassembly.github.io/spec/core/

30 Module 2: The Hygge0 Language Specification

https://webassembly.github.io/spec/core/


02247 Compiler Construction, Spring 2023

fiers are considered reserved.

Expression 𝑒 ∶∶= type 𝑥 = 𝑡; 𝑒 (Declare 𝑥 as alias of 𝑡 in scope 𝑒)
∣ let x ∶ 𝑡 = 𝑒1; 𝑒2 (Declare 𝑥 as 𝑒1 in scope 𝑒2)
∣ 𝑒1; 𝑒2 (Sequencing)
∣ { 𝑒 } (Expression in curly brackets)
∣ if 𝑒1 then 𝑒2 else 𝑒3 (Conditional)
∣ 𝑒1 or 𝑒2 (Logical ”or”)
∣ 𝑒1 and 𝑒2 (Logical ”and”)
∣ 𝑒1 = 𝑒2 (Relation: equality)
∣ 𝑒1 < 𝑒2 (Relation: less than)
∣ 𝑒1 + 𝑒2 (Addition)
∣ 𝑒1 ∗ 𝑒2 (Multiplication)
∣ not 𝑒 (Logical negation)
∣ readInt() (Read integer from console)
∣ readFloat() (Read float from console)
∣ print(𝑒) (Print on console)
∣ println(𝑒) (Print on console with newline)
∣ assert(𝑒) (Assertion)
∣ 𝑒 ∶ 𝑡 (Type ascription)
∣ ( 𝑒 ) (Expression in parentheses)
∣ 𝑥 (Variable)
∣ 𝑣 (Value)

Value 𝑣 ∶∶= 1 ∣ 2 ∣ 3 ∣ … (Integers)
∣ true ∣ false (Booleans)
∣ ”Hello” ∣ ”Hej” ∣ … (Strings)
∣ 3.14f ∣ 42.0f ∣ … (Single-precision float values)
∣ () (Unit value)

Variable 𝑥 ∶∶= z ∣ foo ∣ a123 ∣ … (Any non-reserved identifier)

Pretype 𝑡 ∶∶= int ∣ unit ∣ foo ∣ … (Any non-reserved identifier)

The notation in Definition 1 is a grammar in Backus-Naur form. The items on the left
of “∶∶=” are syntactic categories (expression 𝑒, value 𝑣…) while on the right of “∶∶=”
are grammar rules (also called production rules, or simply productions). The notation
means: given a sequence of input symbols (e.g. characters), the grammar classifies the
input in one of the categories on the left of ∶∶= if and only if that sequence matches one
of the rules on the right.

The syntax of Hygge0 includes many familiar expressions and operations (addition, mul-
tiplication, comparisons…).

Notice that the grammar rules in Definition 1 are recursive: for example, in order to
classify a sequence of symbols like 2 + (3 ∗ y) as a valid Hygge0 expression, we can
only use the rule for addition — and that rule, in turn, requires us to check that both
sub-sequences 2 and (3 ∗ y) are valid expressions, by recursively checking them against
the same set of rules. This recursive checking can terminate in two possible ways:

2.1. Formal Syntax of Hygge0 31



02247 Compiler Construction, Spring 2023

1. we reach a sub-sequence of input symbols on which no rule can be applied, hence
the input sequence is rejected; or

2. we reach and accept terminal symbols that do not have any further sub-
component to check (such as variable y, or value 3).

2.1.1 Syntax Trees

When the grammar rules in Definition 1 classify a sequence of symbols as an expression
𝑒, we can construct a syntax tree based onwhich rules have been applied, thus capturing
the syntactic structure 𝑒: see Example 4.

Example 4 (A Simple Hygge0 Expression)

The grammar in Definition 1 accepts the following sequence of symbols, and classifies it
as a syntactically-valid Hygge0 expression:

let x ∶ int = 2;
let y ∶ int = 3;
𝑥 + 𝑦 ∗ 2

The grammar can accept the expression above by applying its rules in the order depicted
in the syntax tree below, where:

• each node contains a Hygge0 expression, value, variable, or pretype;

• the edges (going up) connect an expression to its immediate syntactic sub-
components (if any);

• the labels describe which grammar rule in Definition 1 accepts the nearby node;

• the root of the tree is the whole expression being accepted, and

• the leaves of the trees are terminal symbols in the grammar, which don’t have any
further sub-component to check.

For clarity, the depiction below highlights all immediate syntactic sub-components of
each node.

32 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

let x ∶ int = 2 ; let y ∶ int = 3; 𝑥 + 𝑦 ∗ 2
Declare 𝑥

𝑥
Variable

intPretype 2Value let y ∶ int = 3 ; 𝑥 + 𝑦 ∗ 2
Declare 𝑦

𝑦
Variable

intPretype 3Value 𝑥 + 𝑦 ∗ 2
Addition

𝑥Variable 𝑦 ∗ 2
Multiplic.

𝑦Variable 2Value

Example 5 (Something That is Not a Syntactically-Valid Hygge0 Expression)

TheHygge0 grammar in Definition 1 does not accept the following sequence of symbols:

let x ∶ int = 2;
let y ∶ int = 3;
𝑥 + 𝑦 ∗

The reason is that there is no rule in Definition 1 which can accept a ∗ symbol that does
not have a sub-expression on the right. Therefore, the sequence of symbols above does
not constitute a syntactically-valid Hygge0 expression, and we cannot build a syntax
tree for it.

The Hygge0 grammar in Definition 1 is simple but flexible: its main syntactic category
are expressions, which can be freely composed and nested to create larger expressions —
and a Hygge0 program is just one (possibly large and complex) expression. This design
is inspired by functional languages like F#, Scala, or Haskell.

Example 6 (Hygge0 Grammar vs. C or Java)

Consider the following Hygge0 expression, that initialises variable 𝑥 with a value com-
puted by nesting other expressions within curly brackets:

let x ∶ int = {
let y ∶ int = if (2 < 42) then 0 else 42;
𝑦 + 1

};
println(𝑥)

This cannot be written in languages like C or Java: their grammar distinguishes expres-
sions from statements, and their grammar rules do not allow statements (which include

2.1. Formal Syntax of Hygge0 33



02247 Compiler Construction, Spring 2023

e.g. if … then … else … and variable declarations) to appear inside expressions.

Exercise 9 (Drawing a Syntax Tree)

Draw the syntax tree of the Hygge0 expression in Example 6.

Example 7 (Another Simple Hygge0 Expression)

The Definition 1 also accepts the following expression:

let x ∶ foo = 2;
𝑦 + 𝑥 ∗ ”Hello”

The expression is syntactically correct, but meaningless: foo is not a valid type, 𝑦 is an
undefined variable, and (as we will see later) the result of multiplying something by the
string ”Hello” is undefined. We will address these issues later, by Type-Checking Hygge0
Programs.

2.1.2 Grammar Ambiguities

According to Definition 1, some sequences of symbols may be classified as valid Hygge0
expressions by applying the grammar rules in different ways — which means that some
sequences of symbols may have different syntax trees. Therefore, the Hygge0 grammar
is ambiguous: see Example 8.

Example 8 (Grammar Ambiguity)

Consider again the simple Hygge0 expression in Example 4. The grammar in Definition 1
also allows us to accept that same sequence of symbols by applying the rules in a different
order and classifying the addition as a sub-expression of the multiplication. This leads to
the following syntax tree (observe the nodes at the top-right corner, and contrast them
with the syntax tree in Example 4):

34 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

let x ∶ int = 2 ; let y ∶ int = 3; 𝑥 + 𝑦 ∗ 2
Declare 𝑥

𝑥
Variable

intPretype 2Value let y ∶ int = 3 ; 𝑥 + 𝑦 ∗ 2
Declare 𝑦

𝑦
Variable

intPretype 3Value 𝑥 + 𝑦 ∗ 2
Multiplic.

𝑥 + 𝑦Addition

𝑥Variable 𝑦Variable

2Value

These two ways to form syntax trees (and group sub-expressions) lead to different ex-
pression executions and results, as we will see later in Example 12.

To enforce a specific way to apply the grammar rules and form a syntax tree for a given
sequence of symbols, we need to adopt one or more of the following approaches:

1. explicitly use parentheses to group sub-expressions and resolve ambiguities; or

2. revise Definition 1 to make it non-ambiguous, e.g. by arranging the rules for mul-
tiplications and additions in a way that enforces one predetermined application
order; or

3. define a precedence between the rules of Definition 1, e.g. “when checking a se-
quence of symbols, the grammar rules in Definition 1 must be tried in order, top-to-
bottom”.

For now we will intuitively follow the third approach, without delving into details. We
will address the second approach later in the course. The first approach (explicitly using
parentheses) is conceptually the simplest, but it also makes programs more verbose: see
Example 9 .

Example 9 (Enforcing Precedence with Parentheses)

To enforce that a sequence of symbols like the one in Example 4 has a unique syntax
tree, we can e.g. rewrite “𝑥 + 𝑦 ∗ 2” as “𝑥 + (𝑦 ∗ 2)”: by explicitly placing parentheses
around the multiplication, we ensure that the sub-expression 𝑦 is not “captured” by the
addition. The result is the following syntax tree:

2.1. Formal Syntax of Hygge0 35



02247 Compiler Construction, Spring 2023

let x ∶ int = 2 ; let y ∶ int = 3; 𝑥 + (𝑦 ∗ 2)
Declare 𝑥

𝑥
Variable

intPretype 2Value let y ∶ int = 3 ; 𝑥 + (𝑦 ∗ 2)
Declare 𝑦

𝑦
Variable

intPretype 3Value 𝑥 + (𝑦 ∗ 2)
Addition

𝑥Variable ( 𝑦 ∗ 2 )
Parentheses

𝑦 ∗ 2
Multiplic.

𝑦Variable 2Value

Exercise 10 (More Grammar Ambiguities)

The Definition 1 has many more ambiguities besides the one discussed in Example 4.
Write some examples of Hygge0 expressions (using sequencing, logical operators, re-
lations…) that are accepted by the grammar by applying its rules in different ways —
hence forming different syntax trees that group their sub-expressions in different ways.

For example: according to the grammar, in which different ways could we group the
sub-expressions of 2 ∗ 3 < 2 + 5?..

2.2 Formal Semantics of Hygge0

We now define how Hygge0 programs are expected to behave when running. To this
end, we define a structural operational semantics for Hygge0 expressions (see Defini-
tion 4 below). The semantics provides a high-level view of the behaviour of a Hygge0
expression: it can be directly used to write an interpreter of the language, and it also
helps in writing a compiler by unambiguously stating how expressions should be eval-
uated, and what results they produce.

In order to define the operational semantics Hygge0, we first need to introduce some
technical definitions.

36 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

2.2.1 Preliminaries: Inference Rules and Substitutions

First, we need to define how to substitute a variable inside an Hygge0 expression, by
replacing it with another Hygge0 expression.

Definition 2 (Substitution of a Variable in an Hygge0 Expression)

The substitution of a variable 𝑥 with expression 𝑒′ in expression 𝑒 is written 𝑒 [x ↦ 𝑒′],
and is defined as follows:

𝑥 [𝑥 ↦ 𝑒′] = 𝑒′

𝑦 [𝑥 ↦ 𝑒′] = 𝑦 (when 𝑦 ≠ 𝑥)
𝑣 [𝑥 ↦ 𝑒′] = 𝑣

(𝑒1 + 𝑒2) [𝑥 ↦ 𝑒′] = 𝑒1 [𝑥 ↦ 𝑒′] + 𝑒2 [𝑥 ↦ 𝑒′]
(𝑒1 ∗ 𝑒2) [𝑥 ↦ 𝑒′] = 𝑒1 [𝑥 ↦ 𝑒′] ∗ 𝑒2 [𝑥 ↦ 𝑒′]

⋮
(let x ∶ 𝑡 = 𝑒1; 𝑒2) [𝑥 ↦ 𝑒′] = let x ∶ 𝑡 = 𝑒1 [𝑥 ↦ 𝑒′]; 𝑒2
(let y ∶ 𝑡 = 𝑒1; 𝑒2) [𝑥 ↦ 𝑒′] = let y ∶ 𝑡 = 𝑒1 [𝑥 ↦ 𝑒′]; 𝑒2 [𝑥 ↦ 𝑒′] (when 𝑦 ≠ 𝑥)

(type 𝑦 = 𝑡; 𝑒) [𝑥 ↦ 𝑒′] = type 𝑦 = 𝑡; 𝑒 [𝑥 ↦ 𝑒′]

Definition 2 says that the substitution of variable 𝑥 with 𝑒′ in 𝑒 proceeds along each
sub-expression of 𝑒, until it reaches a terminal symbol; and if that terminal symbol is the
variable 𝑥, it is substituted with 𝑒′. Moreover, the substitution encounters a “let x ∶ 𝑡 =
𝑒1; 𝑒2” that redefines the variable 𝑥, then the substitution is propagated through 𝑒1, but
not in the scope 𝑒2

Example 10 (Simple Substitution)

Consider the expression𝑥+3. To obtain the expression derived from𝑥+3 by substituting
the variable 𝑥 with the value 2, we write:

(𝑥 + 3) [𝑥 ↦ 2]

which, according to Definition 2, this is equivalent to:

(𝑥 + 3) [𝑥 ↦ 2] = 𝑥 [𝑥 ↦ 2] + 3 [𝑥 ↦ 2] = 2 + 3

Example 11 (Substitution Under “Let”)

Consider the expression let x ∶ 𝑡 = 𝑧 + 1; 𝑥 + 𝑧. Since the “let” is declaring (i.e. bind-
ing) variable 𝑥, the substitution of 𝑥 has no effect and produces the same expression:

(let x ∶ 𝑡 = 𝑧 + 1; 𝑥 + 𝑧) [𝑥 ↦ 42] = let x ∶ 𝑡 = 𝑧 + 1; 𝑥 + 𝑧

2.2. Formal Semantics of Hygge0 37



02247 Compiler Construction, Spring 2023

Instead, the variable 𝑧 is not bound (i.e. it is free in the given expression), so its substi-
tution does have an effect and produces an updated expression:

(let x ∶ 𝑡 = 𝑧 + 1; 𝑥 + 𝑧) [𝑧 ↦ 42]
= let x ∶ 𝑡 = (𝑧 + 1) [𝑧 ↦ 42]; (𝑥 + 𝑧) [𝑧 ↦ 42]
= let x ∶ 𝑡 = (𝑧 [𝑧 ↦ 42] + 1 [𝑧 ↦ 42]); (𝑥 [𝑧 ↦ 42] + 𝑧 [𝑧 ↦ 42])
= let x ∶ 𝑡 = 42 + 1; 𝑥 + 42

Exercise 11 (Defining Substitutions)

Definition 2 is incomplete. Provide a definition of the missing substitution cases: you
should define one new case for each form of expression 𝑒 that appears in the Definition
1, but is omitted in Definition 2, such as <, =, if … then … else …, print(…). Write
some examples showing how the new substitution cases work.

Then, we need a way to formalise how to derive a conclusion using a set of inference
rules.

Definition 3 (Inference Rules)

An inference rule has the following shape:

𝑃1 𝑃2 ⋯ 𝑃𝑛 [Name]
𝐶

which reads: according to the rule called “Name”, the conclusion 𝐶 is true when all the
premises 𝑃1, 𝑃2, … , 𝑃𝑛 are true.

The number of premises above the line can be 0: in this case, we leave the space above
the line empty, and we say that the inference rule is an axiom.

Given a set of inference rules, the application of such rules to prove a conclusion creates
a tree structure, called a derivation.

2.2.2 Structural Operational Semantics of Hygge0

We can now define the semantics of Hygge0 as a set of inference rules describing when
an expression can reduce (i.e. perform an execution step) and become another expres-
sion.

More specifically, given anHygge0 expression 𝑒, we define its behaviour under a runtime
environment 𝑅 to model how 𝑒 can interact with the world around it. Since Hygge0 is
a simple language that only performs input/output on the system console, 𝑅 is a record
with two fields:

• 𝑅.Printer provides a way to send an output to the console. It can be left undefined,
which means that no console output is possible.

38 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

• 𝑅.Reader provides a way to read an input from the console. It can be left unde-
fined, which means that no console input is possible.

Definition 4 (Structural Operational Semantics of Hygge0)

We define the structural operational semantics of Hygge0 as a reduction of the follow-
ing form:

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

which reads: the composition of runtime environment 𝑅 and expression 𝑒 reduces into
an updated environment 𝑅′ and an updated expression 𝑒′. The reduction is defined by
the following rules.

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Add-L]

⟨𝑅 • 𝑒 + 𝑒2⟩ → ⟨𝑅′ • 𝑒′ + 𝑒2⟩
⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

[R-Add-R]
⟨𝑅 • 𝑣 + 𝑒⟩ → ⟨𝑅′ • 𝑣 + 𝑒′⟩

𝑣1 + 𝑣2 = 𝑣3 [R-Add-Res]
⟨𝑅 • 𝑣1 + 𝑣2⟩ → ⟨𝑅 • 𝑣3⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Mul-L]

⟨𝑅 • 𝑒 ∗ 𝑒2⟩ → ⟨𝑅′ • 𝑒′ ∗ 𝑒2⟩
⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

[R-Mul-R]
⟨𝑅 • 𝑣 ∗ 𝑒⟩ → ⟨𝑅′ • 𝑣 ∗ 𝑒′⟩

𝑣1 × 𝑣2 = 𝑣3 [R-Mul-Res]
⟨𝑅 • 𝑣1 ∗ 𝑣2⟩ → ⟨𝑅 • 𝑣3⟩

⋮
⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

[R-Par-Eval]
⟨𝑅 • (𝑒)⟩ → ⟨𝑅 • (𝑒′)⟩

[R-Par-Res]
⟨𝑅 • (𝑣)⟩ → ⟨𝑅 • 𝑣⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Curly-Eval]

⟨𝑅 • {𝑒}⟩ → ⟨𝑅 • {𝑒′}⟩
[R-Curly-Res]

⟨𝑅 • {𝑣}⟩ → ⟨𝑅 • 𝑣⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Seq-Eval]

⟨𝑅 • 𝑒; 𝑒2⟩ → ⟨𝑅 • 𝑒′; 𝑒2⟩
[R-Seq-Res]

⟨𝑅 • 𝑣; 𝑒⟩ → ⟨𝑅 • 𝑒⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Let-Eval-Init]

⟨𝑅 • let x ∶ 𝑡 = 𝑒; 𝑒2⟩ → ⟨𝑅′ • let x ∶ 𝑡 = 𝑒′; 𝑒2⟩

[R-Let-Subst]
⟨𝑅 • let x ∶ 𝑡 = 𝑣; 𝑒⟩ → ⟨𝑅 • 𝑒 [𝑥 ↦ 𝑣]⟩

[R-Type-Res]
⟨𝑅 • type 𝑥 = 𝑡; 𝑒⟩ → ⟨𝑅 • 𝑒⟩

[R-Ascr-Res]
⟨𝑅 • 𝑒 ∶ 𝑡⟩ → ⟨𝑅 • 𝑒⟩

(Continues on the next page…)

2.2. Formal Semantics of Hygge0 39



02247 Compiler Construction, Spring 2023

(…Continued from the previous page)

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Assert-Eval-Arg]

⟨𝑅 • assert(𝑒)⟩ → ⟨𝑅′ • assert(𝑒′)⟩

[R-Assert-Res]
⟨𝑅 • assert(true)⟩ → ⟨𝑅 • ()⟩

⋮
⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

[R-Print-Eval-Arg]
⟨𝑅 • print(𝑒)⟩ → ⟨𝑅′ • print(𝑒′)⟩

𝑅.Printer is defined [R-Print-Res]
⟨𝑅 • print(𝑣)⟩ → ⟨𝑅 • ()⟩

𝑅.Reader is defined 𝑅.Reader yields 𝑣
[R-Read-Int]

⟨𝑅 • readInt()⟩ → ⟨𝑅 • 𝑣⟩

𝑅.Reader is defined 𝑅.Reader yields 𝑣
[R-Read-Float]

⟨𝑅 • readFloat()⟩ → ⟨𝑅 • 𝑣⟩
If the runtime environment and expression ⟨𝑅 • 𝑒⟩ cannot reduce by any of the rules
above, and 𝑒 is not a value, then we say that ⟨𝑅 • 𝑒⟩ is stuck.

The Definition 4 formalises a left-to-right evaluation order for expressions. The style
of this semantics is called small-step, because it describes each Hygge0 program com-
putation in terms of reductions — and this includes mathematical expressions, whose
operations reduce until they reach a value.

Consider, for example, how we can reduce an addition 𝑒1 + 𝑒2. Intuitively, ignoring the
runtime environment 𝑅, we have:

• by rule [R-Add-L], if the left operand of the addition is an an expression 𝑒 which
can reduce to 𝑒′ (according to the premise of the rule), then the whole addition
𝑒 + 𝑒2 reduces to the addition 𝑒′ + 𝑒2;

• by rule [R-Add-R], if the left operand of the addition is a value 𝑣, and the right
operand is an expression 𝑒 which can reduce to 𝑒′ (according to the premise of the
rule), then the whole addition 𝑣 + 𝑒 reduces to the addition 𝑣 + 𝑒′;

• by rule [R-Add-Res], if both operands of the addition are values (𝑣1 and 𝑣2), then
the expression reduces to a value 𝑣3 (which, by the premise of the rule, is the result
of 𝑣1 + 𝑣2).

Summing up: the rules in Definition 4 require us to reduce an addition by first reducing
the left operand into a value, then by reducing the right operand into a value, and finally
by reducing the whole addition into a result value.

Example 12 (Reductions of a Simple Hygge0 Expression)

Consider the simple Hygge0 expression in Example 4. To see how it reduces in a runtime
environment 𝑅, we apply the rules of the Definition 4.

40 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

The first reduction step is allowed by rule [R-Let-Subst], which reduces the outermost
“let” by substituting 𝑥 with the value 2:

[R-Let-Subst]

⟨𝑅 •
let x ∶ int = 2;
let y ∶ int = 3;
𝑥 + 𝑦 ∗ 2

⟩ → ⟨𝑅 • let y ∶ int = 3;
2 + 𝑦 ∗ 2 ⟩

The second reduction step is also allowed by rule [R-Let-Subst], which now substitutes
𝑦 with 3:

[R-Let-Subst]

⟨𝑅 • let y ∶ int = 3;
2 + 𝑦 ∗ 2 ⟩ → ⟨𝑅 • 2 + 3 ∗ 2⟩

The next reduction steps depend on the syntax tree initially chosen for the sub-
expression 𝑥 + 𝑦 ∗ 2, which is reflected in the current expression 2 + 3 ∗ 2.

• If the syntax tree of 2 + 3 ∗ 2 follows Example 4 (where the multiplication is a sub-
expression of the addition) we can only perform a reduction by rule [R-Add-R]
in Definition 4, which in turn has a premise requiring us to show that the right
operand of the addition (i.e. the multiplication 3 ∗ 2) can reduce. To satisfy this
premise, we can use rule [R-Mul-Res] to perform the multiplication between val-
ues 3 and 2, without further premises. Therefore, we have the following reduction:

[R-Mul-Res]
⟨𝑅 • 3 ∗ 2⟩ → ⟨𝑅 • 6⟩

[R-Add-R]
⟨𝑅 • 2 + 3 ∗ 2⟩ → ⟨𝑅 • 2 + 6⟩

The reduction above is followed by another reduction by rule [R-Add-Res], giving
us the result 8:

[R-Add-Res]
⟨𝑅 • 2 + 6⟩ → ⟨𝑅 • 8⟩

• Instead, if the syntax tree of 2 + 3 ∗ 2 follows Example 8 (where the addition is
a sub-expression of the multiplication) we can only perform a reduction by rule
[R-Mul-L], using in its premise the reduction of the left operand of the multiplica-
tion (using rule [R-Add-Res]):

[R-Add-Res]
⟨𝑅 • 2 + 3⟩ → ⟨𝑅 • 5⟩

[R-Mul-L]
⟨𝑅 • 2 + 3 ∗ 2⟩ → ⟨𝑅 • 5 ∗ 2⟩

The reduction above is followed by another reduction by rule [R-Mul-Res], giving
us the result 10:

[R-Mul-Res]
⟨𝑅 • 5 ∗ 2⟩ → ⟨𝑅 • 10⟩

A few more remarks about the semantic rules in Definition 4:

2.2. Formal Semantics of Hygge0 41



02247 Compiler Construction, Spring 2023

• the rules ignore the pretypes appearing in Hygge0 expressions:

– by rule [R-Let-Subst], a let x ∶ 𝑡 = 𝑣; 𝑒′ reduces by substituting 𝑥 with 𝑣 in
𝑒′, ignoring 𝑡;

– by rule [R-Type-Res], a type declaration type 𝑥 = 𝑡; 𝑒 reduces to 𝑒 (ignoring
𝑥 and 𝑡);

– by rule [R-Ascr-Res], a type ascription like 𝑒 ∶ 𝑡 reduces to 𝑒 (ignoring 𝑡);
• by rules [R-Seq-Eval] and [R-Seq-Res], sequencing of expressions “𝑒1; 𝑒2” is re-
duced by first reducing 𝑒1 into a value 𝑣, and then discarding 𝑣, whole expression
becomes 𝑒2 and the reductions can continue from there;

• to reduce an assertion assert(𝑒), we first need to reduce its argument 𝑒 into a
value (by applying rule [R-Assert-Eval-Arg] 0 or more times); then, whenwe reach
the expression assert(𝑣), we can only reduce it by applying rule [R-Assert-Res],
which in turn requires the argument 𝑣 to be true, producing the unit value ().
As a consequence, assert(false) does not reduce, hence it is stuck: this models a
program that stops running due to a failed assertion.

If no rule can be applied (e.g. for an addition like 2 + true, or a failed assertion like
assert(false)) then we say that the expression is stuck.

Exercise 12 (Expression Reductions)

Using the rules in Definition 4, show the reductions of the following expressions, in a
runtime environment 𝑅:

• let x ∶ int = 3 + 2; 𝑥 + 1
• let x ∶ int = 3 + 2; print(𝑥 + 1)
• let x ∶ int = 3 + 2; print(𝑥 + 1); print(𝑥 + 2)

Exercise 13 (Defining Semantic Rules)

Definition 4 is incomplete. Provide a definition of the missing semantic rules: you should
define one rule for each form of expression 𝑒 that appears in the Definition 1, but is
omitted in Definition 4 — such as <, =, if … then … else …. Write some examples
showing how the new reduction rules work.

Note: You may have noticed that the premises of some rules of the Definition 4 say that
⟨𝑅 • 𝑒⟩ may reduce to ⟨𝑅′ • 𝑒′⟩, so the runtime environments 𝑅 and 𝑅′ may be different
before and after the reduction. However, none of the rules actually causes reductions
where 𝑅′ is different from 𝑅. Therefore, in principle wemay express the same semantics
by having ⟨𝑅 • 𝑒⟩ reduce to ⟨𝑅 • 𝑒′⟩ (i.e. preserving the same 𝑅).

This observation is correct. However, in the next modules we will extend the capabilities
of Hygge0, and there will be new rules that will actually update 𝑅 into a different 𝑅′;

42 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

by allowing this possibility now, we will be able to seamlessly integrate the new rules
with the current ones.

2.3 Type-Checking Hygge0 Programs

As mentioned earlier in Example 7 , the Hygge0 syntax accepts expressions that, albeit
syntactically valid, are “meaningless” and incorrect. When executed with the semantics
Example 12, such programs may get stuck: see Example 13.

Example 13

Consider again the Hygge0 expression in Example 7 . It is syntactically valid, and it can
perform a reduction step:

[R-Let-Subst]

⟨𝑅 • let x ∶ foo = 2;
𝑦 + 𝑥 ∗ ”Hello” ⟩ → ⟨𝑅 • 𝑦 + 2 ∗ ”Hello”⟩

However, the resulting expression 𝑦 + 2 ∗ ”Hello” is stuck, because it is not a value, and
there is no rule in Definition 4 that can be used to reduce it further.

We now develop a typing system for Hygge0 that rejects “bad” expressions, and guaran-
tees that program behaviours like Example 13 never occur. The Hygge0 typing system
consists of four components, illustrated in the next sections:

• Types and the Typing Environment

• a type resolution judgement “Γ ⊢ 𝑡 ▷ 𝑇 ” used for Resolving Pretypes into Valid
Types;

• a typing judgement “Γ ⊢ 𝑒 ∶ 𝑇 ” which is the core of The Hygge0 Typing System
(Part 1);

• finally, a subtyping judgement “Γ ⊢ 𝑇 ⩽ 𝑇 ′ ” which makes the type systemmore
flexible, by introducing Subtyping.

With these components in place, the Hygge0 typing system ensures that well-typed
programs never get stuck (under some assumptions), and enjoy the Properties of Well-
Typed Hygge0 Programs.

2.3. Type-Checking Hygge0 Programs 43



02247 Compiler Construction, Spring 2023

2.3.1 Types and the Typing Environment

In order to type-check Hygge0 expressions, we need to define our types (Definition 5),
and the typing environment (Definition 6) we will use to hold the information we need
for typing an Hygge0 expression.

Definition 5 (Hygge0 Types)

We use the symbol 𝑇 to denote a type, which has the following shape:

Type 𝑇 ∶∶= bool ∣ int ∣ float ∣ string ∣ unit (Basic types)
∣ 𝑥 (Type variable)

According to Definition 5, a type 𝑇 looks very similar to a pretype 𝑡 in Definition 1;
however, types and pretypes have a different role, that we will see shortly.

Definition 6 (Hygge0 Typing Environment)

We use the symbol Γ to denote a typing environment, which is a record with two fields:

• Γ.Vars is a mapping from variables to types;

• Γ.TypeVars is also a mapping from variables to types.

The twomappingsΓ.Vars andΓ.TypeVars look similar, but they serve different purposes:

• we will use Γ.Vars to remember the type of each variable 𝑥 introduced by “let x ∶
𝑡 = …”. For example: if Γ.Vars contains the entry x ↦ int, this means that
variable x has type int. This information is used e.g. when type-checking the
occurrences of x in Example 3, lines 10, 14, 15.

• wewill use Γ.TypeVars to remember each type variable 𝑥 introduced by “type 𝑥 =
…”. You can think of such type variables as type aliases. For example: if
Γ.TypeVars contains the entry MyInt ↦ int, then MyInt is a type variable cor-
responding to type int. This information is used e.g. to understand what type
MyInt represents in Example 3, line 5.

2.3.2 Resolving Pretypes into Valid Types

The Hygge0 grammar is not aware of which types are valid for type checking: it only
recognises the shape of “things that syntactically look like types” — which we call pre-
types. Such pretypes may be any identifier (e.g. int, foobar, xyz123) — and in Example
7 we have seen that the grammar accepts the pretype foo, although it is undefined (just
like it also accepts the undefined variable 𝑦 in the same example). We need to distin-
guish “bad” cases like Example 7 from “good” cases like Example 3, where MyInt is used
correctly, after being defined as an alias of int.

For this reason, during type checking we need to resolve pretypes into types, if possible.
This is achieved as specified in Definition 7 below.

44 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

Definition 7 (Type Resolution in Hygge0)

To check whether a pretype is a valid type, we use the following type resolution judge-
ment:

Γ ⊢ 𝑡 ▷ 𝑇

which reads: in the typing environment Γ, the pretype 𝑡 resolves into type 𝑇 . The
judgement is defined by the following rules (where we write pretypes between quotes,
as a visual hint to distinguish them from types):

[TRes-Bool]Γ ⊢ ”bool” ▷ bool
[TRes-Int]Γ ⊢ ”int” ▷ int

[TRes-Float]Γ ⊢ ”float” ▷ float
[TRes-String]Γ ⊢ ”string” ▷ string

[TRes-Unit]Γ ⊢ ”unit” ▷ unit
Γ.TypeVars(𝑥) = 𝑇

[TRes-Var]Γ ⊢ ”𝑥” ▷ 𝑥

According to the Definition 7 , the judgement Γ ⊢ ”bool” ▷ bool holds without any
premise (by rule [TRes-Bool]), and therefore, a in any typing environment Γ, the pretype
”bool” resolves into the valid basic type bool; other rules lead to similar conclusions for
types int, float, string, and unit.

Instead, a pretype like ”MyInt” can only be resolved by rule [TRes-Var], which has a
premise requiring that the typing environment Γ “knows about” the existence of a type
variable called MyInt — i.e. the mapping Γ.TypeVars must associate MyInt to some type
𝑇 . If this premise holds, then the pretype ”MyInt” resolves into the valid type variable
MyInt in the typing environment Γ.

2.3.3 The Hygge0 Typing System (Part 1)

We now have all the ingredients to define the type system of Hygge0 (at least in a first
version that we will improve later).

Definition 8 (Type System of Hygge0 — Part 1)

To check whether an Hygge0 expression is well-typed, we use the following typecheck-
ing judgement:

Γ ⊢ 𝑒 ∶ 𝑇

which reads: in the typing environment Γ, the expression 𝑒 has type 𝑇 . The judgement

2.3. Type-Checking Hygge0 Programs 45



02247 Compiler Construction, Spring 2023

is defined by the following rules.

𝑣 is an integer value
[T-Val-Int]Γ ⊢ 𝑣 ∶ int

𝑣 is a string value
[T-Val-String]Γ ⊢ 𝑣 ∶ string

𝑣 ∈ {true, false}
[T-Val-Bool]Γ ⊢ 𝑣 ∶ bool

[T-Val-Unit]
Γ ⊢ () ∶ unit

𝑣 is a single-precision float value
[T-Val-Float]Γ ⊢ 𝑣 ∶ float

Γ.Vars(𝑥) = 𝑇
[T-Var]Γ ⊢ 𝑥 ∶ 𝑇

𝑇 ∈ {int, float} Γ ⊢ 𝑒1 ∶ 𝑇 Γ ⊢ 𝑒2 ∶ 𝑇
[T-Add]Γ ⊢ 𝑒1 + 𝑒2 ∶ 𝑇

Γ ⊢ 𝑒1 ∶ bool Γ ⊢ 𝑒2 ∶ 𝑇 Γ ⊢ 𝑒3 ∶ 𝑇
[T-Cond]Γ ⊢ if 𝑒1 then 𝑒2 else 𝑒3 ∶ 𝑇

Γ ⊢ 𝑒1 ∶ 𝑇 Γ ⊢ 𝑒2 ∶ 𝑇 ′
[T-Seq]

Γ ⊢ 𝑒1; 𝑒2 ∶ 𝑇 ′

⋮

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑒1 ∶ 𝑇 {Γ with Vars + (𝑥 ↦ 𝑇 )} ⊢ 𝑒2 ∶ 𝑇 ′
[T-Let]

Γ ⊢ let x ∶ 𝑡 = 𝑒1; 𝑒2 ∶ 𝑇 ′

𝑥 ∉ {bool, int, float, string, unit} 𝑥 ∉ Γ.TypeVars Γ ⊢ 𝑡 ▷ 𝑇
{Γ with TypeVars + (𝑥 ↦ 𝑇 )} ⊢ 𝑒 ∶ 𝑇 ′ 𝑥 ∉ 𝑇 ′

[T-Type]
Γ ⊢ type 𝑥 = 𝑡; 𝑒 ∶ 𝑇 ′

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑒 ∶ 𝑇
[T-Ascr]

Γ ⊢ (𝑒 ∶ 𝑡) ∶ 𝑇

Γ ⊢ 𝑒 ∶ bool [T-Assert]
Γ ⊢ assert(𝑒) ∶ unit

𝑇 ∈ {bool, int, float, string} Γ ⊢ 𝑒 ∶ 𝑇
[T-Print]

Γ ⊢ print(𝑒) ∶ unit

Here is a description of the main rules in Definition 8.

• The first rules assign a type to a value, depending on whether the value is an
integer, string, boolean, unit, or float. These rules do not have any requirement on
the typing environment Γ.

• Rule [T-Var] says that in order to assign type 𝑇 to a variable 𝑥, we need to check

46 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

whether Γ.Var assigns type 𝑇 to 𝑥.
• Rule [T-Add] assigns type 𝑇 to an addition “𝑒1 + 𝑒2” — but only if both operands
have type 𝑇 in the same environment Γ, and 𝑇 is either int or float (hence, an
expression like 2 + ”Hello” cannot be typed).

• Rule [T-Cond] assigns type 𝑇 to a conditional expression “if 𝑒1 then 𝑒2 else 𝑒3”
— but only if 𝑒1 has type bool, and both 𝑒2 and 𝑒3 have the same type 𝑇 .

• Rule [T-Seq] assigns type 𝑇 ′ to a sequencing of expressions “𝑒1; 𝑒2”. One premise
of the rule require that 𝑒2 has that type 𝑇 ′; the other premise of the rule requires
that 𝑒1 is also type-checked and has some type 𝑇 (which is not used).

• Rule [T-Let] assigns a type 𝑇 ′ to an expression “let x ∶ 𝑡 = 𝑒1; 𝑒2”, where 𝑒2 is in
the scope of the declaration of variable 𝑥. The premises of the rule require that:

1. the pretype 𝑡 of 𝑥 can be resolved into a valid type 𝑇 ;

2. the expression 𝑒1 that initialises 𝑥 has that type 𝑇 ;

3. the expression 𝑒2 (in the scope of 𝑥) can be type-checked, and has type 𝑇 ′,
in a typing environment that is equal to Γ — except that we extend its Vars
by adding a mapping from 𝑥 to 𝑇 . As a consequence, 𝑥 can appear as a
sub-expression of 𝑒2, where it is typed as 𝑇 .

• Rule [T-Type] assigns a type 𝑇 ′ to an expression “type 𝑥 = 𝑡; 𝑒”, where 𝑒 is in the
scope of the declaration of the type variable 𝑥. The premises of the rule require
that:

1. 𝑥 is not one of the Hygge0 basic type identifiers;

2. 𝑥 is not already defined as a type variable in Γ.TypeVars;
3. the pretype 𝑡 used to define 𝑥 can be resolved into a valid type 𝑇 ;

4. the expression 𝑒 (in the scope of 𝑥) can be type-checked, and has type 𝑇 ′, in
a typing environment that is equal to Γ — except that we extend its TypeVars
by adding a mapping from 𝑥 to 𝑇 . As a consequence, 𝑥 can be used as a type
in 𝑒, where it is treated as an alias of 𝑇 ;

5. the type 𝑇 ′ assigned to 𝑒 does not contain any reference to 𝑥.
• Rule [T-Ascr] assigns a type 𝑇 to an expression “𝑒 ∶ 𝑡”, which is a type ascription
attempting to assign type 𝑡 to 𝑒. The premises of the rule require that:

1. the pretype 𝑡 used in the ascription can be resolved into a valid type 𝑇 ;

2. the expression 𝑒 can be type-checked in Γ and indeed has type 𝑇 . As a
consequence, a type ascription like “42 ∶ int” type-checks, whereas “42 ∶
string” does not type-check.

Example 14 (Typing Derivation of a Hygge0 Expression)

Consider the following Hygge0 expression:

let x ∶ int = 2;
𝑥 + 3

2.3. Type-Checking Hygge0 Programs 47



02247 Compiler Construction, Spring 2023

We can show that the whole expression has type int, in an empty typing environment: to
achieve this, we apply the typing rules in Definition 8 to construct the following typing
derivation.

[TRes-Int]
{Vars = ∅
TypeVars = ∅} ⊢ ”int” ▷ int

[T-Val-Int]
{Vars = ∅
TypeVars = ∅} ⊢ 2 ∶ int

Vars(𝑥) = int
[T-Var]

{Vars = {𝑥 ↦ int}
TypeVars = ∅ } ⊢ 𝑥 ∶ int

[T-Val-Int]
{Vars = {𝑥 ↦ int}
TypeVars = ∅ } ⊢ 3 ∶ int

[T-Add]
{Vars = {𝑥 ↦ int}
TypeVars = ∅ } ⊢ 𝑥 + 3 ∶ int

[T-Let]
{Vars = ∅
TypeVars = ∅} ⊢ let x ∶ int = 2;

𝑥 + 3 ∶ int

We can read the typing derivation above by starting from the root and moving upwards:

• to show that the expression “let x ∶ 𝑡 = 2; …” has type int in an empty environ-
ment, rule [T-Let] checks whether “int” is a valid pretype, whether 2 has type int,
and whether 𝑥 + 3 has type int. To type-check the latter, rule [T-Let] extends the
typing environment with the information that the newly-declared variable 𝑥 has
type int;

• to show that the expression 𝑥 + 3 has type int, rule [T-Add] checks that both
operands have type int:

– the left operand is typed by rule [T-Var], which looks in the typing environ-
ment and finds that 𝑥 has type int;

– the right operand is typed by rule [T-Val-Int].

Exercise 14 (Typing Expressions)

Determine whether the following typing judgements hold, by writing the typing deriva-
tion of each one.

1. {Vars = ∅; TypeVars = ∅} ⊢ (4 + 2) + 1 ∶ int

2. {Vars = ∅; TypeVars = ∅} ⊢ if true then ”Hello” else ”World” ∶ string

3. {Vars = {𝑥 ↦ int}; TypeVars = ∅} ⊢ (𝑥 + 2) + 1 ∶ int

4. {Vars = ∅; TypeVars = ∅} ⊢ let x ∶ int = 42; (𝑥 + 2) + 1 ∶ int

5. {Vars = ∅; TypeVars = ∅} ⊢ let x ∶ int = 2 + 1; print(𝑥 + 2); ”Bye!” ∶ string

Exercise 15 (Inspect a “Bad” Expression)

Consider again the expression Example 7 : explain why it does not type-check according
to the rules in Definition 8.

Exercise 16 (Defining Typing Rules)

48 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

Definition 8 is incomplete. Provide a definition of the missing typing rules: you should
define one rule for each form of expression 𝑒 that appears in the Definition 1, but is
omitted in Definition 8 — such as <, =, ∗, not, readInt(). Write some examples showing
how the new typing rules work.

2.3.4 Subtyping

The Hygge0 typing rules introduced in Definition 8 are very limited in their use of type
variables: there is a rule called [T-Type] to type-check declarations of new type vari-
ables, by adding them to Γ.TypeVars, but there is no rule that uses the information in
Γ.TypeVars. We can observe the resulting limitation in Example 15 below.

Example 15 (How Can We Use Type Variables?)

Consider this Hygge0 expression:

type MyInt = int;
let x ∶ MyInt = 2;
𝑥 + 3

This expression declares a new type MyType as an alias of int, and then tries to declare
a variable 𝑥 of that type. Intuitively, the whole expression should have type int (i.e. the
type of 𝑥 + 3 on the last line). However, if we try to type-check the expression, we
cannot complete a typing derivation: (below we omit part of the derivation with “⋯”)

⋯

TypeVars(MyInt) = int
[TRes-Var]

{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ ”MyInt” ▷ MyInt

[ ⁇? ]
{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ 2 ∶ MyInt ⋯

[T-Let]
{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ let x ∶ MyInt = 2;

𝑥 + 3 ∶ int
[T-Type]

{Vars = ∅
TypeVars = ∅} ⊢

type MyInt = int;
let x ∶ MyInt = 2;
𝑥 + 3

∶ int

The issue on the top-right corner of this tentative derivation (in the failed rule application
markedwith “⁇?”) is that wewould need to assign typeMyInt to 2, but there is no typing
rule allowing us to do that.

We could address the issue highlighted in Example 15 by adding some ad hoc typing rule
for similar cases. Instead, we introduce a more general solution: we equip Hygge0 with
subtyping, i.e. a relation between types which satisfies the Liskov Substitution Principle
(Definition 9),

Definition 9 (Liskov Substitution Principle)

If a type 𝑇 is subtype of 𝑇 ′, then any value of type 𝑇 can be safely used whenever a
value of type 𝑇 ′ is expected.

2.3. Type-Checking Hygge0 Programs 49



02247 Compiler Construction, Spring 2023

Following the spirit of Definition 9 , we introduce a subtyping judgement for Hygge0
types (Definition 10), and then extend its typing system with a subsumption rule that
makes use of the subtyping (Definition 11).

Definition 10 (Subtyping in Hygge0)

To check whether a Hygge0 type is subtype of another type, we use the following sub-
typing judgement:

Γ ⊢ 𝑇 ⩽ 𝑇 ′

which reads: in the typing environment Γ, the type 𝑇 is a subtype of 𝑇 ′. The judgement
is defined by the following rules.

[TSub-Refl]Γ ⊢ 𝑇 ⩽ 𝑇
Γ ⊢ Γ.TypeVars(𝑥) ⩽ 𝑇

[TSub-Var-L]Γ ⊢ 𝑥 ⩽ 𝑇
Γ ⊢ 𝑇 ⩽ Γ.TypeVars(𝑥)

[TSub-Var-R]Γ ⊢ 𝑇 ⩽ 𝑥

The first rule in Definition 10 says that in any typing environment Γ, any type 𝑇 is
subtype of itself (i.e. the subtyping relation is reflexive).

Instead, rule [TSub-Var-L] allows us to check whether a type variable 𝑥 is subtype of 𝑇
in a given Γ: to that end, the premise of the rule requires us to checkwhether Γ.TypeVars
maps 𝑥 to a type which is a subtype of 𝑇 (i.e. we need to apply the rule recursively).
Rule [TSub-Var-R] is similar, but it allows us to check whether a type 𝑇 is a subtype of
a type variable 𝑥.

Definition 11 (Type System of Hygge0 — Part 2)

The full typing system of Hygge0 is defined by extending the typing rules in Definition
8 with the following rule, called subsumption rule:

Γ ⊢ 𝑒 ∶ 𝑇 Γ ⊢ 𝑇 ⩽ 𝑇 ′
[T-Sub]

Γ ⊢ 𝑒 ∶ 𝑇 ′

Rule [T-Sub] in Definition 11 means: in a given typing environment Γ, if we can type
expression 𝑒 with type 𝑇 , and show that 𝑇 is subtype of 𝑇 ′, then we can conclude that
expression 𝑒 has (also) type 𝑇 ′. Or, equivalently: to assign type 𝑇 ′ to 𝑒, we need to show
that 𝑒 has a type 𝑇 which is subtype of 𝑇 ′.

We can now type-check the problematic expression in Example 15, as shown in Example
16 below.

Example 16

Consider again the Hygge0 expression in Example 15. By using the Hygge0 type system
with subsumption in Definition 11, we can write the following typing derivation: (below
we omit part of the derivation with “⋯”)

50 Module 2: The Hygge0 Language Specification



02247 Compiler Construction, Spring 2023

⋯

TypeVars(MyInt) = int
[TRes-Var]

{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ ”MyInt” ▷ MyInt

[T-Val-Int]⋯ ⊢ 2 ∶ int

[TSub-Refl]
{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ int ⩽ int

[TSub-Var-R]
{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ int ⩽ MyInt

[T-Sub]
{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ 2 ∶ MyInt Continues…

[T-Let]
{Vars = ∅
TypeVars = {MyInt ↦ int}} ⊢ let x ∶ MyInt = 2;

𝑥 + 3 ∶ int
[T-Type]

{Vars = ∅
TypeVars = ∅} ⊢

type MyInt = int;
let x ∶ MyInt = 2;
𝑥 + 3

∶ int

In this derivation we use the subsumption rule [T-Sub] to show that 2 has type MyInt
(which we could not achieve in Example 15). To reach this conclusion, our application
of rule [T-Sub] leverages its two premises: 2 has type int, and by the subtyping rules,
int is a subtype of MyInt (because, in the current typing environment, MyInt is a type
variable that maps to int).

Exercise 17 (Applying Subtyping and the Subsumption Rule)

Complete themissing part of typing derivation in Example 16, markedwith “Continues…”
(on the right, last premise of [T-Let]). To this end, you should write a typing derivation
for the following typing judgement:

{Vars = {𝑥 ↦ MyInt}
TypeVars = {MyInt ↦ int}} ⊢ 𝑥 + 3 ∶ int

Hint: You’ll need to use the typing rules [T-Add], [T-Var], [T-Sub] and [T-Val-Int].
When using [T-Sub], you will need to use the subtyping rules [TSub-Var-L] and
[TSub-Refl].

2.3.5 Properties of Well-Typed Hygge0 Programs

We can finally state the main property of the Hygge0 typing system: if a Hygge0 expres-
sion 𝑒 is well-typed in an empty typing environment, then 𝑒 will reduce to a value (in 0
or more steps) without getting stuck — unless it reads invalid inputs from the console,
or it contains an assertion that fails. In other words, well-typed Hygge0 programs can
only get stuck due to:

1. external factors (bad console inputs), or

2. programmer mistakes caught by assertions (e.g. the programmer expects that
x = 0 is true, writes an assertion to check it, but this fails at runtime because
the running program computes x = 3 instead).

This is formalised in Theorem 1 below.

2.3. Type-Checking Hygge0 Programs 51



02247 Compiler Construction, Spring 2023

Theorem 1 (Type Safety and Progress)

Take a runtime environment 𝑅 where both 𝑅.Reader and 𝑅.Printer are defined. Take
any Hygge0 expression 𝑒 and type 𝑇 such that:

{Vars = ∅
TypeVars = ∅} ⊢ 𝑒 ∶ 𝑇

Now, take any 𝑅′ and 𝑒′ such that:

• ⟨𝑅 • 𝑒⟩ → ⋯ → ⟨𝑅′ • 𝑒′⟩ (i.e. ⟨𝑅 • 𝑒⟩ reduces to ⟨𝑅′ • 𝑒′⟩ in 0 or more steps);
and

• along each reduction step, 𝑅.Reader yelds values of the type expected by 𝑒 (e.g. if
𝑒 is performing readInt(), then the value received via 𝑅.Reader is an integer).

Then, we have:

• ∅ ⊢ 𝑒′ ∶ 𝑇 (i.e. 𝑒′ preserves the type 𝑇 of 𝑒); and
• one of the following holds:

– ⟨𝑅′ • 𝑒′⟩ can perform another reduction step; or

– 𝑒′ is a value (i.e. 𝑒 has fully reduced without getting stuck); or

– 𝑒′ is stuck and contains a sub-expression assert(false) (i.e. an assertion vio-
lation).

The proof of Theorem 1 is outside the scope of this course — but such a proof can be
achieved by using standard programming language theory techniques. This is the main
payoff of developing a formal specification for a programming language: it helps us
understanding and proving whether its design is correct.

2.4 References and Further Readings

The following book (on compiler construction) contains a good overview of context-free
grammars:

• Bill Campbell, Iyer Swami, Bahar Akbal-Delibas. Introduction to Compiler Con-
struction in a JavaWorld. Chapman andHall/CRC, 2012. Available onDTU Findit9.

– Chapter 3.2 (Context-Free Grammars)

Here is a very popular textbook about programming languages and type systems:

• Benjamin Pierce. Types and Programming Languages. MIT Press, 2002. Available
on DTU Findit10. These chapters, in particular, may be useful:

– Chapter 2 (Mathematical Preliminaries)
9 https://findit.dtu.dk/en/catalog/5c59eb2fd9001d01e4360926

10 https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f

52 Module 2: The Hygge0 Language Specification

https://findit.dtu.dk/en/catalog/5c59eb2fd9001d01e4360926
https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f
https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f


02247 Compiler Construction, Spring 2023

– Chapter 3 (Untyped Arithmetic Expressions)

– Chapter 8 (Typed Arithmetic Expressions)

2.5 Lab Activities

1. Try to solve the exercises presented along this module.

Note: The exercises are not assessed: their purpose is to practice with the key
concepts of this module (grammars, operational semantics, type systems). This
experience will be very helpful to understand the Hygge0 compiler internals (in
the next module), and to extend the compiler for the course project.

You are welcome (and encouraged!) to discuss the exercises and your solutions
with your fellow students — either in person, or on Piazza.

2. During the lab, the teacher will make available a preliminary version of the
Hygge0 compiler hyggec on DTU Learn. You can optionally inspect its source
code and see whether you can recognise the implementation of (parts of) the lan-
guage specification presented in this module (grammar, semantics, type system,
subtyping). Sometimes, looking at an implementation may clarify how a specifi-
cation is supposed to work…

Note: This is an optional lab activity, and you may not immediately grasp all the
implementation details of hyggec. We will delve into the hyggec internals (and its
connection to the Hygge0 specification) in the next module.

2.5. Lab Activities 53



02247 Compiler Construction, Spring 2023

54 Module 2: The Hygge0 Language Specification



3
Module 3: Hands-On with hyggec

This module outlines the implementation of the hyggec compiler, in its minimal ver-
sion that implements the Hygge0 programming language specification. We explore how
hyggecworks, and how it translates a Hygge0 program into corresponding RISC-V code.
We see how to extend both the Hygge0 language and the hyggec compiler with new fea-
tures. We conclude this module with some Project Ideas.

3.1 Quick Start

1. Go to the hyggec Git repository: https://gitlab.gbar.dtu.dk/02247/f23/hyggec
(NOTE: you will need to log in with your DTU account)

2. Create your own fork of the repository, by clicking on the “Fork” button (below
the hyggec title and logo, to the left)

3. Clone your forked repository on your computer (use the URL below the hyggec
title and logo. You may choose between “HTTPS” or “SSH”, and the latter is prob-
ably better; you may need to configure your SSH keys for authenticating11)

4. Follow the instructions in the file README.md

3.2 The Compiler Phases of hyggec

In the beginning of the course, we discussed what is a compiler and what are the typical
phases that allow a compiler to translate an input program into an output program.

hyggec has the same phases illustrated in Fig.1. In this section we will explore how each
phase is implemented. The overall picture is illustrated in Fig.3.1, where:

• each compiler phase is annotated with the file that handles it in hyggec, and

• each intermediate compilation product is annotated with the data type that hyggec
uses to represent it.

11 https://gitlab.gbar.dtu.dk/help/ssh/README.md

55

https://gitlab.gbar.dtu.dk/02247/f23/hyggec
https://gitlab.gbar.dtu.dk/help/ssh/README.md


02247 Compiler Construction, Spring 2023

Fig. 3.1: Phases of the hyggec compiler (diagram based on Fig.1).

56 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

3.3 Overview of the hyggec Source Tree

Here is a quick summary of the hyggec source code structure: the files and directories
are roughly ordered depending on how soon (and how often) you will use or modify
them.

Tip: When exploring the hyggec source code with Visual Studio Code (or similar IDEs),
try to hover with the mouse pointer on types, function names, and variables: in most
cases, you will see a brief description of their purpose (and you can jump to their defi-
nition, if you want).

Table 3.1: Overview of the hyggec source tree.
File or directory name Description
hyggec and hyggec.bat Scripts to run hyggec on Unix-like and Windows op-

erating systems. Both scripts cause the automatic re-
compilation of hyggec if its source code was changed
after the last run.

src/ Directory containing the hyggec source files.
tests/ Directory containing the hyggec test suite. Wewill dis-

cuss the structure of its subdirectories in The Test Suite
of hyggec.

src/AST.fs Representation of the Abstract Syntax Tree (AST) of
Hygge0, based on theDefinition 1. This file is discussed
below in The Abstract Syntax Tree.

src/ASTUtil.fs Utility functions for manipulating an AST (e.g. apply
substitutions).

src/Lexer.fsl and src/
Parser.fsy

Specification of the lexer and parser that read Hygge0
source code files and build the corresponding AST.
These files are discussed below in The Lexer and Parser .

src/Interpreter.fs Interpreter for Hygge programs, based on the Struc-
tural Operational Semantics of Hygge0.

src/Type.fs Definition of Hygge0 types (based on Definition 5).
src/Typechecker.fs Functions for performing type checking on a given

Hygge0 program AST, according to Definition 8 and
Definition 11 (thus including Subtyping).

src/RISCVCodegen.fs Functions for generating RISC-V assembly code from
a well-typed Hygge0 program AST.

src/RISCV.fs Functions for creating and manipulating RISC-V as-
sembly code fragments.

src/PrettyPrinter.fs Functions to pretty-print various compiler data struc-
tures (e.g. ASTs or typing environments)

src/Log.fs Utility functions for logging messages on the console.
src/Util.fs Miscellaneous utility functions (e.g. for generating

unique strings or numbers).
continues on next page

3.3. Overview of the hyggec Source Tree 57



02247 Compiler Construction, Spring 2023

Table 3.1 – continued from previous page
File or directory name Description
src/CmdLine.fs Configuration of the hyggec command line options.
src/Program.fs The main program, with the main function.
examples/ This directory contains a few examples of Hygge0 pro-

grams.
src/Test.fs Test suite configuration and execution functions. The

test suite uses the Expecto testing library12.
hyggec.fsproj .NET project file.
src/RARS.fs Utility functions to launch RARS — RISC-V Assembler

and Runtime Simulator and immediately execute the
compiled RISC-V assembly code.

lib/ This directory contains a copy of RARS — RISC-V As-
sembler and Runtime Simulator , used in RARS.fs (see
above).

rars and rars.bat Scripts to launch RARS on Unix-based and Windows
operating systems. These scripts use the copy or RARS
contained in the lib/ directory.

README.md and LICENSE.md Should be self-explanatory…
fsharplint.json Configuration file for FSharpLint13 (you can ignore it).
src/Parser.fs, src/
Parser.fsi, src/Lexer.fs

Auto-generated parser and lexer files, overwritten
when the hyggec source is recompiled. Do not edit!

bin/ and obj/ Auto-generated directories, overwritten when the
hyggec source is recompiled. Do not edit!

3.4 The Abstract Syntax Tree

After the specification of a programming language is completed, one of the first steps
towards developing a compiler is (typically) defining the data structures needed for the
internal representation of a syntactically-correct program, after it has been read from an
input file. This internal representation is called Abstract Syntax Tree (AST) (where the
term “abstract” differentiates it from the concrete syntax tree handled by the parser , that
we discuss later). The AST definition follows the grammar of the language being com-
piled, with possible adjustments for simplifying the overall compiler implementation.

In the case of hyggec, the AST is defined in src/AST.fs and is based on the Hygge0
grammar in Definition 1. However, the AST definition includes some adjustments, that
we now illustrate.

12 https://github.com/haf/expecto
13 https://github.com/fsprojects/FSharpLint

58 Module 3: Hands-On with hyggec

https://github.com/haf/expecto
https://github.com/fsprojects/FSharpLint


02247 Compiler Construction, Spring 2023

3.4.1 Defining the AST: First Attempt

In a programming language like F#, we can very naturally specify an AST using discrim-
inated unions14. For instance, we can:

1. define a type Expr for representing a genericHygge0 expression 𝑒, with a dedicated
named case to represent each different kind of expression in Definition 1; and

2. in each named case, use fields of type Expr for representing sub-expressions.

For example, starting from the bottom of Definition 1, we may define our AST type Expr
as:

type Expr =
| UnitVal // Unit value
| BoolVal of value: bool // Boolean value
| IntVal of value: int // Integer value
// ...
| Var of name: string // Variable

// Addition between left-hand-side and right-hand-side sub-expressions.
| Add of lhs: Expr

* rhs: Expr

// Multiplication between left-hand-side and right-hand-side sub-expressions.
| Mult of lhs: Expr

* rhs: Expr

// ...

Using the type definition above, the Hygge0 expression “42 + 𝑥” would be represented
in F# as:

Add( IntVal(42), Var("x") )

This approach is valid, but it has two drawbacks.

1. The definition of Expr above does not include information about the position (line
and column number) of each sub-expression in the original input file being com-
piled. We will need this information to generate helpful error messages during
type checking, to help Hygge0 programmers find and fix errors in their programs.

2. During type checking, we take a Hygge0 expression 𝑒 and compute its typing
derivation by following the syntactic structure of 𝑒. Therefore, the typing deriva-
tion of 𝑒 has pretty much the same structure of the syntax tree of 𝑒: see, for in-
stance, Example 14. The main difference is that, unlike a syntax tree, a typing
derivation includes information about:

• the type assigned to each sub-expression, and

• the typing environment used to assign such a type.
14 https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions

3.4. The Abstract Syntax Tree 59

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions


02247 Compiler Construction, Spring 2023

This information will be necessary for code generation, so it is very convenient
to save it somewhere, when it is generated during type checking. And given the
similarities between an AST and a typing derivation, it would be nice to somehow
represent both of them with the same data type, thus avoiding code duplication.

3.4.2 The AST Definition

We address both drawbacks discussed above in the final definition of the Hygge0 AST,
which is available in src/AST.fs. The key idea is that we “wrap” each Expr object with
a record of type Node (representing a node of the AST) which includes:

1. the position of the expression in the original source file, and

2. information about the typing of the expression. This information is absent before
type-checking, and becomes available after type-checking.

As a result, we obtain a unified data type that includes the position of each expression,
and can represent ASTs both before and after they are type-checked. This approach is
adopted by many compilers (although the details may vary depending on the implemen-
tation programming language); here it is inspired by the Scala 3 compiler15.

The final definition of AST Nodes and Expressions in hyggec is the following.

type Node<'E,'T> =
{

Expr: Expr<'E,'T> // Hygge expression contained in this AST node
Pos: Position // Position of the expression in the input source file
Env: 'E // Typing environment used to type-check the expression
Type: 'T // Type assigned to the expression

}

and Expr<'E,'T> =
| UnitVal // Unit value
| BoolVal of value: bool // Boolean value
| IntVal of value: int // Integer value
// ...
| Var of name: string // Variable

// Addition between left-hand-side and right-hand-side sub-expressions.
| Add of lhs: Node<'E,'T>

* rhs: Node<'E,'T>

// Multiplication between left-hand-side and right-hand-side sub-expressions.
| Mult of lhs: Node<'E,'T>

* rhs: Node<'E,'T>

// ...

The two type arguments of Node<'E,'T> and Expr<'E,'T> are used as follows:
15 https://github.com/lampepfl/dotty

60 Module 3: Hands-On with hyggec

https://github.com/lampepfl/dotty


02247 Compiler Construction, Spring 2023

• 'E specifies what typing environment information is associated to each expression
in the AST;

• 'T specifies what type information is assigned to each expression in the AST.

The hyggec compiler handles two kinds of ASTs, both based on the definition of Node<'E,
'T> above:

• UntypedAST, which contains expressions of type UntypedExpr (both defined in
src/AST.fs). These types are just aliases, respectively, for Node<unit, unit> and
Expr<unit, unit>: they represent AST nodes and expressions without any infor-
mation (unit) about their typing environments or types (see Example 17 below).
This kind of AST represents a syntactically-valid Hygge0 expression read from an
input file; it is produced by The Lexer and Parser , and it may contain expressions
that get stuck, like the ones discussed in Example 13.

• TypedAST, which contains expressions of type TypedExpr (both defined in src/
Typechecker.fs). These types are just aliases, respectively, for Node<TypingEnv,
Type> and Expr<TypingEnv, Type>: they represent AST nodes and expressions
that have been type-checked, and have typing information available (similarly to
a typing derivation). We will discuss TypedASTs in Types and Type Checking.

Example 17 (Untyped AST of a Hygge0 Expression)

Consider the Hygge0 expression “42 + 𝑥”. Its representation in F# as an instance of type
UntypedAST (i.e. Node<unit, unit>) is the following:

{
Pos = ... // Position in the input source file
Env = ()
Type = ()
Expr = Add( {

Pos = ... // Position in the input source file
Env = ()
Type = ()
Expr = IntVal(42)

},
{

Pos = ... // Position in the input source file
Env = ()
Type = ()
Expr = Var("x")

} )
}

The file src/AST.fs also defines two types called PretypeNode and Pretype that repre-
sent, respectively, the syntax tree node of a pretype, and the pretype itself fromDefinition
1.

3.4. The Abstract Syntax Tree 61



02247 Compiler Construction, Spring 2023

type PretypeNode =
{

Pos: Position // Position of the pretype in the source file
Pretype: Pretype // Pretype contained in this Abstract Syntax Tree node

}

and Pretype =
| TId of id: string // A type identifier

Note: This representation of pretypes with two data types may seem a bit redundant —
but it will allow us to easily extend the Pretype definition (and the types supported by
hyggec) later in the course.

3.5 The Lexer and Parser

After we establish the internal representation of the AST , a logical next step in construct-
ing a compiler is to develop the functions that builds such ASTs by reading some input
text (i.e. the source code we wish to compile). To this purpose, we need to develop two
components.

• A lexer (a.k.a. tokenizer or scanner) that reads the input text and classifies groups
of characters that are either “useful” for building a syntax tree (e.g. identifiers,
operators, parentheses…) or “useless” (e.g. sequences of white spaces, newlines,
comments…). These groups of characters are typically recognised by matching
them against a set of regular expressions; the goal of the lexer is to discard useless
groups of characters, and turn the useful groups into tokens (or lexemes): each
token captures a group of character and assigns to it a lexical category. The lexer
should also report a tokenization error if it sees a sequence of input characters
that it cannot classify.

• A parser that reads a stream of tokens produced by a lexer, and tries to match them
against a set of grammar rules, thus producing a corresponding syntax tree. The
parser should produce a syntax error if it is unable to match the input tokens with
any of the grammar rules.

Building lexers and parsers is typically a routine job (unless the programming language
we wish to parse has a peculiar syntax…), and is also very time-consuming. For these
reasons, there is a wide variety of tools called lexer generators and parser generators
— i.e. programs that:

1. read a configuration file containing a specification of the language we wish to
compile (as a description of its tokens and/or grammar rules); and

2. generate the source code of a lexer and/or parser, based on such configuration file.
The generated code can then be included and used as part of a compiler.

Here are some examples of lexer and parser generators.

62 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

• Lex16 and Yacc17 are standard tools for generating lexers/parser in C, available on
all Unix-like operating systems. These tools were initially released in the 1970s!

• Flex18 and GNU Bison19 are more modern, improved replacements for Lex and
Yacc.

• FsLex and FsYacc20 are a lexer and parser generator for F#: they are used in hyggec.

• ANTLR21 can generate lexers/parsers in various programming languages, and is
especially popular in the Java world.

In the following sections we will focus on FsLex and FsYacc, and how they are used in
hyggec.

3.5.1 The Parser Configuration File Parser.fsy (Simplified)

The file Parser.fsy is a configuration file for the FsYacc parser generator. This file spec-
ifies the rules for transforming a sequence of tokens (obtained from the lexer, discussed
below) into an AST.

The file Parser.fsy has the following structure: here we see a very simplified frag-
ment that only accepts additions between integers and variables. (We will address these
simplifications later, in The Real Parser.fsy).

1 %{
2 // Preamble with definitions of types and/or functions. The code appearing here
3 // will be placed on top of the generated parser source code.
4

5 // Auxiliary function to build an untyped AST node for a Hygge expression.
6 let mkNode (..., expr: UntypedExpr) : UntypedAST = // ...
7 %}
8

9 // Name of the grammar rule (defined below) to parse first.
10 %start program
11

12 // Declaration of tokens (values, operators, ...). These tokens are recognised
13 // by the lexer according to its configuration in Lexer.fsl.
14 %token <int> LIT_INT
15 %token PLUS
16 // ...
17

18 %token <string> IDENT // Generic identifier (might be a variable, pretype, etc.)
19 %token EOF // Signals the End-Of-File
20

21 %%
(continues on next page)

16 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/lex.html
17 https://pubs.opengroup.org/onlinepubs/9699919799/utilities/yacc.html
18 https://github.com/westes/flex
19 https://www.gnu.org/software/bison/
20 https://fsprojects.github.io/FsLexYacc/
21 https://www.antlr.org/

3.5. The Lexer and Parser 63

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/lex.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/yacc.html
https://github.com/westes/flex
https://www.gnu.org/software/bison/
https://fsprojects.github.io/FsLexYacc/
https://www.antlr.org/


02247 Compiler Construction, Spring 2023

(continued from previous page)
22

23 // After '%%' above, we specify the rules of the grammar. When a rule matches,
24 // it produces a value, which is computed by running the snippet of F# code next
25 // to the rule itself (between curly brackets). The snippet of code, in turn,
26 // can use the values produced when matching each symbol in its own rule, by
27 // referring to the symbol position in the rule ($1, $2, ...).
28

29 // Starting point: parsing rule for a whole Hygge program.
30 program:
31 | expr EOF { $1 } // A program is an expression followed by End-Of-File
32

33 expr:
34 | expr PLUS expr { mkNode(..., Expr.Add($1, $3)) }
35 | value { mkNode(..., Expr.IntVal($1)) }
36 | variable { mkNode(..., Expr.Var($1)) }
37 // ...
38

39 value:
40 | LIT_INT { $1 } // We just return the integer captured by token 'LIT_INT'
41 // ...
42

43 variable:
44 | ident { $1 }
45

46 ident:
47 | IDENT { $1 } // We just return the string captured by the token 'IDENT'

The parser configuration above declares, on lines 14–19, a few tokens:

• LIT_INT (literal integer), which also carries an integer value;

• PLUS, which carries no other value;

• IDENT (identifier), which also carries a string value;

• EOF, which carries no other value.

(We will see later, when discussing the lexer , that the values carried by the tokens
LIT_INT and IDENT come from the Hygge0 source file we are compiling.)

Then, on lines 33–36, the sample of Parser.fsy above declares grammar rules for parsing
an expression, which can be either:

• an expression followed by the token PLUS and another expression; or

• a value, which is a token LIT_INT (lines 39–40);

• a variable, which is just an identifier (lines 43–44), which is just a token IDENT
(lines 46–47).

(Notice the similarity between the grammar above and the one in Definition 1.)

The generated parser will read a stream of tokens — and whenever it matches one of the
grammar rules above, it computes a result value by executing the code snippet next to

64 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

the rule itself (between curly brackets). Our goal is to set up such code snippets in a
way that recursively builds the UntypedAST of the input source code, based on how the
grammar rules are matched.

In the sample of Parser.fsy above, the code snippets in lines 34–36 create AST nodes
via the auxiliary function mkNode (here omitted), which inserts the position of the parsed
expression. The code snippets use the values produced when parsing each symbol in
their own rule, by referring to symbol position in the rule ($1, $2, …).

For instance, here is what happens when the parser is trying to parse an “expr”, accord-
ing to its rules (lines 33–36).

• Line 34. When “expr PLUS expr” matches, the parser creates an UntypedAST con-
taining an expression Expr.Add($1, $3) — where $1 and $3 are the results pro-
duced when parsing the exprs on the left and right of PLUS (hence, both $1 and $3
are UntypedASTs).

• Line 35. When “value” matches, the parser creates an AST node containing an
expression Expr.IntVal($1), where $1 is the result produced when parsing the
symbol value. To understand what is this result, we observe:

– the rules for parsing value (lines 39–40) say that when value is parsed by
matching a token LIT_INT, the result is $1, which is the value carried by the
token itself.

• Line 36. When “variable” matches, the parser creates an AST node containing
an expression Expr.Var($1), where $1 is the result produced when parsing the
symbol variable. To understand what is this result, we observe:

– the rules for parsing variable (lines 43–44) say that when variable is parsed
by matching a symbol ident, we just return $1, which is the value produced
when parsing ident;

* the rules for parsing ident (lines 46–47) say that they say that when
ident is parsed by matching a token IDENT, the result is $1, which is the
value carried by the token itself.

3.5.2 The Lexer Configuration File Lexer.fsl

The tokens declared in the parser configuration file are recognised by the lexer — and the
lexer configuration file Lexer.fsl specifies how this is done.

The file Lexer.fsl has the following structure: here we see a simplified fragment that
only recognises a few tokens.

1 {
2 // Preamble with definitions of types and/or functions. The code appearing here
3 // will be placed on top of the generated lexer source code.
4 }
5

6 // Regular expressions used in the token rules below
7 let letter = ['a'-'z'] | ['A'-'Z']

(continues on next page)

3.5. The Lexer and Parser 65



02247 Compiler Construction, Spring 2023

(continued from previous page)
8 let digit = ['0'-'9']
9 let litInt = digit+

10 let ident = (letter | '_') (letter | '_' | digit)*
11 // ...
12

13 // We now define the rules for recognising the language tokens. When a rule
14 // matches, it produces a token, which is computed by running the snippet of F#
15 // code next to the rule itself (between curly brackets).
16 rule tokenize = parse
17 // ...
18 | litInt { Parser.LIT_INT(...) }
19 | "+" { Parser.PLUS }
20 | ident { Parser.IDENT(...) }
21 | eof { Parser.EOF } // End of File

The configuration above contains, on lines 18–21, a series of rules: they specify what the
lexer should do whenever it sees a sequence of input characters that matches a certain
string or regular expression. When a rule matches, the lexer produces a token, which
is computed by running the snippet of F# code next to the rule itself (between curly
brackets).

For example:

• line 16 says that if the input characters match the regular expression litInt
(defined on line 9), then the lexer produces a token LIT_INT carrying the value
matched by the regular expression (this part is omitted with “...”);

• line 17 says that if a "+" character is seen, then the lexer produces a token PLUS.

Note: The actual configuration file Lexer.fsl used by hyggec contains more rules (here
omitted) that discard “useless” groups of characters. For example:

• whenever we see a white space or newline, we skip it, and continue lexing from
the character that follows;

• whenever we see "//" (the beginning of a comment) we skip all characters until
we see and end-of-line, and continue lexing from the character that follows.

3.5.3 Example: the Lexer and Parser in Action

We now have all ingredients to understand how the hyggec lexer and parser examine an
input file, and turn it into a sequence of tokens, and then into an AST. This is detailed in
Example 18.

Example 18 (Lexing and Parsing a Hygge0 Expression)

Let’s create a file called test.hyg, with the following content:

66 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

42 + x

When the hyggec lexer reads this file, it will process its contents character-by-character,
grouping and classifying the characters according to the rules inThe Lexer Configuration
File Lexer.fsl. Therefore, the lexer will see the file contents as follows:

• 42, that matches the rule on line 18. Consequently, the lexer produces a token
LIT_INT carrying the value 42;

• a white space, that is skipped;

• +, that matches the rule on line 19. Consequently, the lexer produces a token PLUS;

• a white space, that is skipped;

• x, that matches the rule on line 20; Consequently, the lexer produces a token IDENT
carrying the value "x";

• the end of the file, which matches the rule on line 21. Consequently, the lexer
produces a token EOF.

This sequence of tokens can be seen by running:

./hyggec tokenize test.hyg

The output is:

[LIT_INT 42; PLUS; IDENT "x"; EOF]

This sequence of tokens is then processed by the parser, according to The Parser Configu-
ration File Parser.fsy (Simplified). Therefore, the parser will try to parse the start symbol,
called program (line 30); the only rule for program (line 31) requires to match an expr
followed by an EOF token, and return the result $1 (produced by parsing expr). Con-
sequently, the generated parser will try to match the sequence of tokens [LIT_INT 42;
PLUS; IDENT "x"] against expr, and produce an UntypedAST as a result.

Fig.3.2 provides a visual intuition of how the tokens [LIT_INT 42; PLUS; IDENT "x"]
are matched against expr, and how the instance of UntypedAST shown in Example 17 is
constructed:

• the solid arrows (going up) show how the grammar rules in The Parser Configu-
ration File Parser.fsy (Simplified) are applied (such rule applications describe the
concrete syntax tree of the input file);

• the dashed arrows (going down) show how the result of each rule is produced and
propagated, building the abstract syntax tree instance shown in Example 17 (of
type UntypedAST).

More in detail, Fig.3.2 depicts the following process:

• among the rules for parsing expr (lines 34–36), the input tokens [LIT_INT 42;
PLUS; IDENT "x"] are only compatible with the rule “expr PLUS expr” (line 34),
which:

1. recursively matches LIT_INT 42 as an expr via the rule on line 35, which:

3.5. The Lexer and Parser 67



02247 Compiler Construction, Spring 2023

Fig. 3.2: How the parser generated from The Parser Configuration File Parser.fsy (Simpli-
fied) processes the sequence of tokens [LIT_INT 42; PLUS; IDENT "x"].

– recursivelymatches LIT_INT 42 as a value via the rule on line 40, which:

* matches the token LIT_INT 42, and

* produces 42

– produces the AST node containing the expression IntVal(42);

2. matches PLUS;

3. recursively matches IDENT "x" as an expr via the rule on line 36, which:

– recursively matches IDENT "x" as a variable via the rule on line 44,
which:

* recursively matches IDENT "x" as an ident via the rule on line 47,
which:

- matches token IDENT "x", and

- produces "x"

* produces "x";

– produces the AST node containing the expression Var("x");

4. finally, produces the AST node containing the expression Add($1, $3),
where $1 and $3 are the AST nodes produced by matching the sub-
expressions. Therefore:

68 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

– $1 is replaced by the AST node containing IntVal(42), and

– $3 is replaced by the AST node containing Var("x").

The corresponding AST produced by hyggec can be seen by running:

./hyggec parse test.hyg

The output is the following (where the AST nodes show their position of their expression
in test.hyg, ranging from their initial to their final line:column coordinates).

Add (1:1-1:6)
┣╾lhs: IntVal 42 (1:1-1:2)
┗╾rhs: Var x (1:6-1:6)

3.5.4 The Real Parser.fsy

To conclude this section about the hyggec lexer and parser, it is worth highlighting that
The Parser Configuration File Parser.fsy (Simplified) shown above is very simpli-
fied. It conveys an intuition of how FsYacc works, but it has a crucial flaw: if imple-
mented that way, Parser.fsy would describe an ambiguous grammar : see Example 19
below.

Example 19 (Ambiguity of the Simplified Parser.fsy)

Consider an input file woth the following content:

1 + 2 + 3

If we tokenize this file, we get the following sequence of tokens:

[LIT_INT 1; PLUS; LIT_INT 2; PLUS; LIT_INT 3; EOF]

If we pass such tokens to a parser generated from Parser.fsy as sketched in The Parser
Configuration File Parser.fsy (Simplified), that parser could build two possible syntax
trees.

One syntax tree is obtained by treating + as a left-associative operator, i.e. by interpret-
ing the input as (1 + 2) + 3:

Add
┣╾lhs: Add
┃ ┣╾lhs: IntVal 1
┃ ┗╾rhs: IntVal 2
┗╾rhs: IntVal 3

The other syntax tree is obtained by treating + as a right-associative operator, i.e. by
interpreting the input as 1 + (2 + 3):

3.5. The Lexer and Parser 69



02247 Compiler Construction, Spring 2023

Add
┣╾lhs: IntVal 1
┗╾rhs: Add

┣╾lhs: IntVal 2
┗╾rhs: IntVal 3

The parser generator FsYacc would signal the ambiguity described in Example 19 with
obscure messages like:

shift/reduce error at state 47 on terminal XXXXX ...

For this reason, the real configuration file Parser.fsy breaks down the Hygge0 grammar
into many rules, in order to enforce operator associativity and precedence, and remove
any ambiguity. This follows the style of the Java grammar specification22 (but it is much
simpler). For example, the rules for parsing additions andmultiplications look as follows:

addExpr: // Additive expression
| addExpr PLUS multExpr { mkNode(..., Expr.Add($1, $3)) }
| multExpr { $1 }

multExpr: // Multiplicative expression
| multExpr TIMES unaryExpr { mkNode(..., Expr.Mult($1, $3)) }
| unaryExpr { $1 }

unaryExpr: // ...

This makes addition left-associative, and forces the parser to only look for a multiplica-
tion after trying to parse an addition. The effect is that, when parsing e.g. 1 + 2 * 3 +
4, we get the expected AST:

Add
┣╾lhs: Add
┃ ┣╾lhs: IntVal 1
┃ ┗╾rhs: Mult
┃ ┣╾lhs: IntVal 2
┃ ┗╾rhs: IntVal 3
┗╾rhs: IntVal 4

22 https://docs.oracle.com/javase/specs/jls/se19/html/jls-19.html

70 Module 3: Hands-On with hyggec

https://docs.oracle.com/javase/specs/jls/se19/html/jls-19.html


02247 Compiler Construction, Spring 2023

3.5.5 References and Further Readings

This tutorial23 by Thanos Papathanasiou gives a nice overview of FsLex and FsYacc.
(Note: the implementation uses an old version of .NET, but it also works on newer ver-
sions if you tweak its .fsproj file.)

FsYacc generates a parser based on the LALR algorithm. To know more about this pars-
ing algorithm (and others), and understand the limitations of FsYacc and the meaning
of its error messages, you can have a look at:

• Bill Campbell, Iyer Swami, Bahar Akbal-Delibas. Introduction to Compiler Con-
struction in a Java World. Chapman and Hall/CRC, 2012. Available on DTU
Findit24.

– Chapter 3.4 (Bottom-Up Deterministic Parsing)

3.6 The Built-In Interpreter

hyggec includes an interpreter that can execute Hygge0 expressions (either typed or un-
typed). This interpreter is not necessary for developing a compiler: in fact, once hyggec
has a typed AST (produced by Typechecker.fs), it can proceed directly to Code Generation.
However, an interpreter can be handy for:

1. having a direct implementation of the Formal Semantics of Hygge0, to be used as
a reference; and

2. testing whether the compiler respects the Formal Semantics of Hygge0: an expres-
sion 𝑒 compiled and executed under RARS must produce the same computations
and outputs observed when interpreting 𝑒.

The interpreter is implemented in the file src/Interpreter.fs, following the Formal
Semantics of Hygge0. Most of its types and functions take two type arguments 'E and
'T: they have the same meaning discussed in The AST Definition, and being generic, they
allow the interpreter to support both typed and untyped ASTs.

The type RuntimeEnv represents the runtime environment 𝑅 in Structural Operational
Semantics of Hygge0:

type RuntimeEnv<'E,'T> = {
Reader: Option<unit -> string> // Used to read a console input
Printer: Option<string -> unit> // Used to perform console output

}

The function reduce is the core of src/Interpreter.fs, and it corresponds to the reduc-
tion in Definition 4. The function takes a runtime environment and an AST node, and
attempts to perform one reduction step:

• if it succeeds, it returns Somewith a pair consisting of a (possibly updated) runtime
environment and reduced AST node;

23 https://thanos.codes/blog/using-fslexyacc-the-fsharp-lexer-and-parser/
24 https://findit.dtu.dk/en/catalog/5c59eb2fd9001d01e4360926

3.6. The Built-In Interpreter 71

https://thanos.codes/blog/using-fslexyacc-the-fsharp-lexer-and-parser/
https://findit.dtu.dk/en/catalog/5c59eb2fd9001d01e4360926
https://findit.dtu.dk/en/catalog/5c59eb2fd9001d01e4360926


02247 Compiler Construction, Spring 2023

• if it cannot perform a reduction (because the AST node contains a value, or a stuck
expression), it returns None.

let rec reduce (env: RuntimeEnv<'E,'T>)
(node: Node<'E,'T>): Option<RuntimeEnv<'E,'T> * Node<'E,'T>> =

match node.Expr with
// ...

Each pattern matching case in reduce corresponds to a possible Hygge0 expression, and
the function attempts to reduce the expression according to Definition 4. For example,
values cannot reduce (because there is no rule to let them reduce):

| UnitVal
| BoolVal(_)
| IntVal(_)
| FloatVal(_)
| StringVal(_) -> None

| Var(_) -> None

For an expression “assert(𝑒)”, the function reduce follows rules [R-Assert-Eval-Arg] and
[R-Assert-Res] in Definition 4:

• if 𝑒 is the boolean value true, it proceeds by reducing the whole expression to unit
(according to rule [R-Assert-Res]);

• otherwise, it tries to recursively reduce 𝑒:
– if 𝑒 reduces into 𝑒′, then reduce returns an AST node with the updated ex-

pression 𝑒′, by rule [R-Assert-Eval-Arg] (notice that reduce creates the new
AST node by copying and updating its original argument node);

– if 𝑒 cannot reduce, then 𝑒 is stuck, and thus, reduce returns None (because
the whole expression is stuck).

| Assertion(arg) ->
match arg.Expr with
| BoolVal(true) -> Some(env, {node with Expr = UnitVal})
| _ ->

match (reduce env arg) with
| Some(env', arg') -> Some(env', {node with Expr = Assertion(arg')})
| None -> None

For an expression “let x ∶ 𝑡 = 𝑒; 𝑒2”, the function reduce follows rules [R-Let-Eval-Init]
and [R-Let-Subst] in Definition 4. It tries to recursively reduce 𝑒, and:

• if 𝑒 can reduce into 𝑒′, it returns an AST node with the updated expression “let x ∶
𝑡 = 𝑒′; 𝑒2” (by rule [R-Let-Eval-Init]);

• if 𝑒 cannot reduce bacause it is already a value 𝑣, it substitutes𝑥with 𝑣 in 𝑒′ (by rule
[R-Let-Subst]). In this case, reduce invokes ASTUtil.subst, which implements
substitution according to Definition 2;

72 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

• otherwise, 𝑒 is stuck, and thus, reduce returns None (because the whole expression
is stuck).

| Let(name, tpe, init, scope) ->
match (reduce env init) with
| Some(env', def') ->

Some(env', {node with Expr = Let(name, tpe, def', scope)})
| None when (isValue init) ->

Some(env, {node with Expr = (ASTUtil.subst scope name init).Expr})
| None -> None

Exercise 18

Consider the following groups of reduction rules from Definition 4:

• [R-Sub-L], [R-Sub-R], [R-Sub-Res]

• [R-Mul-L], [R-Mul-R], [R-Mul-Res]

• [R-Seq-Eval], [R-Seq-Res]

• [R-Type-Res]

• [R-Ascr-Res]

• [T-Print-Eval], [T-Print-Res],

• [R-Read-Int], [R-Read-Float]

For each group of reduction rules listed above:

1. find the case of the function reduce (in the file src/Interpreter.fs) that imple-
ments reductions for the corresponding Hygge0 expression (e.g. in the case of
[T-Type-Res], find the case of reduce that handles the expression “type 𝑥 = 𝑡; 𝑒”);

2. identify how the premises and conditions of the reduction rules are checked in
reduce; and

3. identify how the expression returned by reduce corresponds to the reduced ex-
pression in the conclusion of the reduction rules.

Exercise 19

Consider the reduction rules you wrote when solving Exercise ⁇. For each of those
reduction rules:

1. find the case of the function reduce (in the file src/Interpreter.fs) that imple-
ments reduction for the corresponding Hygge0 expression;

2. identify how each premise and condition of your reduction rule is checked in
reduce; and

3. identify how the expression returned by reduce corresponds to the reduced ex-
pression in the conclusion of your reduction rule.

3.6. The Built-In Interpreter 73



02247 Compiler Construction, Spring 2023

Do you see any discrepancy? If so, do you think there is a mistake in reduce, or in your
reduction rule?

Tip: If you have not yet solved Exercise ⁇, you can proceed in the opposite direction:
see how reduce handles a certain expression, and try to write down the corresponding
reduction rule(s).

3.7 Types and Type Checking

The hyggec type checker is implemented in the file src/Typechecker.fs, and its goal is
to inspect an UntypedAST (produced by The Lexer and Parser), and either:

• produce a TypedAST, where each AST node and expression has an associated type
and typing environment (similarly to a typing derivation); or

• report typing errors pointing at issues in the input source program.

Consequently, we represent the result of type checking as a type called TypingResult
(defined in src/Typechecker.fs). The definition of TypingResult uses the standard
Result type provided by F#25, so a typing result is either Ok with a TypedAST, or Error
with a list of type errors:

type TypingResult = Result<TypedAST, TypeErrors>

As mentioned in The AST Definition, the type TypedAST above is just an alias for type
Node<TypingEnv, Type>, where:

• the type Type (defined in the file src/Type.fs) is the internal representation of a
Hygge0 type in the hyggec compiler, and follows Definition 5:

type Type =
| TBool // Boolean type.
| TInt // Integer type.
| TFloat // Floating-point type (single-precision).
| TString // String type.
| TUnit // Unit type.
| TVar of name: string // Type variable.

• the type TypingEnv (defined in the file src/Typechecker.fs) is the internal rep-
resentation of a Hygge0 typing environment in the hyggec compiler, and follows
Definition 6:

type TypingEnv = {
Vars: Map<string, Type> // Variables in the current scope, with their␣

↪type
(continues on next page)

25 https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/results

74 Module 3: Hands-On with hyggec

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/results


02247 Compiler Construction, Spring 2023

(continued from previous page)
TypeVars: Map<string, Type> // Type vars in current scope, with their␣

↪def.
}

3.7.1 Type Checking or Type Inference?

Before proceeding, it is worth noticing that here (as in most literature about compilers)
we often use the term “type checking” in a broad sense, meaning “analysing a source
program to see whether it is well-typed”. But more precisely, to implement hyggec we
need to solve a type inference problem, according to Definition 12 below.

Definition 12 (Type Checking vs. Type Inference)

Take a set of rules defining a typing judgement Γ ⊢ 𝑒 ∶ 𝑇 (such as the rules in Definition
8).

• A type checking problem has the following form:

– given a typing environment Γ, an expression 𝑒, and a type 𝑇 , construct a
typing derivation that proves Γ ⊢ 𝑒 ∶ 𝑇

• A type inference problem has the following form:

– given a typing environment Γ and an expression 𝑒, find a type 𝑇 for which
we can construct a typing derivation that proves Γ ⊢ 𝑒 ∶ 𝑇

Luckily, the Hygge0 typing rules in Definition 8 directly suggest us how to implement
a type inference algorithm, because the rules are syntax-driven: just by looking at the
shape of an expression 𝑒, and reading the rules “bottom-up” (from the conclusion to the
premises) we can determine which rule(s) could possibly be used to type 𝑒, and what
additional checks they require. For instance, suppose we are trying to infer the type of
a Hygge0 expression 𝑒:

• if 𝑒 is an integer value 42, we can only type it by rule [T-Val-Int], hence we imme-
diately infer that 𝑒 has type int;

• if 𝑒 is a variable 𝑥, we can only type it by rule [T-Var], hence we infer that 𝑒 must
have the type contained in Γ.Vars(𝑥). If 𝑥 is not in Γ.Vars, there is no other typing
rule we can try, so we report a typing error;

• if 𝑒 is a logical negation “not 𝑒′”, then we can only type it by trying the typing
rule you wrote as part of Exercise ⁇. Therefore, we recursively infer the type of
𝑒′, and check whether 𝑒′ has type bool. If this is the case, we infer that 𝑒 has type
bool; otherwise, there is no other typing rule we can try, so we report a typing
error;

• if 𝑒 is an addition “𝑒1 + 𝑒2”, then we can only type it by trying rule [T-Add].
Therefore, we recursively infer the types of 𝑒1 and 𝑒2, and check whether:

3.7. Types and Type Checking 75



02247 Compiler Construction, Spring 2023

– both 𝑒1 and 𝑒2 have type int — and in this case, we infer that 𝑒 has type int;
or

– both 𝑒1 and 𝑒2 have type float — and in this case, we infer that 𝑒 has type
float.

If this doesn’t work, there is no other typing rule we can try, so we report a typing
error;

• if 𝑒 is a conditional “if 𝑒1 then 𝑒2 else 𝑒3”, we can only type it by trying rule
[T-Cond]. Therefore, we recursively infer the types of 𝑒1, 𝑒2, and 𝑒3, and check
whether:

– 𝑒1 has type bool, and

– 𝑒1 and 𝑒2 have a same type 𝑇 — and in this case, we infer that 𝑒 has that type
𝑇 .

If this doesn’t work, there is no other typing rule we can try, so we report a typing
error.

3.7.2 Implementation of src/Typechecker.fs

The core of src/Typechecker.fs is a function called typer, which implements the type
inference algorithm discussed above. The function typer has the following definition: it
takes a typing environment and an AST node, performs a pattern matching against the
expression contained in the AST node, and returns a TypingResult.

let rec typer (env: TypingEnv) (node: UntypedAST): TypingResult =
match node.Expr with
// ...

The function typer is initially called with an empty environment, and with the whole
AST of the Hygge0 program being compiled. While running, typer recursively traverses
the AST, adding information to the environment, as required by the typing rules in Def-
inition 8.

Each case in typer takes the given AST node (which is untyped), and (if type inference
succeeds) produces a typed AST node containing the current environment, and the in-
ferred type. Otherwise, typer returns a list of typing errors.

For example, typer assigns types to boolean or integer values, as follows:

| BoolVal(v) ->
Ok { Pos = node.Pos; Env = env; Type = TBool; Expr = BoolVal(v) }

| IntVal(v) ->
Ok { Pos = node.Pos; Env = env; Type = TInt; Expr = IntVal(v) }

When typing a variable, typer checks whether the variable is in the typing environment,
and assigns the type it finds there to the variable — or reports an error:

76 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

| Var(name) ->
match (env.Vars.TryFind name) with
| Some(tpe) ->

Ok { Pos = node.Pos; Env = env; Type = tpe; Expr = Var(name) }
| None ->

Error([(node.Pos, $"undefined variable: %s{name}")])

When typing a logical “not” expression, typer recursively infers the type of the argu-
ment, and checks whether it is a subtype of bool: if so, typer infers that the whole
expression has type bool; otherwise, it reports type errors.

| Not(arg) ->
match (typer env arg) with
| Ok(targ) when (isSubtypeOf env targ.Type TBool) ->

Ok { Pos = node.Pos; Env = env; Type = TBool; Expr = Not(targ) }
| Ok(arg) ->

Error([(node.Pos, $"expected %O{TBool} arg, found %O{arg.Type}")])
| Error(es) -> Error(es)

Important: In the last example above (3rd line) we are using isSubtypeOf (defined
in src/Typechecker.fs) to compare the types targ.Type and TBool. This check corre-
sponds to an application of the subsumption rule in Definition 11: we want targ to have
type bool, so it is OK if targ has a subtype of bool (e.g. via some type alias).

Instead of using isSubtypeOf, in the code above we could have simply written targ.
Type = TBool: this would work, but it would also make our typing system less flexible,
leading to limitations similar to those discussed in Example 15.

Therefore, the rule of thumb is: whenever typer needs to compare two types, it should
use isSubtypeOf (instead of plain equality =).

Onemay ask: instead of checking subtyping in multiple places, can we implement a general
type inference case based on the subsumption rule [T-Sub] in Definition 11?

The answer, unfortunately, is no — and the reason is that (unlike the typing rules in
Definition 8) rule [T-Sub] is not syntax-driven: it can be applied to any expression 𝑒.
Therefore, we need to explicitly check subtyping whenever we compare types.

The rest of the cases of typer work similarly. Two things to mention:

• in the cases for “let x ∶ 𝑡 = 𝑒1; 𝑒2” and “type 𝑥 = 𝑡; 𝑒”, typer need to check
whether the pretype 𝑡 corresponds to some valid type 𝑇 . To this end, typer uses
the function resolvePretype, which corresponds to the type resolution judgement
in Definition 7 ;

• in various cases, typer uses auxiliary functions to avoid code duplication.
For instance: “𝑒1 + 𝑒2” and “𝑒1 ∗ 𝑒2” are typed in a similar way (see rule
[T-Add] in Definition 8, and Exercise ⁇), and thus, typer uses a function called
binaryNumericalOpTyper to handle both.

3.7. Types and Type Checking 77



02247 Compiler Construction, Spring 2023

Example 20 (Untyped vs. Typed ASTs)

To see the difference between the untyped AST and the typed AST of a Hygge0 program,
you can try to parse the example in Example 3:

./hyggec parse examples/hygge0-spec-example.hyg

And then compare the untyped AST above with the typed AST produced by src/
Typechecker.fs:

./hyggec typecheck examples/hygge0-spec-example.hyg

Exercise 20

Consider the following typing rules from Definition 8:

• [T-Seq]

• [T-Assert]

• [T-Ascr]

• [T-Print]

• [T-Let]

• [T-Type]

For each typing rule listed above:

1. find the case of the function typer (in the file src/Typechecker.fs) that imple-
ments type inference for the corresponding Hygge0 expression (e.g. in the case of
[T-Seq], find the case of typer that handles the expression 𝑒1; 𝑒2);

2. identify how each premise of the typing rule is checked in typer; and

3. identify how the type inferred by typer matches the type expected in the conclu-
sion of the typing rule.

Exercise 21

Consider the typing rules you wrote when solving Exercise ⁇. For each one of those
typing rules:

1. find the case of the function typer (in the file src/Typechecker.fs) that imple-
ments type inference for the corresponding Hygge0 expression;

2. identify how each premise of your typing rule is checked in typer; and

3. identify how the type inferred by typer matches the type expected in the conclu-
sion of your typing rule.

78 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

Do you see any discrepancy? If so, do you think there is a mistake in typer, or in your
typing rule?

Tip: If you have not yet solved Exercise ⁇, you can proceed in the opposite direction:
see how typer handles a certain expression, and try to write down a corresponding
typing rule.

3.8 Code Generation

The code generation of hyggec is implemented in the file src/RISCVCodegen.fs. We
illustrate its contents when discussing the Code Generation Strategy — but first, we have
a look at the RISC-V Code Generation Utilities.

3.8.1 RISC-V Code Generation Utilities

The file src/RISCV.fs contains various data types and functions to represent RISC-V
assembly code, and manipulate assembly code snippets. The hyggec compiler goal is to
produce text output containing RISC-V assembly — and this internal representation of
the output code makes the job simpler, and prevents possible mistakes.

The key components of src/RISCV.fs are the following (we will see them in use in the
Code Generation Strategy).

• The type RV (standing for “RISC-V”) represents a statement in a RISC-V assem-
bly program: it is a discriminated union with one named case for each supported
RISC-V instruction (e.g. the RISC-V instruction mv is represented by the named
case RV.MV(...)). It also includes named cases for representing labels and com-
ments in RISC-V assembly.

• The types Reg and FPReg represent, respectively, a base integer register and a
floating-point register. Their purpose is twofold:

1. they help ensuring that the RISC-V instructions in RV above can only be used
with registers that exist, and have the correct type (otherwise, the F# com-
piler will report a type error). For example:

– we cannot use the instruction RV.MV(...) on a floating-point register —
if we try, we get an F# type error;

– tomove a value from register t0 to t1, we canwrite RV.MV(Reg.t1, Reg.
t0) — and if there is a typo (e.g. if we write “RV.MV(Reg.t1, Reg.y0)”)
it will be spotted by the F# compiler;

2. they provide generic numbered registers Reg.r(n) and FPReg.r(n), which
range over all “temporary” and “saved” RISC-V registers. For example, tomove

3.8. Code Generation 79



02247 Compiler Construction, Spring 2023

a value from generic register number 𝑛 + 1 to 𝑛, one can write: RV.MV(Reg.
r(n), Reg.r(n+1)). This greatly simplifies the handling of registers during
code generation.

• The type Asm represents an assembly programwith its .data and .text segments.
The main features are:

– the methods addData and addText, which allow us to add memory alloca-
tions and instructions in the selected memory segment; and

– the method ++, which allows us to combine two assembly programs (e.g.
produced during code generation) into a unique, well-formed assembly pro-
gram.

3.8.2 Code Generation Strategy

The core of the file src/RISCVCodegen.fs is the function doCodegen, which takes a code
generation environment and a typed AST node, and produces assembly code. Corre-
spondingly, the declaration of doCodegen has the following types.

let rec doCodegen (env: CodegenEnv) (node: TypedAST): Asm = // ...

The function doCodegen uses a very simple code generation strategy. In a nutshell, when
compiling an expression 𝑒:

• after 𝑒 is computed, its result is written in a target register number 𝑛;
• if the computation of 𝑒 requires the results of other sub-expressions, doCodegen
recursively compiles each sub-expression by increasing (if necessary) its target
register number to 𝑛 + 1, 𝑛 + 2, etc.

Important: This compilation strategy only works if the code produced by each
doCodegen recursive call never modifies any register below its current target.

With this approach, the code generation environment (of type CodegenEnv) used by
doCodegen must contain two pieces of information:

1. which target register number should be used to compile the current expression.
More precisely, we need one target for integer expressions, and another target for
floating-point expressions; and

2. a “storage” mapping from known variable names, to the location where the value
of each variable is stored (e.g. in a register, or in memory).

Consequently, the CodegenEnv type is a record that looks as follows:

type CodegenEnv = {
Target: uint // Target register for the result of integer expressions
FPTarget: uint // Target register for the result of float expressions
VarStorage: Map<string, Storage> // Storage info about known variables

}

80 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

The type Storage used by CodegenEnv tells us whether the value of a variable is stored in
an integer register, or in a floating-point register, or in a memory location marked with
a label in the generated assembly code.

type Storage =
| Reg of reg: Reg // The value is stored in an integer register
| FPReg of fpreg: FPReg // The value is stored in a float register
| Label of label: string // Value is stored in memory, with a label

3.8.3 A Tour of doCodegen

We now have all ingredients to examine how doCodegen works. Its implementation is a
pattern matching on the expression contained in the AST node being compiled.

let rec doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
match node.Expr with
// ...

Here are some examples of how doCodegen’s main pattern matching handles various
kinds of expressions.

An integer value is immediately loaded into the target register (using the assembly in-
struction li).

| IntVal(v) ->
Asm(RV.LI(Reg.r(env.Target), v))

Example 21 (Compiling an Integer)

If we compile the Hygge0 expression 42, the match case for IntVal above is executed,
and the output of the compiler is:

.data:

.text:
li t0, 42 # <-- Produced by match case for IntVal in doCodegen
li a7, 10 # RARS syscall: Exit
ecall # Successful exit with code 0

A string value is added to the .data segment of the generated assembly code, with
its memory address marked by a unique label (generated with the function Util.
genSymbol). Then, the memory address is loaded into the target register (using the as-
sembly instructions la).

| StringVal(v) ->
let label = Util.genSymbol "string_val"
Asm().AddData(label, Alloc.String(v))

.AddText(RV.LA(Reg.r(env.Target), label))

3.8. Code Generation 81



02247 Compiler Construction, Spring 2023

Example 22 (Compiling a String)

If we compile the Hygge0 expression "Hello, World!", the match case for StringVal
above is executed, and the output of the compiler is:

.data:
string_val:

.string "Hello, World!" # <-- Produced by case for StringVal in doCodegen

.text:
la t0, string_val # <-- Produced by match case for StringVal in doCodegen
li a7, 10 # RARS syscall: Exit
ecall # Successful exit with code 0

When compiling a variable 𝑥, doCodegen produces code to access the value of the vari-
able, depending on where it is stored: to this end, it inspects the VarStorage mapping
in the code generation environment. (For clarity of exposition, the code snippet below
omits some cases that are present in the implementation).

| Var(name) ->
match node.Type with // Inspect the var type and where it is stored
| t when (isSubtypeOf node.Env t TFloat) ->

match (env.VarStorage.TryFind name) with
| Some(Storage.FPReg(fpreg)) ->

Asm(RV.FMV_S(FPReg.r(env.FPTarget), fpreg),
$"Load variable '%s{name}'")

| _ -> failwith $"BUG: float var with bad storage: %s{name}"

| _ -> // Default case for variables holding integer-like values
match (env.VarStorage.TryFind name) with
| Some(Storage.Reg(reg)) ->

Asm(RV.MV(Reg.r(env.Target), reg), $"Load variable '%s{name}'")
| _ -> failwith $"BUG: variable without storage: %s{name}"

When compiling an expression “let x ∶ 𝑡 = 𝑒1; 𝑒2” with target register 𝑛, doCodegen
proceeds as follows:

• recursively generates assembly code for 𝑒1, targeting the register 𝑛;
• adds the variable 𝑥 to the env.VarStorage mapping, assigning it to register 𝑛
(which contains the result of 𝑒1);

• compiles 𝑒2 with the updated env.VarStorage (containing 𝑥), targeting register
𝑛 + 1 (because 𝑒2 may use 𝑥, and thus the register 𝑛);

• copies the result of 𝑒2 from register 𝑛 + 1 to 𝑛 (thus overwriting the value of 𝑥,
which is going out of scope).

| Let(name, _, init, scope) ->
let initCode = doCodegen env init // 'let...' initialisation asm code

(continues on next page)

82 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

(continued from previous page)
match init.Type with
| t when (isSubtypeOf init.Env t TFloat) ->

// ** Omitted code similar to the following, using float registers

| _ -> // Default case for integer-like initialisation expressions
let scopeTarget = env.Target + 1u // Target reg. for 'let' scope
let scopeVarStorage = // Var storage for compiling 'let' scope

env.VarStorage.Add(name, Storage.Reg(Reg.r(env.Target)))
let scopeEnv = { env with Target = scopeTarget

VarStorage = scopeVarStorage }
initCode

++ (doCodegen scopeEnv scope)
.AddText(RV.MV(Reg.r(env.Target), Reg.r(scopeTarget)),

"Move 'let' scope result to target register")

When compiling an addition “𝑒1 + 𝑒2” with target register 𝑛, doCodegen proceeds as
follows:

1. recursively generates the assembly code for 𝑒1, targeting the register 𝑛;
2. recursively generates the assembly code for 𝑒2, targeting the register 𝑛 + 1;
3. generates a RISC-V addition operation that adds the contents of registers 𝑛 and

𝑛 + 1, and overwrites register 𝑛 with the result.

The resulting code looks, intuitively, as follows.

| Add(lhs, rhs)
let lAsm = doCodegen env lhs // Generated code for the lhs expression

match node.Type with // Generated code depends on the type of addition
| t when (isSubtypeOf node.Env t TInt) ->

let rtarget = env.Target + 1u // Target register for rhs expression
let rAsm = doCodegen {env with Target = rtarget} rhs // Asm for rhs
let opAsm = // Generated code for the addition operation

Asm(RV.ADD(Reg.r(env.Target),
Reg.r(env.Target), Reg.r(rtarget)))

lAsm ++ rAsm ++ opAsm // Put asm code together: lhs, rhs, operation

| t when (isSubtypeOf node.Env t TFloat) ->
// ** Omitted code similar to above, with float regs and instructs

| t ->
failwith $"BUG: addition codegen invoked on invalid type %O{t}"

Note: In the actual hyggec implementation is a bit different: since addition “𝑒1 + 𝑒2”
and multiplication “𝑒1 ∗ 𝑒2” generate very similar code, the pattern matching case above
handles both Add(lhs, rhs) and Mult(lhs, rhs) — and in case of multiplication, it
produces the RISC-V instruction mul (instead of add).

3.8. Code Generation 83



02247 Compiler Construction, Spring 2023

Example 23 (Compiling a “Let…” and an Addition)

Consider the following Hygge0 program:

let x: int = 42;
x + 3

Its typed AST looks as follows: (we omit Env.TypeVars for brevity)

Let x (1:1-2:5)
┣╾Env.Vars: ∅
┣╾Type: int
┣╾Ascription: Pretype Id "int"; pos: (1:8-1:10)
┣╾init: IntVal 42 (1:14-1:15)
┃ ┣╾Env.Vars: ∅
┃ ┗╾Type: int
┗╾scope: Add (2:1-2:5)

┣╾Env.Vars: Map
┃ ┗╾x: int
┣╾Type: int
┣╾lhs: Var x (2:1-2:1)
┃ ┣╾Env.Vars: Map
┃ ┃ ┗╾x: int
┃ ┗╾Type: int
┗╾rhs: IntVal 3 (2:5-2:5)

┣╾Env.Vars: Map
┃ ┗╾x: int
┗╾Type: int

When hyggec compiles this program, it produces the following RISC-V assembly code.

.data:

.text:
li t0, 42 # <-- Produced by case for IntVal in doCodegen
mv t1, t0 # Load variable 'x' # <-- Produced by case for Var in doCodegen
li t2, 3 # <-- Produced by case for IntVal in doCodegen
add t1, t1, t2 # <-- Produced by case for Add in doCodegen
mv t0, t1 # Move 'let' scope result to 'let' target register
li a7, 10 # RARS syscall: Exit
ecall # Successful exit with code 0

Note: The function doCodegen includes more cases, which follow the explanations
above. The only exceptions are those that require RARS system calls (e.g. Print,
ReadInt: their code generation makes use of functions that save register values on the
stack, and restore registers values from the stack. We will address these aspects later in
the course.

84 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

Important: The Code Generation Strategy illustrated in this module is quite simple, and
it has a relevant flaw: its naive register allocation policy tends to increase the target
register number for each sub-expression being compiled — and in some cases, it may run
out of available registers. When this happens, the hyggec compiler crashes, reporting a
“BUG”.

Luckily, it takes some effort to write a Hygge0 program that triggers this limitation:
therefore, it is unlikely that, by chance, you will write a program that stumbles into the
issue. (See Exercise 22 below.)

We will consider better register allocation strategies later in the course.

Exercise 22 (Running Out of Registers)

Write a Hygge0 expression that, by the Code Generation Strategy, causes doCodegen to
run out of registers, and makes hyggec crash.

Hint: There is a solution that only uses +, some integer values, and parentheses…

3.9 The Test Suite of hyggec

We conclude this overview by mentioning the hyggec test suite, which is designed to
encourage frequent testing of the compiler. To launch the test suite, simply invoke:

./hyggec test

Or, equivalently:

dotnet test

When running, the testing framework explores the tree of directories under tests/, and
uses each file with extension .hyg as a test case. The outcome of the test depends on the
position of the .hyg file in the tests/ directory tree, according to the following table.
(Note that the .hyg files under the fail/ directories are expect to cause some error, in
specific ways.)

Table 3.2: Overview of the hyggec directory tree for tests.
Directory under tests/ A .hyg file under this directory is a passed test if…
lexer/pass/ The tokenization succeeds.
lexer/fail/ The tokenization fails with a lexer error.
parser/pass/ Parsing succeeds.
parser/fail/ Tokenization succeeds, but parsing fails.

continues on next page

3.9. The Test Suite of hyggec 85



02247 Compiler Construction, Spring 2023

Table 3.2 – continued from previous page
Directory under tests/ A .hyg file under this directory is a passed test if…
interpreter/pass/ Tokenization and parsing succeed, and the interpreter

reduces the program into a value.
interpreter/fail/ Tokenization and parsing succeed, but the interpreter

reaches a stuck expression (e.g. assert(false)).
typechecker/pass/ Tokenization, parsing, and type checking succeed.
typechecker/fail/ Tokenization and parsing succeed, but type checking

fails.
codegen/pass/ Tokenization, parsing, and type checking succeed, and

the generated RISC-V assembly program runs under
RARS and terminates successfully (exit code 0).

codegen/fail/ Tokenization, parsing, and type checking succeed, and
the generated RISC-V assembly program runs under
RARS, but it terminates with an assertion violation
(assert(false)).

3.10 Example: Extending Hygge0 and hyggec with a
Subtraction Operator

The following sections show how to extend the Hygge0 language and the hyggec com-
piler with a subtraction operator, in 8 steps:

1. Defining the Formal Specification of Subtraction

2. Extending the AST

3. Extending the Pretty Printer

4. Extending the Lexer

5. Extending the Parser

6. Extending the Interpreter

7. Extending the Type Checker

8. Extending the Code Generation

To perform these steps, we will use as a reference the most similar expression that is
already supported by Hygge0 and hyggec — i.e. the addition 𝑒1 + 𝑒2.

86 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

3.10.1 Formal Specification of Subtraction

Before jumping to the implementation, we specify the formal syntax, semantics, and
typing rules of the new subtraction operator.

First, we specify the syntax of subtraction expressions by extending the grammar rules
of Hygge0 in Definition 1. We add a new rule:

Expression 𝑒 ∶∶= …
∣ 𝑒1 − 𝑒2 (Subtraction)

Then, we specify the semantics of subtraction expressions, in two steps.

1. We specify how to substitute variable 𝑥 with expression 𝑒′ inside a subtraction
𝑒1 − 𝑒2, by extending Definition 2 with a new case (similar to the existing case for
addition):

(𝑒1 − 𝑒2) [𝑥 ↦ 𝑒′] = 𝑒1 [𝑥 ↦ 𝑒′] − 𝑒2 [𝑥 ↦ 𝑒′]

2. We extend the reduction rules in Definition 4 with new rules for subtraction ex-
pressions (very similar to the existing rules for addition):

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Sub-L]

⟨𝑅 • 𝑒 − 𝑒2⟩ → ⟨𝑅′ • 𝑒′ − 𝑒2⟩
⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

[R-Sub-R]
⟨𝑅 • 𝑣 − 𝑒⟩ → ⟨𝑅′ • 𝑣 − 𝑒′⟩

𝑣1 − 𝑣2 = 𝑣3 [R-Sub-Res]
⟨𝑅 • 𝑣1 − 𝑣2⟩ → ⟨𝑅 • 𝑣3⟩

Finally, we extend the typing rules in Definition 8 with a new rule for subtraction ex-
pressions (very similar to the existing typing rule for addition):

𝑇 ∈ {int, float} Γ ⊢ 𝑒1 ∶ 𝑇 Γ ⊢ 𝑒2 ∶ 𝑇
[T-Subtract]Γ ⊢ 𝑒1 − 𝑒2 ∶ 𝑇

3.10.2 Extending the AST

We can now implement the Formal Specification of Subtraction. The first step is to extend
the AST, by extending the type Expr<'E,'T> (in the file src/AST.fs) with a new case:

and Expr<'E,'T> = // ...
/// Subtraction between lhs and rhs.
| Sub of lhs: Node<'E,'T>

* rhs: Node<'E,'T>

Tip: By extending the type Expr<'E,'T>, we will cause various warning in several
source files, with messages like:

Incomplete pattern matches on this expression. For example, the value 'Sub (_, _)
↪' may indicate a case not covered by the pattern(s)

3.10. Example: Extending Hygge0 and hyggec with a Subtraction Operator 87



02247 Compiler Construction, Spring 2023

These warnings highlight the parts of the hyggec source code we need to adjust to sup-
port the new AST case we have just added.

To see all such warnings on the console, we can rebuild hyggec by running:

dotnet clean

followed by

dotnet build

3.10.3 Extending the Pretty Printer

hyggec needs to know how to display the new subtraction expression when printing
an AST on screen. To this purpose, we add a new pattern matching case to the func-
tion formatASTRec (in the file src/PrettyPrinter.fs) to support the new case Sub(lhs,
rhs) (we can copy and adapt the existing case for Add(lhs, rhs)):

| Sub(lhs, rhs) ->
mkTree "Sub" node [("lhs", formatASTRec lhs)

("rhs", formatASTRec rhs)]

We will see the effect of this change shortly, when Testing the Parser .

3.10.4 Extending the Lexer

We can now add a new rule to the lexer, to recognise the new token for the subtrac-
tion symbol “-”. In the file src/Lexer.fsl, we add the following line (e.g. nearby the
definition for the token for “+”):

| "+" { Parser.PLUS }
| "-" { Parser.MINUS } // <-- We add this line

Correspondingly, we must add declaration of Parser.MINUS in the file src/Parser.fsy.
For instance, we can add MINUS nearby the other arithmetic operators:

// Tokens for arithmetic operators
%token TIMES PLUS MINUS // <-- We add "MINUS" here

88 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

Testing the Lexer

To see whether the lexer recognises the new token, we can add a new test. For example,
we can add a file called tests/lexer/pass/003-minus.hyg containing just a minus sign:

-

And now, if we run

./hyggec tokenize tests/lexer/pass/003-minus.hyg

we should see (besides the warnings about incomplete pattern matches):

[MINUS; EOF]

Moreover, running hyggec test should not report any failed test.

3.10.5 Extending the Parser

We can now add a new grammar rule for subtraction to the file src/Parser.fsy. Since
subtraction should have the same operator precedence of addition, we can look for the
rule for addition, and place the new rule in the same group of “additive expressions”:

// Additive expression
addExpr:

| addExpr PLUS multExpr { mkNode(parseState, 2, Expr.Add($1, $3)) }
| addExpr MINUS multExpr { mkNode(parseState, 2, Expr.Sub($1, $3)) }
| multExpr { $1 }

Important: Each time we modify the grammar rules of src/Parser.fsy, we should
check whether we have introduced any parsing issue. To this purpose, we should run:

dotnet build

The messages produced by FsYacc should look like:

computing first function... time: 00:00:00.0571261
building kernels... time: 00:00:00.0253194
building kernel table... time: 00:00:00.0077130
computing lookahead relations...................................................

↪.............................................. time: 00:00:00.0250216
building lookahead table... time: 00:00:00.0066406
building action table... time: 00:00:00.0114085

building goto table... time: 00:00:00.0022120
returning tables.

writing tables to log
building tables
94 states

(continues on next page)

3.10. Example: Extending Hygge0 and hyggec with a Subtraction Operator 89



02247 Compiler Construction, Spring 2023

(continued from previous page)
19 nonterminals
36 terminals
47 productions
#rows in action table: 94

The output above has no errors, and this means that src/Parser.fsy is correct.

Instead, if we see an error message like the following, then our change to src/Parser.
fsy has introduced a problem (probably a grammar ambiguity) and we should revise our
change.

shift/reduce error at state 47 on terminal PLUS between...

Testing the Parser

To see whether the parser recognises subtraction expressions, we can add a new test.
For example, we can add a file called tests/parser/pass/011-minus.hyg containing:

42 - x

And now, if we run

./hyggec parse tests/parser/pass/011-minus.hyg

we should see (besides the warnings about incomplete pattern matches) a representation
of the AST node for Sub (with the formatting we added by Extending the Pretty Printer):

Sub (1:1-1:6)
┣╾lhs: IntVal 42 (1:1-1:2)
┗╾rhs: Var x (1:6-1:6)

If the type of the subtraction does not match the type ascription, hyggec will report a
typing error. After we add this test, running ./hyggec test should not report any failed
test.

3.10.6 Extending the Interpreter

In the Formal Specification of Subtraction, we have defined new reduction rules that are
quite similar to those for addition. Correspondingly, we can extend the hyggec inter-
preter by adapting existing cases for addition, in two steps:

1. we extend the function subst in src/ASTUtil.fs by adding a new case for
Sub(lhs, rhs) (adapted from the existing case for Add(lhs, rhs)):

| Sub(lhs, rhs) ->
{node with Expr = Sub((subst lhs var sub), (subst rhs var sub))}

90 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

2. we extend the function reduce in src/Interpreter.fs by adding a new case for
Sub(lhs, rhs) (adapted from the existing case for Add(lhs, rhs)):

| Sub(lhs, rhs) ->
match (lhs.Expr, rhs.Expr) with
| (IntVal(v1), IntVal(v2)) -> Some(env, {node with Expr = IntVal(v1␣

↪- v2)})
| (FloatVal(v1), FloatVal(v2)) -> Some(env, {node with Expr =␣

↪FloatVal(v1 - v2)})
| (_, _) ->

match (reduceLhsRhs env lhs rhs) with
| Some(env', lhs', rhs') -> Some(env', {node with Expr = Sub(lhs

↪', rhs')})
| None -> None

Testing the Interpreter

To test whether the interpreter handles subtraction expressions correctly, we can check
whether the result of a subtraction is the valuewe expect. We can obtain this bywriting a
test case called e.g. tests/interpreter/pass/008-sub.hyg, with the following content:

assert(42 - 10 = 32);
assert(3.14f - 1.0f = 2.14f) // Careful when comparing floats! This case is OK

If the any of the comparisons inside the assertions is false, the interpreter will reach a
stuck expression assert(false) and report an error. After we add this test, running ./
hyggec test should not report any failed test.

3.10.7 Extending the Type Checker

In the Formal Specification of Subtraction, we have defined new typing rule [T-Subtract]
that is quite similar to rule [T-Add] in Definition 8. Correspondingly, we can extend the
hyggec function typer (in the file src/Typechecker.fs) with a new pattern matching
case, based on the existing case for Add(lhs, rhs):

| Sub(lhs, rhs) ->
match (binaryNumericalOpTyper "subtraction" node.Pos env lhs rhs) with
| Ok(tpe, tlhs, trhs) ->

Ok { Pos = node.Pos; Env = env; Type = tpe; Expr = Sub(tlhs, trhs) }
| Error(es) -> Error(es)

3.10. Example: Extending Hygge0 and hyggec with a Subtraction Operator 91



02247 Compiler Construction, Spring 2023

Testing the Type Checker

To test whether the type checking for subtraction expressions works as intended, we can
check whether the subtraction of two integers has type int, and whether the subtraction
of two floating-point values has type float. We can obtain this by writing a test case
called e.g. tests/typechecker/pass/011-sub.hyg, with the following content:

(2 - 1): int;
(3.14f - 1.0f): float

3.10.8 Extending the Code Generation

Code generation for subtraction is very similar to addition (and also multiplication):
the only difference is that we need to emit the RISC-V assembly instruction sub (for
integers) or fsub.s (for floating point values). Consequently, it is enough to edit the
function doCodegen (in the file src/RISCVCodegen.fs) and find the patternmatching case
for Add(lhs, rhs) (and also Mul(lhs, rhs)) and apply the following three changes:

1. we extend the pattern matching case to also cover Sub(lhs, rhs):

| Add(lhs, rhs)
| Sub(lhs, rhs) // <-- We add this line
| Mult(lhs, rhs) as expr ->

2. we find the internal pattern matching that generates the assembly instruction for
a numerical operation on integer values. We extend that pattern matching with a
new case for Sub(_,_):

match expr with
| Add(_,_) ->

Asm(RV.ADD(Reg.r(env.Target),
Reg.r(env.Target), Reg.r(rtarget)))

| Sub(_,_) -> // <-- We add this case
Asm(RV.SUB(Reg.r(env.Target),

Reg.r(env.Target), Reg.r(rtarget)))
| Mult(_,_) ->

Asm(RV.MUL(Reg.r(env.Target),
Reg.r(env.Target), Reg.r(rtarget)))

3. finally, we find the internal pattern matching that generates the assembly instruc-
tion for a numerical operation on float values. We extend that pattern matching
with a new case for Sub(_,_):

match expr with
| Add(_,_) ->

Asm(RV.FADD_S(FPReg.r(env.FPTarget),
FPReg.r(env.FPTarget), FPReg.r(rfptarget)))

| Sub(_,_) -> // < -- We add this case
Asm(RV.FSUB_S(FPReg.r(env.FPTarget),

(continues on next page)

92 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

(continued from previous page)
FPReg.r(env.FPTarget), FPReg.r(rfptarget)))

| Mult(_,_) ->
Asm(RV.FMUL_S(FPReg.r(env.FPTarget),

FPReg.r(env.FPTarget), FPReg.r(rfptarget)))

Testing the Code Generation

To test the code generation, we can often reuse the same test cases of the interpreter,
with assertions that stop the program execution if the result of a computation is not
what we expect.

Consequently, we can create test case called e.g. tests/codegen/pass/008-sub.hygwith
the same content used for Testing the Interpreter . After we add this test, running ./
hyggec test should not report any failed test.

Note: When we reach this point, we should have fixed all the warnings caused by the
addition of case Sub(lhs, rhs) in src/AST.fs. To double-check, we can rebuild hyggec
by executing dotnet clean and then dotnet build. The result should be:

Build succeeded.
0 Warning(s)
0 Error(s)

3.11 Project Ideas

For your group project, you should implement all the following project ideas (but notice
that some of them give you a choice between different options):

• Project Idea: Extend Hygge0 and hyggec with New Arithmetic Operations

• Project Idea: Extend Hygge0 and hyggec with New Relational Operations

• Project Idea: Extend Hygge0 and hyggec with the Logical Operator “Exclusive Or”

There is also an Optional Challenge: “And” and “Or” with Short-Circuit-Semantics. If you
want to work on this challenge instead of some project idea, please talk with the teacher.

Note: These project ideas are tailored for project groups. If you have not yet joined a
group, you can address part of them (e.g. implement only one new arithmetic operator
instead of 3), and later combine your work with your group.

3.11. Project Ideas 93



02247 Compiler Construction, Spring 2023

3.11.1 Project Idea: Extend Hygge0 and hyggec with New Arith-
metic Operations

Add some new arithmetic operations to the Hygge0 language and to the hyggec com-
piler, by following the steps described in Example: Extending Hygge0 and hyggec with a
Subtraction Operator . Choose at least 3 operations between:

• Division “𝑒1/𝑒2” (both integer and floating point)

• Remainder “𝑒1 % 𝑒2” (only between integers)

• Square root “sqrt(𝑒)” (only floating point)

Hint: To perform lexing and parsing of the new sqrt operation, you will need to:

– define a new token matching “sqrt”; you may call this token e.g. SQRT. Then,

– in src/Parser.fsy, add a new rule to parse an occurrence of SQRT, followed
by LPAR (left parenthesis), followed by an expression, followed by RPAR (right
parenthesis). You can use as a reference the existing rule that parses e.g. a
print expression: it is located under unaryExpr and it looks like the follow-
ing.

// Unary expression
unaryExpr:
// ... some rules omitted ...
| PRINT LPAR simpleExpr RPAR { mkNode(parseState, 1, Expr.Print(

↪$3)) }

The new “sqrt(𝑒)” expression should have the same precedence of “print(𝑒)”,
so it should also be placed under unaryExpr.

• Maximum “max(𝑒1, 𝑒2)” and minimum “min(𝑒1, 𝑒2)” (both integer and floating
point)

Hint:

– To perform lexing and parsing of the new “max(𝑒1, 𝑒2)” and “min(𝑒1, 𝑒2)”
operations, you can follow the hints given for sqrt above. In addition, you
will need to define a token for recognising the comma “,” between the two
arguments: you may call this token e.g. COMMA.

– There are several ways to implement both “max(𝑒1, 𝑒2)” and “min(𝑒1, 𝑒2)” in
hyggec. Depending on your approach, you may achieve the result without
extending the interpreter, nor the code generation…

– To implement code generation for “max(𝑒1, 𝑒2)” and “min(𝑒1, 𝑒2)” on inte-
gers, the generated RISC-V code will need to perform a conditional jump
with a branching instruction, depending e.g. on whether 𝑒1 is smaller than
𝑒2. The implementation for floats is simpler. For an inspiration, see the

94 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

pattern matching case for Less(lhs, rhs) of doCodegen (in the file src/
RISCVCodegen.fs).

3.11.2 Project Idea: Extend Hygge0 and hyggec with New Rela-
tional Operations

Add some new relational operations to the Hygge0 language and to the hyggec com-
piler, by following the steps described in Example: Extending Hygge0 and hyggec with a
Subtraction Operator — except that you should use the existing expression “𝑒1 < 𝑒2” as
a reference. Choose at least one operation between:

• Less than or equal to “𝑒1 ≤ 𝑒2” (both integer and floating point)

• Greater than “𝑒1 > 𝑒2” (both integer and floating point)

• Greater than or equal to “𝑒1 ≥ 𝑒2” (both integer and floating point)

Hint: There are several ways to implement these expressions in hyggec. Depending on
your approach, you may implement all of them without extending the interpreter, nor
the code generation…

3.11.3 Project Idea: Extend Hygge0 and hyggec with the Logical
Operator “Exclusive Or”

Add the “exclusive or26” operator “𝑒1 xor 𝑒2” to the Hygge0 language and to the hyggec
compiler, by following the steps described in Example: Extending Hygge0 and hyggec with
a Subtraction Operator — except that you should use the existing expression “𝑒1 or 𝑒2”
as a reference.

Hint: There are several ways to implement this operator in hyggec. Depending on your
approach, you may achieve the result without extending the interpreter, nor the code
generation…

26 https://en.wikipedia.org/wiki/Exclusive_or

3.11. Project Ideas 95

https://en.wikipedia.org/wiki/Exclusive_or


02247 Compiler Construction, Spring 2023

3.11.4 Optional Challenge: “And” and “Or” with Short-Circuit-
Semantics

TheHygge0 formal semantics (Definition 4) omits the reduction rules for the expressions
“𝑒1 and 𝑒2” and “𝑒1 or 𝑒2” (but you may have written them down as part of Exercise ⁇,
and compared them against their implementation in hyggec in Exercise 19).

hyggec implements the following “eager” semantics for the logical “and” and “or”: they
reduce both arguments to values, and then reduce to true or false accordingly.

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-And-L]

⟨𝑅 • 𝑒 and 𝑒2⟩ → ⟨𝑅′ • 𝑒′ and 𝑒2⟩
⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

[R-And-R]
⟨𝑅 • 𝑣 and 𝑒⟩ → ⟨𝑅′ • 𝑣 and 𝑒′⟩

[R-And-Res1]
⟨𝑅 • true and true⟩ → ⟨𝑅 • true⟩

𝑣 is a boolean value [R-And-Res3]
⟨𝑅 • false and 𝑣⟩ → ⟨𝑅 • false⟩

𝑣 is a boolean value [R-And-Res2]
⟨𝑅 • 𝑣 and false⟩ → ⟨𝑅 • false⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Or-L]

⟨𝑅 • 𝑒 or 𝑒2⟩ → ⟨𝑅′ • 𝑒′ or 𝑒2⟩
⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩

[R-Or-R]
⟨𝑅 • 𝑣 or 𝑒⟩ → ⟨𝑅′ • 𝑣 or 𝑒′⟩

𝑣 is a boolean value [R-Or-Res1]
⟨𝑅 • true or 𝑣⟩ → ⟨𝑅 • true⟩

𝑣 is a boolean value [R-Or-Res2]
⟨𝑅 • 𝑣 or true⟩ → ⟨𝑅 • true⟩

[R-Or-Res3]
⟨𝑅 • false or false⟩ → ⟨𝑅 • false⟩

Example 24

The “eager” semantics of “and” and “or” in hyggec can be observed e.g. by running the
following Hygge0 program (available under examples/and-or-evaluation.hyg):

({println("Left of 'and'"); false}) and ({println("Right of 'and'"); true});
({println("Left of 'or'"); true}) or ({println("Right of 'or'"); true})

The output will be:

Left of 'and'
Right of 'and'
Left of 'or'
Right of 'or'

96 Module 3: Hands-On with hyggec



02247 Compiler Construction, Spring 2023

However, many programming languages implement a short-circuit evaluation seman-
tics27 for both “and” and “or”. The intuition is the following:

• the expression “𝑒1 and 𝑒2” reduces to false when 𝑒1 is false. The expression 𝑒2 is
only considered (and reduced, if needed) when 𝑒1 is true;

• the expression “𝑒1 or 𝑒2” reduces to true when 𝑒1 is true. The expression 𝑒2 is only
considered (and reduced, if needed) when 𝑒1 is false.

Example 25

With short-circuit semantics for “and” and “or”, the program in Example 24 would only
output:

Left of 'and'
Left of 'or'

Write down the reduction semantics rules for “short-circuit and” and “short-circuit or”
expressions, and implement them in hyggec. You can choose to either:

• modify the built-in interpreter and the code generation in hyggec to give new
short-circuit semantics to the existing “and” and “or” expressions; or

• (recommended) add two new operators “&&” and “||” to hyggec. These new oper-
ators mean respectively, “short-circuit and” and short-circuit or”, and you should
add them to hyggec without altering the existing “and” and “or” expressions (this
is similar to the Kotlin programming language28).

Hint: There are several ways to implement these operators in hyggec. Depending on
your approach, you may achieve the result without changing the interpreter, nor the
code generation. You may even make them simpler by removing some of their existing
code…

27 https://en.wikipedia.org/wiki/Short-circuit_evaluation
28 https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-boolean/and.html

3.11. Project Ideas 97

https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://en.wikipedia.org/wiki/Short-circuit_evaluation
https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-boolean/and.html


02247 Compiler Construction, Spring 2023

98 Module 3: Hands-On with hyggec



4
Module 4: Lab Day

This module does not introduce new contents: on 23 February, from 8:00 to 12:00, you
can work on your project or past exercises. The teacher and TA will be present in the
classroom, and you can request help or ask them questions about your project, or course
topics, or technical issues.

You can also use this Lab Day to join (or create) your project group.

We can arrange mini-sessions during the Lab Day to address specific questions and
topics requested by two or more students. To propose a question/topic for these mini-
sessions, please use the poll on the course website on DTU Learn, under “Contents”→
“Module 4”.

99



02247 Compiler Construction, Spring 2023

100 Module 4: Lab Day



5
Module 5: Mutability and Loops

In this module we extend the Hygge0 programming language with two new features:
we add support for Mutable Variables, and then we add a “While” Loop. In principle,
the two features are independent — but in practice, most programs using a while loop
need to update the value of some variable that is checked in the loop condition.

These extensions are the starting point for the Project Ideas of this module.

5.1 Overall Objective

Our goal is to interpret, compile and run Hygge programs like the one shown in Example
26 below, which computes and displays the first 𝑛 terms of the Fibonacci sequence.

Example 26 (A Hygge Program with Mutable Variables and a Loop)

1 // Number of terms of the Fibonacci sequence to print (minimum 2).
2 let n: int = 16;
3

4 let mutable t0: int = 0; // First term in the Fibonacci sequence
5 let mutable t1: int = 1; // Second term in the Fibonacci sequence
6

7 println(t0);
8 println(t1);
9

10 let mutable i: int = 2; // Counter: how many terms we printed
11 let mutable next: int = 0; // Next term in the Fibonacci sequence
12

13 while (i < n) do {
14 next <- t0 + t1;
15 println(next);
16 t0 <- t1;
17 t1 <- next;

(continues on next page)

101



02247 Compiler Construction, Spring 2023

(continued from previous page)
18 i <- i + 1
19 }

Important: The extensions described in this module (Mutable Variables and “While”
Loop) are already implemented in the upstream Git repository of hyggec: you should pull
and merge the latest changes into your project compiler. The Project Ideas of this module
further extend Hygge with more assignment operators and more loop constructs.

5.2 Mutable Variables

We extend Hygge0 with an assignment expression “𝑥 ← 𝑒” that, intuitively, works as
follows:

1. the expression 𝑒 on the right-hand-side of the assignment is reduced to a value 𝑣;
2. then, in the expression “𝑥←𝑣”, the value 𝑣 is assigned to variable 𝑥, and the whole

expression “𝑥 ← 𝑣” reduces to 𝑣. This way, it is possible to chain assignments —
e.g. the expression “𝑥 ← 𝑦 ← 𝑧 ← 2 + 3” assigns the value 5 to variables 𝑥, 𝑦, and
𝑧.

5.2.1 Design Considerations

Typical imperative programming languages (like C, C++, Java, Python…) have mutable
variables, whose value can be freely changed while a program runs. Instead, Hygge0
is inspired by programming languages with functional elements (like F#, Scala, Haskell,
Erlang, Elixir, Kotlin…) where variables are (by default) immutable: their value is deter-
mined once and for all, when they are initialised.

Extending the Hygge0 syntax in Definition 1 with a new assignment operation is quite
straightforward. However, mutable variables introduce side effects that cannot be eas-
ily captured by the Hygge0 semantics. In fact, introducing mutable variables adds sig-
nificant complexity to the specification of Hygge — because in general, specifying the
behaviour of programs with mutable variables (and reasoning about such a behaviour)
is significantly harder.

To see the issue, consider what would happen if we simply tried to use assignments
within the existing Hygge0 semantics from Definition 4: we would not be able to write
any meaningful programs with mutable variables! This is because in Hygge0, each (im-
mutable) variable 𝑥 is introduced by a “let x ∶ 𝑡 = …” binder — and according to the
semantics in Definition 4 (rule [R-Let-Subst]), whenever we start reducing the scope
where 𝑥 is defined, then 𝑥 “diappears” because it is substituted with its initialisation
value (see Example 27 below).

102 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

Example 27 (Assignment to a Variable Bound By “let”)

Consider the following Hygge program with an assignment:

let x ∶ int = 1;
𝑥 ← 2;
print(𝑥)

If we naively extended the Hygge0 semantics in Definition 4 with an assignment expres-
sion, program would reduce as follows (in any runtime environment 𝑅):

[R-Let-Subst]

⟨𝑅 •
let x ∶ int = 1;
𝑥 ← 2;
print(𝑥)

⟩ → ⟨𝑅 • 1 ← 2;
print(1) ⟩

Therefore, the program would get stuck. We could try to tweak the substitution rules to
avoid substituting 𝑥 on the left-hand-side of the assignment, as follows:

[R-Let-Subst]

⟨𝑅 •
let x ∶ int = 1;
𝑥 ← 2;
print(𝑥)

⟩ → ⟨𝑅 • 𝑥 ← 2;
print(1) ⟩

Still, this is not what we want, because we would expect to have print(2) after the as-
signment — but instead, we have print(1).

Therefore, there is an overall language design decision to make:

• Do we want to change the semantics in Definition 4 to make all Hygge variables
potentially mutable?

• Or rather, do wewant Hygge to keep its immutable variables, and let programmers
specify when they want a mutable variable instead?

Here we follow the second approach, inspired by the F# programming language design29:

1. we introduce a new binder expression “let mutable 𝑥 ∶ 𝑡 = 𝑒; 𝑒′”, which intro-
duces 𝑥 as a mutable variable that is initialised with the result of 𝑒, and is only
defined in the scope 𝑒′;

2. to give a semantics to mutable variables, we extend the runtime environment 𝑅
(used by the semantic rules in Definition 4) to keep track of mutable variables in
the current scope and their current values; and

3. we define the semantics of “let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2” and “𝑥 ← 𝑒3” to make use
of the extended runtime environment 𝑅:

• we limit the visibility of the mutable variable 𝑥 to the expression 𝑒2, and
29 https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/values/#why-immutable

5.2. Mutable Variables 103

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/values/#why-immutable


02247 Compiler Construction, Spring 2023

• we define the semantics of assignment to cause the desired side effect: be-
sides producing a value, the reduction of the assignment “𝑥←𝑣” also updates
the runtime environment 𝑅 in its scope, causing the mutable variable 𝑥 to
be re-assigned the new value 𝑣.

Example 28 below outlines how the resulting extension of Hygge0 will behave, while
Example 29 shows some tricky cases that our specification must get right.

Example 28 (An Intuition of Mutable Variable Binding)

Consider again the program in Example 27 . By introducing a new “let mutable 𝑥 ∶ 𝑡 =
…” expression, we want it to reduce as follows.

Observe that the “let mutable 𝑥 ∶ int = 1; …” binder does not substitute the variable
𝑥 in its scope — and when the assignment changes the value of 𝑥 from 1 to 2, then the
new value is reflected in the updated binder “let mutable 𝑥 ∶ int = 2; …”.

⟨𝑅 •
let mutable 𝑥 ∶ int = 1;
𝑥 ← 2;
print(𝑥)

⟩ → ⟨𝑅 • let mutable 𝑥 ∶ int = 2;
print(𝑥) ⟩

→ ⟨𝑅 • let mutable 𝑥 ∶ int = 2;
print(2) ⟩

→ ⟨𝑅 • let mutable 𝑥 ∶ int = 2;
() ⟩ → ⟨𝑅 • ()⟩

Example 29 (Some Tricky Cases of Mutable Variable Binding)

Here are some tricky cases that we want to get right, when specifying how mutable
variable binding and assignment should work.

In the program below, an immutable variable is shadowed by a mutable variable. We
don’t want the inner assignment to influence the outer variable.

let x: int = 0;
{

let mutable x: int = 3;
x <- x + 1;
assert(x = 4)

}
assert(x = 0)

The following program is similar, but now a mutable variable is shadowed by another
mutable variable.

let mutable x: int = 0;
x <- x + 1;
{

(continues on next page)

104 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

(continued from previous page)
let mutable x: int = 3;
x <- x + 1;
assert(x = 4)

}
assert(x = 1)

The program below updates two mutable variables with different scopes: we want the
the assignments to be correctly propagated.

let mutable x: int = 0;
{

let mutable y: int = 3;
x <- x + 1;
y <- y + 2;
assert(x + y = 6)

}
assert(x = 1)

We also want to chain assignments, and make sure that when a variable is read and
reassigned, the result is correct.

let mutable x: float = 1.0f;
let mutable y: float = 2.0f;
let mutable z: float = 3.0f;

x <- y <- z <- x + y + z;

assert(x = y);
assert(y = z);
assert(z = 1.0f + 2.0f + 3.0f)

5.2.2 Syntax

We now extend the syntax of Hygge0 according to the Design Considerations above.

Definition 13 (Mutable Variable Binding and Assignment)

We define the syntax of Hygge0 with mutable variable binding and assignment by
extending Definition 1 with two new expressions:

Expression 𝑒 ∶∶= …
∣ let mutable 𝑥 ∶ 𝑡 = 𝑒; 𝑒′ (Declare 𝑥 as a mutable variable)
∣ 𝑒 ← 𝑒′ (Assignment)

Note: In Definition 13, the use of a generic expression 𝑒 for the target of the assignment

5.2. Mutable Variables 105



02247 Compiler Construction, Spring 2023

“𝑒 ← 𝑒′” is not strictly necessary at this stage: we will see that the semantics of assign-
ment in Definition 15 gets stuck if the assignment target is not a variable, and the typing
rules in Definition 16 only support assignments that have a variable on their left-hand-
side. Consequently, since we only really support assignments to a variable 𝑥, we could
have defined the syntax of assignments as just “𝑥 ← 𝑒′”.

However, later in the course we will extend assignments to support targets that are not
simple variables — hence, it is useful to define a more generic syntactic rule now.

5.2.3 Operational Semantics

We now extend the semantics of Hygge0 according to Definition 13 and the Design Con-
siderations above. This involves two steps:

• extending the definition of substitution to cover the new expressions (Definition
14), and

• extending the semantic rules (Definition 15). This is the trickiest part, because the
Design Considerations above make the behaviour of mutable variables non-trivial.

Definition 14 (Substitution for Mutable Variable Binding and Assignment)

We extend Definition 2 (substitution) with the following new cases:

(let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2) [𝑥 ↦ 𝑒′] = let mutable 𝑥 ∶ 𝑡 = 𝑒1 [𝑥 ↦ 𝑒′]; 𝑒2
(let mutable 𝑦 ∶ 𝑡 = 𝑒1; 𝑒2) [𝑥 ↦ 𝑒′] = let mutable 𝑦 ∶ 𝑡 = 𝑒1 [𝑥 ↦ 𝑒′]; 𝑒2 [𝑥 ↦ 𝑒′] (when 𝑦 ≠ 𝑥)

(𝑒1 ← 𝑒2) [𝑥 ↦ 𝑒′] = (𝑒1 [𝑥 ↦ 𝑒′]) ← (𝑒2 [𝑥 ↦ 𝑒′])

The substitution a variable 𝑥 defined in Definition 14 works as follows:

• the substitution on “let mutable 𝑥 ∶ 𝑡 = …” works like the substitution on “let x ∶
𝑡 = …” in Definition 2;

• the substitution on the assignment “𝑒1 ← 𝑒2” propagates the substitution on both
sub-expressions 𝑒1 and 𝑒2.

Definition 15 (Semantics of Mutable Variable Binding and Assignment)

We extend the definition of the runtime environment 𝑅 in the Structural Operational
Semantics of Hygge0 by adding the following field to the record 𝑅:

• 𝑅.Mutables is a mapping from variables 𝑥 to values 𝑣, specifying which mutable
variables are known in the current scope, and what is their current value.

Then, we define the semantics of Hygge0 with mutable variable binding and assign-
ment by extending Definition 4 to use the extended runtime environment 𝑅 above, and
by adding the following rules:

106 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-LetM-Eval-Init]

⟨𝑅 • let mutable 𝑥 ∶ 𝑡 = 𝑒; 𝑒2⟩ → ⟨𝑅′ • let mutable 𝑥 ∶ 𝑡 = 𝑒′; 𝑒2⟩

𝑅′ = {𝑅 with Mutables + (𝑥 ↦ 𝑣)} ⟨𝑅′ • 𝑒⟩ → ⟨𝑅″ • 𝑒′⟩
𝑅″.Mutables(𝑥) = 𝑣′

𝑅.Mutables(𝑥) = 𝑣?
𝑅‴ = {𝑅″ with Mutables(𝑥) = 𝑣?}

[R-LetM-Eval-Scope]
⟨𝑅 • let mutable 𝑥 ∶ 𝑡 = 𝑣; 𝑒⟩ → ⟨𝑅‴ • let mutable 𝑥 ∶ 𝑡 = 𝑣′; 𝑒′⟩

[R-LetM-Res]
⟨𝑅 • let mutable 𝑥 ∶ 𝑡 = 𝑣; 𝑣′⟩ → ⟨𝑅 • 𝑣′⟩

𝑅.Mutables(𝑥) = 𝑣
[R-Var-Res]

⟨𝑅 • 𝑥⟩ → ⟨𝑅 • 𝑣⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Assign-Eval-Arg]

⟨𝑅 • 𝑥 ← 𝑒⟩ → ⟨𝑅′ • 𝑥 ← 𝑒′⟩

𝑅.Mutables(𝑥) = 𝑣′ 𝑅′ = {𝑅 with Mutables + (𝑥 ↦ 𝑣)}
[R-Assign-Res]

⟨𝑅 • 𝑥 ← 𝑣⟩ → ⟨𝑅′ • 𝑣⟩

The rules in Definition 15 work as follows (see also Example 30 below to see them in
action).

• Rule [R-LetM-Eval-Init] is very similar to rule [R-Let-Eval-Init] in Definition 4: it
reduces the expression 𝑒 that initialises a mutable variable 𝑥;

• Rule [R-LetM-Eval-Scope] can be used to reduce “let mutable 𝑥 ∶ 𝑡 = 𝑣; 𝑒” where
𝑥 is initialised with a value 𝑣 (that cannot be reduced further): in this case, the
rule reduces the scope 𝑒 of the mutable variable. Observe the crucial difference
with [R-Let-Eval-Init] in Definition 4: the new rule [R-LetM-Eval-Scope] does
not substitute 𝑥 with 𝑣 in the scope 𝑒. Instead, the new rule proceeds as follows:

1. in its first premise, the rule computes a runtime environment 𝑅′ that is equal
to 𝑅, except that 𝑅′.Mutables maps 𝑥 to the initialisation value 𝑣;

2. in its second premise, the rule recursively attempts to reduce the scope 𝑒 in
the runtime environment 𝑅′, obtaining ⟨𝑅″ • 𝑒′⟩;

3. in its third premise, the rule does the following:

– takes the value 𝑣′ assigned to 𝑥 in 𝑅″.Mutables;

– takes the value 𝑣? assigned to 𝑥 in 𝑅.Mutables (this value may be unde-
fined); and

– computes a runtime environment 𝑅‴ that is equal to 𝑅″, except that
𝑅‴.Mutables(𝑥) has the value 𝑣? that was given to 𝑥 by 𝑅.Mutables(𝑥)
(if the latter was defined; if not, then 𝑅‴.Mutables(𝑥) is also undefined);

4. in its conclusion, the rule produces the reduction result
“⟨𝑅 • let mutable 𝑥 ∶ 𝑡 = 𝑣′; 𝑒′⟩” (with 𝑣′ taken from the third premise
above).

5.2. Mutable Variables 107



02247 Compiler Construction, Spring 2023

With this rule, the mutable variable 𝑥 is only known in the scope expression 𝑒, and
the reduction of 𝑒 into 𝑒′ might change the value assigned to 𝑥: in fact, the values
𝑣 and 𝑣′ may differ, if 𝑥 is reassigned in the reduction from 𝑒 to 𝑒′ (using rule
[R-Assign-Res] below).Moreover, the original runtime environment 𝑅 reduces to
𝑅‴, where:

– if there was already a mutable variable also called 𝑥 in 𝑅, then the value of
𝑥 in 𝑅‴ is unchanged (because the 𝑥 defined in 𝑅 is outside the scope of the
“let mutable” binder, so it is not the same 𝑥 defined in 𝑅′ and 𝑅″);

– instead, other mutable variables defined in 𝑅 might be changed when 𝑒 re-
duces to 𝑒′, and such changes are reflected in 𝑅‴.

• Rule [R-LetM-Res] reduces the whole expression “let mutable 𝑥 ∶ 𝑡 = 𝑣; 𝑣′” into
the value 𝑣′ (i.e. this rule can only be used when the scope of the “let mutable 𝑥 ∶
𝑡 = …” is a value, hence 𝑥 is useless).

• Rule [R-Var-Res] allows a variable 𝑥 to reduce into a value 𝑣 in a runtime environ-
ment 𝑅 — but the rule premise requires that 𝑥 is assigned value 𝑣 in the mapping
𝑅.Mutables. This rule may be used e.g. when the expression 𝑒 in the scope of
“let mutable 𝑥 ∶ 𝑡 = 𝑣; 𝑒” reduces in the premise of rule [R-LetM-Eval-Scope]
above, because 𝑒 might contain a sub-expression that uses 𝑥, like “42 + 𝑥”.

• Rule [R-Assign-Eval-Arg] reduces an expression 𝑒 being assigned to a variable 𝑥.
• Rule [R-Assign-Res] performs the assignment of value 𝑣 to variable 𝑥 in the run-
time environment 𝑅, as follows:

1. the first premise of the rule requires that𝑥 has some value 𝑣′ already assigned
in the mapping 𝑅.Mutables (therefore, 𝑥 must be a known mutable variable
in the current scope);

2. the second premise of the rule computes an updated runtime environment
𝑅′ that is equal to 𝑅, except that 𝑅′.Mutables maps 𝑥 to the new assigned
value 𝑣;

3. in the conclusion, the rule reduces “𝑥 ← 𝑣” into 𝑣, in the updated runtime
environment 𝑅′.

Example 30 (A Program with a Mutable Variable)

Let us examine the reductions of the following Hygge expression, according to the se-
mantic rules in Definition 15 and Definition 4:

let mutable 𝑥 ∶ int = 1 + 1;
𝑥 ← 𝑥 + 40;
print(𝑥)

Let us use a runtime environment 𝑅 where:

• 𝑅.Printer is defined (i.e. we can produce console output), and

• 𝑅.Mutables = ∅ (i.e. there are no known mutable variables in the current scope).

108 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

For the first reduction, the only rule we can apply is [R-LetM-Eval-Init], which produces:

1 + 1 = 2 [R-Add-Res]
⟨𝑅 • 1 + 1⟩ → ⟨𝑅 • 2⟩

[R-LetM-Eval-Init]

⟨𝑅 •
let mutable 𝑥 ∶ int = 1 + 1;
𝑥 ← 𝑥 + 40;
print(𝑥)

⟩ → ⟨𝑅 •
let mutable 𝑥 ∶ int = 2;
𝑥 ← 𝑥 + 40;
print(𝑥)

⟩

For the second reduction, the only rule we can apply is [R-LetM-Eval-Scope], which
reduces the expression in the scope of “let mutable 𝑥 ∶ int = …”. To this purpose, let us
now define 𝑅′ as a runtime environment equal to 𝑅, except that 𝑅.Mutables maps 𝑥 to
the initialisation value 2 (this is omitted with “⋯” below). Notice that:

• in the scope of “let mutable 𝑥 ∶ int = …”, we use rule [R-Assign-Eval-Arg] to
reduce the expression “𝑥 + 40” being assigned to 𝑥;

• moreover, in order to reduce the sub-expression “𝑥 + 40” into “2 + 40”, we use
rule [R-Var-Res] to retrieve the current value of 𝑥.

𝑅′ = ⋯

𝑅′.Mutables(𝑥) = 2
[R-Var-Res]

⟨𝑅′ • 𝑥⟩ → ⟨𝑅′ • 2⟩
[R-Add-L]

⟨𝑅′ • 𝑥 + 40⟩ → ⟨𝑅′ • 2 + 40⟩
[R-Assign-Eval-Arg]

⟨𝑅′ • 𝑥 ← 𝑥 + 40⟩ → ⟨𝑅′ • 𝑥 ← 2 + 40⟩
[R-Seq-Eval]

⟨𝑅′ • 𝑥 ← 𝑥 + 40;
print(𝑥) ⟩ → ⟨𝑅′ • 𝑥 ← 2 + 40;

print(𝑥) ⟩ 𝑅′.Mutables(𝑥) = 2
[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 2;
𝑥 ← 𝑥 + 40;
print(𝑥)

⟩ → ⟨𝑅 •
let mutable 𝑥 ∶ int = 2;
𝑥 ← 2 + 40;
print(𝑥)

⟩

For the third reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope]; in the
scope of “let mutable 𝑥 ∶ int = …”, we use (again) rule [R-Assign-Eval-Arg] to reduce
the expression being assigned to 𝑥.

𝑅′ = ⋯

2 + 40 = 42 [R-Add-Res]
⟨𝑅′ • 2 + 40⟩ → ⟨𝑅′ • 42⟩

[R-Assign-Eval-Arg]
⟨𝑅′ • 𝑥 ← 2 + 40⟩ → ⟨𝑅′ • 𝑥 ← 42⟩

[R-Seq-Eval]

⟨𝑅′ • 𝑥 ← 2 + 40;
print(𝑥) ⟩ → ⟨𝑅′ • 𝑥 ← 42;

print(𝑥) ⟩ 𝑅′.Mutables(𝑥) = 2
[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 2;
𝑥 ← 2 + 40;
print(𝑥)

⟩ → ⟨𝑅 •
let mutable 𝑥 ∶ int = 2;
𝑥 ← 42;
print(𝑥)

⟩

For the fourth reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope] —
but now, notice that:

5.2. Mutable Variables 109



02247 Compiler Construction, Spring 2023

• in the scope of “let mutable 𝑥 ∶ int = …”, there is an assignment that changes the
value assigned to 𝑥 from 2 to 42;

• correspondingly, we use rule [R-Assign-Res] to update the runtime enviromnent:
we define 𝑅″ as a runtime environment equal to 𝑅′, except that 𝑅″.Mutables
maps 𝑥 to the newly-assigned value 42;

• besides its side effect (i.e. updating 𝑅′ into 𝑅″), the reduction of the assignment
produces the assigned value 42;

• in the conclusion of this reduction, the original runtime environment 𝑅 is un-
changed (because 𝑥 is not visible there). However, the original “let mutable 𝑥 ∶
int = 2; …” has now become “let mutable 𝑥 ∶ int = 42; …”: as a consequence,
further reductions (that we explore below) will use the updated value of 𝑥.

𝑅′ = ⋯

𝑅′.Mutables(𝑥) = 2 𝑅″ = {𝑅′ with Mutables + (𝑥 ↦ 42)}
[R-Assign-Res]

⟨𝑅′ • 𝑥 ← 42⟩ → ⟨𝑅″ • 42⟩
[R-Seq-Eval]

⟨𝑅′ • 𝑥 ← 42;
print(𝑥) ⟩ → ⟨𝑅″ • 42;

print(𝑥) ⟩ 𝑅″.Mutables(𝑥) = 42
[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 2;
𝑥 ← 42;
print(𝑥)

⟩ → ⟨𝑅 •
let mutable 𝑥 ∶ int = 42;
42;
print(𝑥)

⟩

For the fifth reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope], and
nowwe simplify the sequencing of expressions inside the scope of “let mutable 𝑥 ∶ int =
…”.

𝑅″ = ⋯
[R-Seq-Res]

⟨𝑅″ • 42;
print(𝑥) ⟩ → ⟨𝑅″ • print(𝑥)⟩ 𝑅″.Mutables(𝑥) = 42

[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 42;
42;
print(𝑥)

⟩ → ⟨𝑅 • let mutable 𝑥 ∶ int = 42;
print(𝑥) ⟩

For the sixth reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope], and
now we use (again) [R-Var-Res] to retrieve the current value of 𝑥.

𝑅″ = ⋯

𝑅″.Mutables(𝑥) = 42
[R-Var-Res]

⟨𝑅″ • 𝑥⟩ → ⟨𝑅″ • 42⟩
[R-Print-Eval-Arg]

⟨𝑅″ • print(𝑥)⟩ → ⟨𝑅″ • print(42)⟩ 𝑅″.Mutables(𝑥) = 42
[R-LetM-Eval-Scope]

⟨𝑅 • let mutable 𝑥 ∶ int = 42;
print(𝑥) ⟩ → ⟨𝑅 • let mutable 𝑥 ∶ int = 42;

print(42) ⟩

For the seventh reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope],
and now we reduce print(42) to the unit value (while printing 42 on the console).

110 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

𝑅″ = ⋯
𝑅″.Printer is defined [R-Print-Res]

⟨𝑅″ • print(42)⟩ → ⟨𝑅″ • ()⟩ 𝑅″.Mutables(𝑥) = 42
[R-LetM-Eval-Scope]

⟨𝑅 • let mutable 𝑥 ∶ int = 42;
print(42) ⟩ → ⟨𝑅 • let mutable 𝑥 ∶ int = 42;

() ⟩

For the eighth and last reduction, the only rule we can apply is [R-LetM-Res], which
replaces the whole “let mutable 𝑥 ∶ 𝑡 = …” with the value in its scope, which is the unit
value ().

[R-LetM-Res]

⟨𝑅 • let mutable 𝑥 ∶ int = 42;
() ⟩ → ⟨𝑅 • ()⟩

Therefore, we were able to reduce the original program into a value, without getting
stuck.

Exercise 23

Write the reductions of the following expression, in a runtime environment 𝑅. Show all
reductions until the expression reduces into a value.

let mutable 𝑥 ∶ int = 0;
let mutable 𝑦 ∶ int = 0;

𝑥 ← 𝑦 ← 1;
𝑥 + 𝑦

Exercise 24

Write the reductions of the following expression, in a runtime environment 𝑅. Show all
reductions until the expression reduces into a value.

let mutable 𝑥 ∶ int = 0;
{

let mutable 𝑥 ∶ int = 1;
𝑥 ← 2

};
assert(𝑥 = 0)

5.2. Mutable Variables 111



02247 Compiler Construction, Spring 2023

5.2.4 Typing Rules

We now extend the typing rules of Hygge0 to support the mutable variables introduced
in Definition 13 according to the Design Considerations above. Our goal is to type-check
programs that use the new assignment “𝑥 ← 𝑒”, but only when 𝑥 is in the scope of
“let mutable 𝑥 ∶ 𝑡 = …”: this way, Hygge programmers can be sure that, if their code
type-checks, then it does not accidentally modify any immutable variable. Also no-
tice that, by the semantics in Definition 15, the runtime environment and expression
⟨𝑅 • 𝑥 ← 𝑒⟩ gets stuck if 𝑥 is not a known mutable variables in 𝑅 — hence our typing
rules should prevent the possibility of assigning a value to an unknown or immutable
variable.

To achieve this result, we extend the typing environment Γ in Definition 6 with a new
entry, called “Mutables”, which keeps track of the knownmutable variables in the current
scope. Then, we add two new typing rules, and slightly tweak the existing rule for
(immutable) let-binders.

Definition 16 (Typing Rules for Mutable Variable Binding and Assignment)

We extend the typing environment Γ in Definition 6 by adding the following entry:

• Γ.Mutables is a set of variables.

Then, we define the typing rules of Hygge0 with mutable variable binding and assign-
ment in two steps.

First, we extend Definition 11 with the following new rules:

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑒1 ∶ 𝑇 {Γ with Vars + (𝑥 ↦ 𝑇 ) and Mutables ∪ {𝑥}} ⊢ 𝑒2 ∶ 𝑇 ′
[T-MLet]

Γ ⊢ let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2 ∶ 𝑇 ′

𝑥 ∈ Γ.Mutables Γ ⊢ 𝑥 ∶ 𝑇 Γ ⊢ 𝑒 ∶ 𝑇 [T-Assign-Var]Γ ⊢ 𝑥 ← 𝑒 ∶ 𝑇
Then, we replace the rule [T-Let] in Definition 8 with the following rule:

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑒1 ∶ 𝑇 {Γ with Vars + (𝑥 ↦ 𝑇 ) and Mutables \ {𝑥}} ⊢ 𝑒2 ∶ 𝑇 ′
[T-Let2]

Γ ⊢ let x ∶ 𝑡 = 𝑒1; 𝑒2 ∶ 𝑇 ′

In Definition 16, the typing rule [T-MLet] is very similar to [T-Let] in Definition 8:
the only difference is that, when type-checking the expression 𝑒2 in the scope of
“let mutable 𝑥 ∶ 𝑡 = …”, rule [T-MLet] also adds the variable 𝑥 to the set of known
mutable variables in Γ.

The set of mutable variables in Γ is used by rule [T-Assign-Var]: it checks whether 𝑥
(the target of the assignment) is mutable, and whether the type of 𝑥 matches the type
of the expression 𝑒 being assigned to it. If all these conditions hold, then the whole
assignment has type 𝑇 — because, as specified in Definition 15, it will produce the value
being assigned.

Finally, we need to replace rule [T-Let] in Definition 8 with the new rule [T-Let2]: the
only difference between the two rules is that [T-Let2] removes the declared variables 𝑥

112 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

from the set of known mutable variables in the typing environment (using the standard
set subtraction operation “\”). This is necessary to address Example 31 below.

Example 31 (Shadowing Mutable Variables)

The following Hygge program declares a mutable variable x, and then shadows it with
a regular (immutable) variable having the same name.

1 let mutable x: int = 0;
2 let x: int = 1;
3 x <- 2

We do not want this program to type-check, because it is attempting to use the as-
signment operator on a variable that has been (re-)defined as immutable by the inner
“let x ∶ int = …”. For this reason, we use the new rule [T-Let2] to ensure that, when-
ever we introduce a regular (immutable) variable, we remove it from the knownmutable
variables in the typing environment.

Exercise 25 (Why We Need the Typing Rule [T-Let2])

Write a typing derivation for the program in Example 31 by using the “old” typing rule
[T-Let] from Definition 8 (instead of [T-Let2] in Definition 16).

Then, try to write a typing derivation for the same program, now using [T-Let2] in Def-
inition 16.

(Before trying this exercise, it may be helpful to have a look at the derivation in Example
32 below.)

Example 32 (Type-Checking a Program with Mutable Variables)

We now see how to type-check a programwith mutable variables. To this purpose, let us
define the following typing environments (with the extension introduced in Definition
16):

• Γ as the empty typing environment where:

– Γ.Vars = ∅;
– Γ.TypeVars = ∅;
– Γ.Mutables = ∅;

• Γ′ as the typing environment obtained from Γ by mapping 𝑥 to int in the field
Vars, and adding 𝑥 to the field Mutables. Therefore, we have:

– Γ′.Vars = {𝑥 ↦ int};
– Γ′.TypeVars = ∅;
– Γ′.Mutables = {𝑥}.

5.2. Mutable Variables 113



02247 Compiler Construction, Spring 2023

Here is a typing derivation that type-checks the expression in Example 30, according to
the rules in Definition 16, Definition 11, Definition 8, and Definition 7 .

[TRes-Int]Γ ⊢ ”int” ▷ int

[T-Val-Int]Γ ⊢ 1 ∶ int ⋯ [T-Add]Γ ⊢ 1 + 1 ∶ int

𝑥 ∈ Γ′.Mutables
Γ′.Vars(𝑥) = int

[T-Var]
Γ′ ⊢ 𝑥 ∶ int

Γ′.Vars(𝑥) = int
[T-Var]

Γ′ ⊢ 𝑥 ∶ int [T-Val-Int]Γ ⊢ 40 ∶ int [T-Add]
Γ′ ⊢ 𝑥 + 40 ∶ int [T-Assign]

Γ′ ⊢ 𝑥 ← 𝑥 + 40 ∶ int

Γ′.Vars(𝑥) = int
[T-Var]

Γ′ ⊢ 𝑥 ∶ int [T-Print]
Γ′ ⊢ print(𝑥) ∶ unit

[T-Seq]

Γ′ ⊢ 𝑥 ← 𝑥 + 40;
print(𝑥) ∶ unit

[T-LetM]

Γ ⊢
let mutable 𝑥 ∶ int = 1 + 1;
𝑥 ← 𝑥 + 40;
print(𝑥)

∶ unit

Exercise 26 (Type-Checking Mutable Variables and Assignments)

Write a typing derivation that type-checks the following expression:

let x ∶ float = 2.0f;
let mutable 𝑦 ∶ float = 3.14f;

𝑦 ← 𝑥 ∗ 𝑦

5.2.5 Implementation

We now have a look at how hyggec is extended to implement mutable variables, accord-
ing to the specification illustrated in the previous sections.

Tip: To see a summary of the changes described below, you can inspect the differences
in the hyggec Git repository between the tags hygge0 and mutable-vars.

Lexer, Parser, Interpreter, and Type Checking

These parts of the hyggec compiler are extended along the lines of Example: Extending
Hygge0 and hyggec with a Subtraction Operator .

• We extend the data type Expr<'E,'T> (in AST.fs) with two new cases, according
to Definition 13:

– LetMut for “let mutable 𝑥 ∶ 𝑡 = …”, and

– Assign for “𝑒 ← 𝑒′”.

• We extend PrettyPrinter.fs to support the new expressions LetMut and Assign,
and also to display the contents of the new typing context entry Mutables (see
below).

• We extend Lexer.fsl to support two new tokens:

– MUTABLE for the keyword mutable, and

114 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

– LARROW (left arrow) for the assignment operator <-.

• We extend Parser.fsy to recognise the desired sequences of tokens according to
Definition 13, and generate AST nodes for the new expressions LetMut and Assign.

• We extend the function subst in ASTUtil.fs to support the new expressions
LetMut and Assign, according to Definition 14.

• We extend the function reduce in Interpreter.fs according to Definition 15:

– we add new cases for LetMut and Assign, and

– we add a new case for Var(x) that reduces a mutable variable x to its value
taken from env.Mutables (therefore, if x is not present in the mapping env.
Mutables, the expression Var(x) is stuck).

• We extend Typechecker.fs according to Definition 16:

– we extend the definition of the record TypingEnv with a new entry called
Mutables;

– we extend the function typer to support the new cases for:

* LetMut (since their type-checking logic is very similar to Let, it is im-
plemented in function called letTyper); and

* Assign;

– we update the existing typing rule for Let to match the revised typing rule
[T-Let2].

Besides, the type checking for Let and LetMut is very similar, so it is implemented
in a common auxiliary function called letTyper.

• We also add new tests; in particular, we add the tricky cases illustrated in Example
29 as tests for both the interpreter, and the Code Generation (described below).

Code Generation

The code generation for the expression “let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2” is not different from
the immutable “let x ∶ 𝑡 = …”: this is because the mutability (or immutability) of a
variable is a concept that only exists in the Hygge programming language and typing
system — whereas in RISC-V assembly (just like in most other assembly variants for
other CPUs), registers and memory locations are generally mutable. Moreover, the code
generation of “let x ∶ 𝑡 = …” is already taking care of the correct scoping of variables
— hence, it handles the tricky cases discussed in Example 29 out-of-the-box.

Therefore, in the function doCodegen (in the file RISCVCodegen.fs) we simply add the
following pattern matching case, that reuses the code generation already implemented
for “let x ∶ 𝑡 = …”:

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
match node.Expr with
// ...

(continues on next page)

5.2. Mutable Variables 115



02247 Compiler Construction, Spring 2023

(continued from previous page)
| LetMut(name, tpe, init, scope) ->

// The code generation is not different from 'let...', so we recycle it
doCodegen env {node with Expr = Let(name, tpe, init, scope)}

The code generation for the expression “𝑥←𝑒” is straighforward: it compiles expression
𝑒 (using the current target register), and then moves (i.e. copies) the result of 𝑒 where
the value of 𝑥 is stored (e.g. in a register). Notice that we don’t check whether 𝑥 is
mutable: we assume that the type checking phase has already taken care of it. (Here we
omit some cases for clarity)

| Assign(lhs, rhs) ->
/// Code for the 'rhs', leaving its result in the target register
let rhsCode = doCodegen env rhs
match lhs.Expr with
| Var(name) ->

match (env.VarStorage.TryFind name) with
| Some(Storage.Reg(reg)) ->

rhsCode.AddText(RV.MV(reg, Reg.r(env.Target)),
$"Assignment to variable %s{name}")

| Some(Storage.FPReg(reg)) ->
rhsCode.AddText(RV.FMV_S(reg, FPReg.r(env.FPTarget)),

$"Assignment to variable %s{name}")
// ...

| _ ->
failwith ($"BUG: assignment to invalid target:%s{Util.nl}"

+ $"%s{PrettyPrinter.prettyPrint lhs}")

5.3 “While” Loop

We now extend the Hygge0 programming language with a “while” loop, in the style
of most imperative programming languages (such as C, Java, Python, …). The “while”
expression in Hygge is written “while 𝑒1 do 𝑒2”, and it means that we want to repeat the
execution of expression 𝑒2 as long as 𝑒1 is true.

More in detail:

1. we reduce the condition 𝑒1;

2. if the condition reduces to true:

• we start reducing the loop body 𝑒2 until it becomes a value;

• then, we repeat from point 1 above;

3. otherwise, if the condition reduces to false, we end the loop by reducing the whole
expression to the unit value ().

116 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

5.3.1 Syntax

The syntax of the “while” loop (Definition 17 ) is straightforward.

Definition 17 (While Loop)

We define the syntax of Hygge0 with while loops by extending Definition 1 with a new
expressions:

Expression 𝑒 ∶∶= …
∣ while 𝑒1 do 𝑒2 (”While” loop)

5.3.2 Operational Semantics

To substitute variables in “while 𝑒1 do 𝑒2” we simply propagate the substitution through
the loop condition 𝑒1 and loop body 𝑒2, according to Definition 18 below.

Definition 18 (Substitution for “While” Loops)

We extend Definition 2 (substitution) with the following new case:

(while 𝑒1 do 𝑒2) [𝑥 ↦ 𝑒′] = while (𝑒1 [𝑥 ↦ 𝑒′]) do (𝑒2 [𝑥 ↦ 𝑒′])

The reduction semantics of “while 𝑒1 do 𝑒2” (Definition 19 below) realises the behaviour
described in the beginning of this section by rewriting the “while” loop expression into
the following expression:

if 𝑒1 then {𝑒2; while 𝑒1 do 𝑒2} else ()

In other words, the “while” loop becomes an “if” expression that (according to the se-
mantics you should have defined as part of Exercise ⁇) behaves as follows:

1. the “if” semantics tries to reduce the loop condition 𝑒1 into a value;

2. then, if the condition value is true, the “if” expression executes the loop body 𝑒2,
followed by the “while” loop again;

3. otherwise, if the condition reduces to false, the “if” expression produces the unit
value () (hence, it does not execute the loop body).

Definition 19 (Semantics of “While” Loops)

We define the semantics of Hygge0 with “while” loops by extending Definition 4 with
the following rule:

[R-While]
⟨𝑅 • while 𝑒1 do 𝑒2⟩ → ⟨𝑅 • if 𝑒1 then {𝑒2; while 𝑒1 do 𝑒2} else ()⟩

5.3. “While” Loop 117



02247 Compiler Construction, Spring 2023

Example 33 (A Program with a “While” Loop)

Let us examine the reductions of the following Hygge expression, according to the se-
mantic rules in Definition 19 , Definition 15 and Definition 4:

let mutable 𝑥 ∶ int = 0;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1

Let us use a runtime environment 𝑅 where:

• 𝑅.Mutables = ∅ (i.e. there are no known mutable variables in the current scope).

For the first reduction, the only rule we can apply is [R-LetM-Eval-Scope], which re-
duces the expression in the scope of “let mutable 𝑥 ∶ int = …”. To this purpose, let us
now define 𝑅′ as a runtime environment equal to 𝑅, except that 𝑅.Mutables maps 𝑥 to
the initialisation value 0 (this is omitted with “⋯” below). Observe that, to reduce the
expression in the scope of “let mutable 𝑥 ∶ int = …”, we use the new rule [R-While],
which rewrites the “while” loop into an “if”.

𝑅′ = ⋯

[R-While]

⟨𝑅′ • while 𝑥 < 2 do
𝑥 ← 𝑥 + 1 ⟩ → ⟨𝑅′ •

if 𝑥 < 2 then {
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 0;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
if 𝑥 < 2 then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩

For the second reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope].
Notice that:

• to reduce the scope of the “let mutable 𝑥 ∶ int = …” we use two rules that you
should have defined as part of Exercise ⁇:

– one rule to reduce the “if” condition: let us call this rule [R-Cond-Eval];

– another rule to reduce the left-hand-side of a comparison: let us call this rule
[R-Less-L];

• we also use rule [R-Var-Res] from Definition 15 to access the current value of the
mutable variable 𝑥.

118 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

𝑅′ = ⋯

𝑅′.Mutables(𝑥) = 0
[R-Var-Res]

⟨𝑅′ • 𝑥⟩ → ⟨𝑅′ • 0⟩
[R-Less-L]

⟨𝑅′ • 𝑥 < 2⟩ → ⟨𝑅′ • 0 < 2⟩
[R-Cond-Eval]

⟨𝑅′ •

if 𝑥 < 2 then {
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅′ •

if 0 < 2 then {
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
if 𝑥 < 2 then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
if 0 < 2 then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩

For the third reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope], and
we keep reducing the condition of the “if”. We use another rule that you should have
defined as part of Exercise ⁇, to compare two values: let us call this rule [R-Less-Res].

𝑅′ = ⋯

0 < 2 is true [R-Less-Res]
⟨𝑅′ • 𝑥 < 2⟩ → ⟨𝑅′ • true⟩

[R-Cond-Eval]

⟨𝑅′ •

if 0 < 2 then {
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅′ •

if true then {
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
if 0 < 2 then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
if true then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩

For the fourth reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope], and
we now select the “then” branch of the “if”: to do this, we use another rule that you
should have defined as part of Exercise ⁇, which we call [R-Cond-True].

𝑅′ = ⋯

[R-Cond-True]

⟨𝑅′ •

if true then {
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅′ •
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
if true then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅 •
let mutable 𝑥 ∶ int = 0;
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩

5.3. “While” Loop 119



02247 Compiler Construction, Spring 2023

For the fifth reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope], and
we now we replace the mutable variable 𝑥 (on the right-hand-side of the assignment)
with its current value 0.

𝑅′ = ⋯

𝑅′.Mutables(𝑥) = 0
[R-Var-Res]

⟨𝑅′ • 𝑥⟩ → ⟨𝑅′ • 0⟩
[R-Add-L]

⟨𝑅′ • 𝑥 + 1⟩ → ⟨𝑅′ • 0 + 1⟩
[R-Assign-Eval-Arg]

⟨𝑅′ • 𝑥 ← 𝑥 + 1⟩ → ⟨𝑅′ • 𝑥 ← 0 + 1⟩
[R-Seq-Eval]

⟨𝑅′ •
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅′ •

𝑥 ← 0 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 0;
𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
𝑥 ← 0 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩

For the seventh reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope],
and we now fully reduce the right-hand-side of the assignment into the value 1.

𝑅′ = ⋯

0 + 1 = 1 [R-Add-Res]
⟨𝑅′ • 0 + 1⟩ → ⟨𝑅′ • 1⟩

[R-Assign-Eval-Arg]
⟨𝑅′ • 𝑥 ← 0 + 1⟩ → ⟨𝑅′ • 𝑥 ← 1⟩

[R-Seq-Eval]

⟨𝑅′ •
𝑥 ← 0 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅′ •

𝑥 ← 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 0;
𝑥 ← 0 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 0;
𝑥 ← 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩

For the eighth reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope],
and we now re-assign variable 𝑥, changing its value from 0 to 1. To this end, we use
rule [R-Assign-Res] to update the runtime enviromnent: we define 𝑅″ as a runtime
environment equal to 𝑅′, except that 𝑅″.Mutables maps 𝑥 to the newly-assigned value
1.

𝑅′ = ⋯

𝑅′.Mutables(𝑥) = 0 𝑅″ = {𝑅′ with Mutables + (𝑥 ↦ 1)}
[R-Assign-Res]

⟨𝑅′ • 𝑥 ← 1⟩ → ⟨𝑅″ • 1⟩
[R-Seq-Eval]

⟨𝑅′ •
𝑥 ← 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅′ •

1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 0;
𝑥 ← 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 1;
1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩

120 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

For the ninth reduction, the only rule we can apply is (again) [R-LetM-Eval-Scope],
and we now and now we simplify the sequencing of expressions inside the scope of
“let mutable 𝑥 ∶ int = …”.

𝑅′ = ⋯

[R-Seq-Res]

⟨𝑅′ •
1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅′ • while 𝑥 < 2 do

𝑥 ← 𝑥 + 1 ⟩ 𝑅′.Mutables(𝑥) = 0

[R-LetM-Eval-Scope]

⟨𝑅 •
let mutable 𝑥 ∶ int = 1;
1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩

We have now reached an expression that is very similar to the one at the beginning of
this example — except that the mutable variable 𝑥 is now initialised with 1 instead of 0.
If we perform 9 more reductions similar to the ones above, we cause a further increment
of variable 𝑥; then, we can again expand the “while” into an “if” (by rule [R-While]) thus
obtaining:

⟨𝑅 •
let mutable 𝑥 ∶ int = 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⋯ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 2;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 2;
if 𝑥 < 2 then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩

This last expression will now reduce by making the “if” condition false:

⟨𝑅 •

let mutable 𝑥 ∶ int = 2;
if 𝑥 < 2 then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 2;
if 2 < 2 then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅 •

let mutable 𝑥 ∶ int = 2;
if false then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩

And now, the last expression takes the “else” branch of the “if” (using a rule that you
should have defined as part of Exercise ⁇): therefore, it reduces into the final unit value
():

⟨𝑅 •

let mutable 𝑥 ∶ int = 2;
if false then {

𝑥 ← 𝑥 + 1;
while 𝑥 < 2 do

𝑥 ← 𝑥 + 1
} else ()

⟩ → ⟨𝑅 • let mutable 𝑥 ∶ int = 2;
() ⟩ → ⟨𝑅 • ()⟩

5.3. “While” Loop 121



02247 Compiler Construction, Spring 2023

5.3.3 Typing Rules

We now extend the typing rules of Hygge0 to support the “while” loop introduced in
Definition 17 . This only requires a new typing rule, that is quite straightforward (see
Definition 20 below): when type-checking “while 𝑒1 do 𝑒2”, we make sure that 𝑒1 has
type bool, and 𝑒2 is well-typed with some type 𝑇 ; if these premises hold, then the “while”
loop has type unit (because whenever the loop terminates, it produces a unit value (),
according to its semantics in Definition 19).

Definition 20 (Typing Rules for “While” Loops)

We define the typing rules of Hygge0 with “while” loops by extending Definition 11
with the following rule:

Γ ⊢ 𝑒1 ∶ bool Γ ⊢ 𝑒2 ∶ 𝑇
[T-While]Γ ⊢ while 𝑒1 do 𝑒2 ∶ unit

Exercise 27

Write a typing derivation that type-checks the following expression (giving to each op-
erator its conventional mathematical precedence):

let mutable 𝑥 ∶ int = 0;
while 𝑥 ∗ 2 < 𝑥 + 4 do

𝑥 ← 𝑥 ∗ 2 + 1

5.3.4 Implementation

We now have a look at how hyggec can be extended to implement “while” loops, accord-
ing to the specification illustrated in the previous sections.

Tip: To see a summary of the changes described below, you can inspect the differences
in the hyggec Git repository between the tags mutable-vars and while.

Lexer, Parser, Interpreter, and Type Checking

These parts of the hyggec compiler are extended along the lines of Example: Extending
Hygge0 and hyggec with a Subtraction Operator .

• We extend the data type Expr<'E,'T> (in AST.fs) with a new named case While
for “while 𝑒1 do 𝑒2” (according to Definition 17 ).

• We extend PrettyPrinter.fs to support the new expression While.

122 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

• We extend Lexer.fsl to support two new tokens:

– WHILE for the keyword while, and

– DO for the keyword do.

• We extend Parser.fsy to recognise the desired sequences of tokens according to
Definition 17 , and generate AST nodes for the new expression While.

• We extend the function subst in ASTUtil.fs to support the new expressions
LetMut and Assign, according to Definition 18.

• We extend the function reduce in Interpreter.fs to support While, according to
Definition 19 .

• We extend Typechecker.fs according to Definition 20.

Code Generation

The RISC-V assembly code generated for the expression “while 𝑒1 do 𝑒2” must mimic
the semantics in Definition 19 . Therefore, it must:

1. execute the assembly code generated for the condition expression 𝑒1;

2. check the result produced by the code of 𝑒1:

• if the result is 0 (false), the assembly code must jump to the end of the loop,
and produce no result (corresponding to the unit value). Hence, we need to
place an assembly label to mark the end of the loop;

• otherwise, the assembly code must:

– execute the expression 𝑒2 (i.e. the body of the loop); and

– afterwards, re-evaluate the loop condition. To this purpose, the assem-
bly code can jump back to point 1 above — hence, we need to place an
assembly label to mark the beginning of the loop.

Therefore, in the function doCodegen (in the file RISCVCodegen.fs) we add the following
pattern matching case.

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
match node.Expr with
// ...
| While(cond, body) ->

/// Label to mark the beginning of the 'while' loop
let whileBeginLabel = Util.genSymbol "while_loop_begin"
/// Label to mark the end of the 'while' loop
let whileEndLabel = Util.genSymbol "while_loop_end"
// Check the 'while' condition, jump to 'whileEndLabel' if it is false
Asm(RV.LABEL(whileBeginLabel))

++ (doCodegen env cond)
.AddText(RV.BEQZ(Reg.r(env.Target), whileEndLabel),

"Jump if 'while' loop condition is false")
(continues on next page)

5.3. “While” Loop 123



02247 Compiler Construction, Spring 2023

(continued from previous page)
++ (doCodegen env body)
.AddText([

(RV.J(whileBeginLabel), "Next iteration of the 'while' loop")
(RV.LABEL(whileEndLabel), "")

])

5.4 Project Ideas

For your group project, you should implement all the following project ideas (but notice
that some of them give you a choice between different options):

• Project Idea: C-Style Increment/Decrement Operators

• Project Idea: C-Style Compute-Assign Operators

• Project Idea: “Do…While” Loop

• Project Idea: “For” Loop

There is also an Optional Challenge: a Better “Do…While” Loop (which can replace the
“do…while” project idea).

Hint: There are several ways to implement the following project ideas. Depending on
your approach, you may achieve the result without extending the interpreter, nor the
code generation…

5.4.1 Project Idea: C-Style Increment/Decrement Operators

Add increment or decrement operators to the Hygge0 language and to the hyggec com-
piler, by following the steps described in Example: Extending Hygge0 and hyggec with a
Subtraction Operator . Choose at least two of the following.

• Pre-increment expression “++𝑥”, which increments the value of the mutable
variable 𝑥 by 1, and reduces to the value of 𝑥 after the increment. The value
assigned to variable 𝑥 can only be an integer or a float.

• Post-increment expression “𝑥++”, which increments the value of the mutable
variable 𝑥 by 1, and reduces to the value that 𝑥 had before the increment. The
value assigned to variable 𝑥 can only be an integer or a float.

• Pre-decrement expression “−−𝑥”, which decrements the value of the mutable
variable 𝑥 by 1, and reduces to the value of 𝑥 after the decrement. The value
assigned to variable 𝑥 can only be an integer or a float.

• Post-increment expression “𝑥−−”, which decrements the value of the mutable
variable 𝑥 by 1, and reduces to the value that 𝑥 had before the decrement. The
value assigned to variable 𝑥 can only be an integer or a float.

124 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

Hint:

• For the increment and decrement operators, you should define new tokens for the
symbols ++ and/or -- (called e.g. PLUSPLUS and MINUSMINUS).

• When modifying Parser.fsy, the increment and decrement operators should be
placed in the syntactic category unaryExpr.

• You will need to be careful with the precedence of the increment operators. For
example, consider the following expression:

++ x ++

Shold it be parsed as “++ (x ++)” or as “(++ x) ++”?

To avoid ambiguities and select the first option (i.e. give higher precedence to the
postfix increment), you could define parsing rules like:

unaryExpr:
// ...
| PLUSPLUS unaryExpr { ... }
| ascriptionExpr PLUSPLUS { ... }

ascriptionExpr:
// ...

5.4.2 Project Idea: C-Style Compute-Assign Operators

Add compute-assign operators to the Hygge0 language and to the hyggec compiler, by
following the steps described in Example: Extending Hygge0 and hyggec with a Subtrac-
tion Operator . Choose at least two of the following.

• Add-assign expression “𝑥 += 𝑒”, which computes the value of 𝑥 + 𝑒, assigns
the result to the mutable variable 𝑥, and reduces to the updated value of 𝑥. This
expression only reduces to a value when both 𝑥 and 𝑒 are integers or floats.

• Minus-assign expression “𝑥 −= 𝑒”, which computes the value of 𝑥 − 𝑒, assigns
the result to the mutable variable 𝑥, and reduces to the updated value of 𝑥. This
expression only reduces to a value when both 𝑥 and 𝑒 are integers or floats.

• Multiply-assign expression “𝑥 ∗= 𝑒”, which computes the value of 𝑥 ∗ 𝑒, assigns
the result to the mutable variable 𝑥, and reduces to the updated value of 𝑥. This
expression only reduces to a value when both 𝑥 and 𝑒 are integers or floats.

• Divide-assign expression “𝑥 /= 𝑒”, which computes the value of 𝑥/𝑒, assigns
the result to the mutable variable 𝑥, and reduces to the updated value of 𝑥. This
expression only reduces to a value when both 𝑥 and 𝑒 are integers or floats.

• Modulo-assign expression “𝑥 %= 𝑒”, which computes the value of the modulo
𝑥 % 𝑒 , assigns the result to the mutable variable 𝑥, and reduces to the updated

5.4. Project Ideas 125



02247 Compiler Construction, Spring 2023

value of 𝑥. This expression only reduces to a value when both 𝑥 and 𝑒 are integers.

Hint: To add these new assignment operators, you should define new tokens for their
symbols — e.g. you could add a token for += called ADD_ASSIGN. These new assignment
operators should have the same priority and associativity of the regular assignment,
hence they can be added in Parser.fsy under the syntactic category simpleExpr.

5.4.3 Project Idea: “Do…While” Loop

Add a “do 𝑒1 while 𝑒2” expression to the Hygge0 language and to the hyggec compiler,
by following the steps described in Example: Extending Hygge0 and hyggec with a Sub-
traction Operator . The semantics of “do 𝑒1 while 𝑒2” is:

1. reduce 𝑒1 into a value;

2. then, check the condition 𝑒2:

• if 𝑒2 is true, repeat from point 1;

• otherwise, reduce the whole “do…while” expression to the unit value ().

5.4.4 Project Idea: “For” Loop

Add a C-style loop expression “for (𝑒𝑖; 𝑒𝑐; 𝑒𝑢) 𝑒𝑏” to the Hygge0 language and to the
hyggec compiler, by following the steps described in Example: Extending Hygge0 and
hyggec with a Subtraction Operator . The behaviour of the expression is the following:

1. reduce the initialisation expression 𝑒𝑖 into a value;

2. reduce the condition expression 𝑒𝑐 into a value;

• if 𝑒𝑐 reduces to true:

– reduce the expression 𝑒𝑏 (the body of the loop) into a value;

– execute the update expression 𝑒𝑢;

– repeat from point 2;

• otherwise, if 𝑒𝑐 reduces to false, reduce the whole for-loop expression into
the unit value ().

Note: Unlike the “for” loop in C, the initialisation expression 𝑒𝑖 is not expected to
introduce new variables that are also visible in 𝑒𝑐, 𝑒𝑢, and 𝑒𝑏. In other words, the “for”
loop of this project idea should not act like a new binder in the style of “let”.

If you want to implement a more faithful C-style version of “for” loops, where 𝑒𝑖 can
introduce new variables that are also visible in 𝑒𝑐, 𝑒𝑢, and 𝑒𝑏, please speak with the
teacher.

126 Module 5: Mutability and Loops



02247 Compiler Construction, Spring 2023

5.4.5 Optional Challenge: a Better “Do…While” Loop

This optional challenge can be selected instead of the “do…while” Project Idea above.

Improve the specification of the “do 𝑒1 while 𝑒2” loop outlined in the Project Idea above,
as follows:

1. reduce 𝑒1 into a value;

2. then, check the condition 𝑒2:

• if 𝑒2 is true, repeat from point 1;

• otherwise, reduce the whole “do…while” expression to the value produced
by the last execution of 𝑒1.

Define the semantics and typing rules that reflect this improved specification, and im-
plement them in hyggec.

5.4. Project Ideas 127



02247 Compiler Construction, Spring 2023

128 Module 5: Mutability and Loops



6
Module 6: Functions and the RISC-V Calling

Convention

In this module we study how to add functions to the Hygge0 programming language.
On the specification side, functions are not very complicated. However, their code gen-
eration is very dependent on the specifics of the target hardware architecture — and for
this reason, we will need to study the RISC-V calling convention.

6.1 Overall Objective

Our goal is to interpret, compile and run Hygge programs like the one shown in Example
34 below.

Example 34 (A Hygge Program with Functions)

1 // A simple function: takes two integer arguments and returns an integer.
2 fun f(x: int, y: int): int = x + y;
3

4 // A function instance (a.k.a. lambda term), with a function type, saying:
5 // g is a function that takes two integer arguments and returns an integer.
6 let g: (int, int) -> int = fun (x: int, y: int) -> x + y + 1;
7

8 let x: int = f(1, 2); // Applying ("calling") a function
9 let y: int = g(1, 2); // Applying ("calling") a lambda abstraction

10 assert(x + 1 = y);
11

12 // A function that defines a nested function and calls it.
13 fun h(x: int): int = {
14 fun privateFun(z: int): int = z + 2;
15 privateFun(x)
16 };
17

18 let z: int = h(40);
19 assert(z = 42);

(continues on next page)

129



02247 Compiler Construction, Spring 2023

(continued from previous page)
20

21 // A function that takes a function as argument, and calls it.
22 fun applyFunToInt(f: (int) -> int,
23 x: int): int =
24 f(x);
25

26 assert(applyFunToInt(h, 1) = 3);
27

28 // A function that defines a nested function and returns it.
29 fun makeFun(addOne: bool): (int) -> int =
30 if (addOne) then {
31 fun inc(x: int): int = x + 1;
32 inc
33 } else {
34 fun (x: int) -> x + 2
35 };
36

37 let plusOne: (int) -> int = makeFun(true);
38 let plusTwo: (int) -> int = makeFun(false);
39 assert(plusOne(42) = 43);
40 assert(plusTwo(42) = 44);
41 assert((makeFun(true))(42) = 43)

To introduce functions in the Hygge specification, and make it possible to write pro-
grams like the one in Example 34, we follow typical conventions of functional program-
ming languages:

• we treat functions as first-class values that can be passed and returned. Such
values are also called lambda terms or lambda abstractions;

• to “call” a function, we apply a function (or an expression that reduces into a
function) to other values; result of the application is a new value;

• we introduce a new function type to specify what type of arguments a function
expects, and what type of value it returns.

Important: The extension described in this module is already (partially) implemented
in the upstream Git repository of hyggec: you should pull and merge the latest changes
into your project compiler. The Project Ideas of this module further extend Hygge with
better support for functions.

130 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

6.2 Syntax

Definition 21 below extends the syntax of Hygge with functions and function applica-
tions, and with a new pretype that specifies the syntax of a new function type. It also
introduces a short-hand notation for defining functions.

Definition 21 (Functions and Applications)

We define the syntax of Hygge0 with functions by extending Definition 1 with a new
expressions, a new value, and a new pretype:

Expression 𝑒 ∶∶= …
∣ 𝑒 (𝑒1, … , 𝑒𝑛) (Application, with 𝑛 ≥ 0)

Value 𝑣 ∶∶= …
∣ fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 (Function instance, a.k.a. lambda term, with 𝑛 ≥ 0)

Pretype 𝑡 ∶∶= …
∣ (𝑡1, … , 𝑡𝑛) → 𝑡 (Function type, with 𝑛 ≥ 0)

We also define the following syntactic sugar that provides a shorter way to define a
named function:

fun name (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) ∶ 𝑡 = 𝑒1; 𝑒2

which is shorthand for the following Hygge expression:

let name ∶ (𝑡1, … , 𝑡𝑛) → 𝑡 = (fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒1); 𝑒2

The expansion of syntactic sugar into actual Hygge grammar elements is called desug-
aring.

In Definition 21 above, a function instance (a.k.a. lambda term) is written
“fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒”, and it consists of:

• zero or more formal arguments 𝑥1, … , 𝑥𝑛, each one annotated with a pretype;
and

• the function body 𝑒, which is executed when the function is applied to actual
arguments in order to produce a value (see below).

A function instance (a.k.a. lambda term) can be “called” through an application
“𝑒 (𝑒1, … , 𝑒𝑛)”, which means that the expression 𝑒 (which is expected to reduce into
a function instance) is applied to zero or more expressions 𝑒1, … , 𝑒𝑛: each of these ex-
pressions should reduce into a value, that becomes an actual argument of the function
application. (For more details, see the Operational Semantics below.)

A function pretype “(𝑡1, … , 𝑡𝑛) → 𝑡” is the syntactic description of the type of a function
that takes zero or more arguments having type 𝑡1, … , 𝑡𝑛, and returns a value of type 𝑡.

6.2. Syntax 131



02247 Compiler Construction, Spring 2023

Just like the other pretypes in Hygge0, we will need to resolve this new pretype into a
valid function type: we will address this later, when discussing the Typing Rules.

Finally, the syntactic sugar in Definition 21 provides a convenient syntax for a very
typical case: the definition of a named function with a certain name and arguments.
This syntax is desugared into a (more verbose) “let…” binder that defines a variable called
name, having a function type, and initialised with a lambda term. This way, Hygge
programmers can have a convenient syntax, without extending the Hygge grammar
with a new dedicated expression. (Notice that, had we extended the grammar with a
new dedicated expression, we would have also needed to specify how to handle the new
expression in the semantics, type checking rules, etc.)

Example 35 (Syntactic Sugar for Function Definitions)

Using the syntactic sugar in Definition 21, we can write:

fun f (𝑥 ∶ int, 𝑦 ∶ int) ∶ int = {
println(”Called!”);
𝑥 + 𝑦

};
𝑓(2, 3)

The expression above is just an alias for the following desugared expression:

let f ∶ (int, int) → int = fun (𝑥 ∶ int, 𝑦 ∶ int) → {
println(”Called!”);
𝑥 + 𝑦

};
𝑓(2, 3)

In other words, the syntactic sugar above defines regular “let” binding that:

1. introduces a variable with the given name (in this case, 𝑓 ) and a function type,
and

2. initialises the variable with a function instance (a.k.a. lambda term) of the corre-
sponding type.

In the scope of this “let”, it is possible to call the function instance by simply applying
the newly-defined variable 𝑓 to some arguments, e.g. as 𝑓(2, 3).

6.3 Operational Semantics

Definition 22 formalises how substitution works for function instances and applications.

Definition 22 (Substitution for Functions and Applications)

We extend Definition 2 (substitution) with the following new cases:

132 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

(fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒) [𝑥 ↦ 𝑒′] = fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 (when 𝑥 = 𝑥𝑖, for some 𝑖 ∈ 1..𝑛)
(fun (𝑦1 ∶ 𝑡1, … , 𝑦𝑛 ∶ 𝑡𝑛) → 𝑒) [𝑥 ↦ 𝑒′] = fun (𝑦1 ∶ 𝑡1, … , 𝑦𝑛 ∶ 𝑡𝑛) → 𝑒 [𝑥 ↦ 𝑒′] (when 𝑥 ≠ 𝑦𝑖, for all 𝑖 ∈ 1..𝑛)

(𝑒 (𝑒1, … , 𝑒𝑛)) [𝑥 ↦ 𝑒′] = (𝑒 [𝑥 ↦ 𝑒′]) (𝑒1 [𝑥 ↦ 𝑒′] , … , 𝑒𝑛 [𝑥 ↦ 𝑒′])

According to Definition 22:

• if a substitution is applied to a function instance “fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒”,
then the substitution is propagated through the body of the function 𝑒 — unless
the variable being substituted coincides with one of the function arguments 𝑥𝑖 (for
some 𝑖 ∈ 1..𝑛). This is because the function instance acts as a binder, hence if an
argument is called 𝑥, then any reference to 𝑥 in the function body 𝑒 is referring to
that argument 𝑥 (i.e. any other variable 𝑥 in the surrounding scope is shadowed);

• if a substitution is applied to an application 𝑒 (𝑒1, … , 𝑒𝑛), then the substitution is
propagated throughout 𝑒 (the expression being applied) and the application argu-
ments (𝑒1, … , 𝑒𝑛).

We can now introduce the semantics of function application, in Definition 23 below.

Definition 23 (Semantics of Functions and Applications)

We define the semantics of Hygge0 with functions and applications by extending Def-
inition 4 with the following rules:

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-App-Eval-L]

⟨𝑅 • 𝑒 (𝑒1, … , 𝑒𝑛)⟩ → ⟨𝑅′ • 𝑒′ (𝑒1, … , 𝑒𝑛)⟩

⟨𝑅 • 𝑒𝑖⟩ → ⟨𝑅′ • 𝑒′⟩
[R-App-Eval-R𝑖]

⟨𝑅 • 𝑣 (𝑣1, … , 𝑣𝑖−1, 𝑒𝑖, 𝑒𝑖+1, … , 𝑒𝑛)⟩ → ⟨𝑅′ • 𝑣 (𝑣1, … , 𝑣𝑖−1, 𝑒′, 𝑒𝑖+1, … , 𝑒𝑛)⟩

[R-App-Res]
⟨𝑅 • (fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒) (𝑣1, … , 𝑣𝑛)⟩ → ⟨𝑅 • 𝑒 [𝑥1 ↦ 𝑣1] ⋯ [𝑥𝑛 ↦ 𝑣𝑛]⟩

Given an application “𝑒 (𝑒1, … , 𝑒𝑛)”, the reduction rules inDefinition 23 work as follows:

• rule [R-App-Eval-L] requires us to first reduce 𝑒, i.e. the expression being applied;

• when the expression being applied reduces into a value, rule [R-App-Eval-Ri] al-
lows us to reduce the application arguments 𝑒1, … , 𝑒𝑛, proceeding from left to
right, until all of them become values;

• finally, rule [R-App-Res] allows us to perform the actual application. This rule
requires that:

1. the value being applied is a function instance (i.e. a lambda term)
fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒; and

2. the number of values used as arguments for the application is 𝑛, i.e. the same
number of arguments expected by the function instance.

6.3. Operational Semantics 133



02247 Compiler Construction, Spring 2023

When these conditions are met, the application proceeds by taking the body of the
function instance 𝑒, and replacing each formal argument 𝑥𝑖 with the correspond-
ing actual argument value 𝑣𝑖.

(To see function application in action, see Example 36 below.)

Example 36 (Reduction of Function Application)

Consider again the Hygge program in Example 35 (in its desugared version). Take a
runtime environment 𝑅 where 𝑅.Printer is defined. The program reduces as follows.

The first reduction uses rule [R-Let-Subst] (from Definition 4) to substitute each occur-
rence of variable 𝑓 in the scope of the “let…” with the lambda term that initialises 𝑓
(recall that by Definition 21, lambda terms are values and cannot be further reduced).

[R-Let-Subst]

⟨𝑅 •

let f ∶ (int, int) → int = fun (𝑥 ∶ int, 𝑦 ∶ int) → {
println(”Called!”);
𝑥 + 𝑦

};
𝑓(2, 3)

⟩ → ⟨𝑅 •
⎛⎜⎜⎜⎜
⎝

fun (𝑥 ∶ int, 𝑦 ∶ int) → {
println(”Called!”);
𝑥 + 𝑦

}

⎞⎟⎟⎟⎟
⎠

(2, 3) ⟩

The second reduction uses rule [R-App-Res] (from Definition 23) to apply lambda term
to the arguments (2, 3): after the reduction, we obtain the body of the function with
argument 𝑥 replaced by 2, and argument 𝑦 replaced by 3.

[R-App-Res]

⟨𝑅 •
⎛⎜⎜⎜⎜
⎝

fun (𝑥 ∶ int, 𝑦 ∶ int) → {
println(”Called!”);
𝑥 + 𝑦

}

⎞⎟⎟⎟⎟
⎠

(2, 3) ⟩ → ⟨𝑅 • println(”Called!”);
2 + 3 ⟩

Then, the program continues reducing as expected, by performing the println(...) and
reaching the final value 5.

Exercise 28 (Reduction of Function Application)

Write the reductions of the following Hygge expression: (note that you will need to
desugar it first)

fun f (𝑥 ∶ int, 𝑦 ∶ int) ∶ int = {
fun g (𝑥 ∶ int) ∶ int = 𝑥 + 1;
𝑔 (𝑥) + 𝑦

};
𝑓(2, 3)

134 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

6.4 Typing Rules

We now discuss how to type-check lambda terms and applications. First, we need to
introduce a new function type, formalised in Definition 24 below.

Definition 24 (Function Type)

We extend the Hygge0 typing system with a function type by adding the following case
to Definition 5:

Type 𝑇 ∶∶= …
∣ (𝑇1, … , 𝑇𝑛) → 𝑇 (Function type, with 𝑛 ≥ 0)

In a function type (𝑇1, … , 𝑇𝑛) → 𝑇 , the types 𝑇1, … , 𝑇𝑛 are the argument types, while
𝑇 is the return type.

Example 37

The following function type denotes a function that takes two arguments (an integer and
a boolean) and returns a string.

(int, bool) → string

The following function type, instead, denotes a function that:

• takes three arguments:

1. a float,

2. an integer, and

3. a function that takes two booleans and returns an integer;

• returns a function that takes zero arguments, and returns a unit value.

( float, int, (bool, bool) → int ) → (() → unit)

We also need a way to resolve a syntactic function pretype (from Definition 21) into a
valid function type (from Definition 24): this is formalised in Definition 25 below.

Definition 25 (Resolution of Function Types)

We extend Definition 7 (type resolution judgement) with this new rule:

∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑡𝑖 ▷ 𝑇𝑖 Γ ⊢ 𝑡 ▷ 𝑇
[TRes-Fun]

Γ ⊢ (𝑡1, … 𝑡𝑛) → 𝑡 ▷ (𝑇1, … , 𝑇𝑛) → 𝑇

Rule [TRes-Fun] in Definition 25 says that, in order to resolve a function pretype
“(𝑡1, … 𝑡𝑛) → 𝑡” into a valid function type, we need to:

6.4. Typing Rules 135



02247 Compiler Construction, Spring 2023

• resolve each argument pretype 𝑡𝑖 (for 𝑖 ∈ 1..𝑛) into a valid type 𝑇𝑖, and

• resolve the return pretype 𝑡 into a valid type 𝑇 .

We now have all the ingredients to define the typing rules for lambda terms and appli-
cations.

Definition 26 (Typing Rules for Function Instances and Applications)

We define the typing rules of Hygge0 with functions and applications by extending
Definition 11 with the following rules (which use the function type introduced in Defi-
nition 24 above):

𝑥1, … , 𝑥𝑛 pairwise distinct ∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑡𝑖 ▷ 𝑇𝑖 {Γ with Vars + {𝑥𝑖 ↦ 𝑇𝑖}𝑖∈1..𝑛} ⊢ 𝑒 ∶ 𝑇
[T-Fun]

Γ ⊢ fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 ∶ (𝑇1, … , 𝑇𝑛) → 𝑇

Γ ⊢ 𝑒 ∶ (𝑇1, … , 𝑇𝑛) → 𝑇 ∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑒𝑖 ∶ 𝑇𝑖 [T-App]
Γ ⊢ 𝑒 (𝑒1, … , 𝑒𝑛) ∶ 𝑇

The rules in Definition 26 work as follows.

• Rule [T-Fun] type-checks a lambda term “fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒” in a typ-
ing environment Γ. In its premises, the rule ensures that all argument variables
𝑥1, … , 𝑥𝑛 are distinct from each other, and each argument pretype 𝑡𝑖 (for 𝑖 ∈ 1..𝑛)
is resolved into a valid type 𝑇𝑖. Then, the rule recursively checks whether the func-
tion body 𝑒 has type 𝑇 , in a typing environment that extends Γ with the argument
variables 𝑥1, … 𝑥𝑛 and their corresponding types: this allows the function body 𝑒
to make use of the function argument variables. If all these premises hold, then
the rule concludes that the lambda term has the function type (𝑇1, … , 𝑇𝑛) → 𝑇 .

• Rule [T-Fun] type-checks an application “𝑒 (𝑒1, … , 𝑒𝑛)”. The first premise of
the rule checks whether 𝑒 (the expression being applied) has a function type
(𝑇1, … , 𝑇𝑛) → 𝑇 . Notice that:

– the number of argument types of the function type must be 𝑛, which is also
the number of arguments in the application; and

– the return type 𝑇 must be the same type used in the conclusion of the rule.

The second premise of the rule checks whether each application argument 𝑒𝑖 has
type 𝑇𝑖 (for 𝑖 ∈ 1..𝑛). If all these premises hold, it means that the application
involves an actual function which is given the correct number of arguments, all
having the expected types; therefore, the rule concludes that the application has
type 𝑇 (i.e. the return type of the function being applied).

Example 38 (Type-Checking a Program with Functions and Applications)

136 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Consider this Hygge expression, that defines a function 𝑓 and applies it:

fun f (𝑥 ∶ int, 𝑦 ∶ int) ∶ int =
𝑥 + 𝑦;

𝑓 (2, 3)

To type-check this expression, we first need to desugar it (according to Definition 21),
thus obtaining:

let f ∶ (int, int) → int =
fun (𝑥 ∶ int, 𝑦 ∶ int) →

𝑥 + 𝑦;
𝑓 (2, 3)

For brevity, let us define the following typing environments:

Γ =
⎧{
⎨{⎩

Vars = ∅
TypeVars = ∅
Mutables = ∅

⎫}
⎬}⎭

Γ′ =
⎧{
⎨{⎩

Vars = {𝑥 ↦ int, 𝑦 ↦ int}
TypeVars = ∅
Mutables = ∅

⎫}
⎬}⎭

Γ″ =
⎧{
⎨{⎩

Vars = {𝑓 ↦ (int, int) → int}
TypeVars = ∅
Mutables = ∅

⎫}
⎬}⎭

Then, we have the following typing derivation for the desugared expression:

[TRes-Int]Γ ⊢ ”int” ▷ int ⋯
[TRes-Fun]

Γ ⊢ ” (int, int) → int” ▷ (int, int) → int

[TRes-Int]Γ ⊢ ”int” ▷ int ⋯

Γ′(𝑥) = int
[T-Var]

Γ′ ⊢ 𝑥 ∶ int
Γ′(𝑦) = int

[T-Var]
Γ′ ⊢ 𝑦 ∶ int

[T-Add]
Γ′ ⊢ 𝑥 + 𝑦 ∶ int

[T-Fun]

Γ ⊢ fun (𝑥 ∶ int, 𝑦 ∶ int) →
𝑥 + 𝑦 ∶ (int, int) → int

Γ″(𝑓) = (int, int) → int
[T-Var]

Γ″ ⊢ 𝑓 ∶ (int, int) → int
[T-Val-Int]

Γ″ ⊢ 2 ∶ int
[T-Val-Int]

Γ″ ⊢ 3 ∶ int
[T-App]

Γ″ ⊢ 𝑓 (2, 3) ∶ int
[T-Let2]

Γ ⊢
let f ∶ (int, int) → int =

fun (𝑥 ∶ int, 𝑦 ∶ int) →
𝑥 + 𝑦;

𝑓 (2, 3)
∶ int

Let us explore the derivation above, going bottom-up. We begin with the instance of
rule [T-Let2] (from Definition 16).

• The first premise of [T-Let2] resolves the function pretype into an actual function
type (int, int) → int, using [T-Res-Fun] from Definition 25.

• The second premise of [T-Let2] checks whether the expression that initialises 𝑓
has the expected type (int, int) → int. Since that expression is a lambda term, we
type-check it using rule [T-Fun] from Definition 26, which:

– resolves each pretype assigned to the lambda term arguments 𝑥 and 𝑦;
– type-checks the body of the lambda term (i.e. the expression 𝑥 + 𝑦) in a

typing environment Γ′, where 𝑥 and 𝑦 are mapped to their type int;

– concludes that the lambda term has type (int, int) → int;

• The third premise of [T-Let2] type-checks the expression in the scope of the “let…”,
i.e. 𝑓 (2, 3). To this end, it uses a typing environment Γ″ where the declared vari-
able 𝑓 maps to its type (int, int) → int; moreover, since 𝑓 (2, 3) is an application,
we type-check it using rule [T-App] from Definition 26, which:

– checks whether the expression being applied (i.e. 𝑓 ) has a function type;

6.4. Typing Rules 137



02247 Compiler Construction, Spring 2023

– checks whether 𝑓 is applied to exactly two arguments (as expected by its
function type), and whether each argument (the expressions 2 and 3) has the
expected type (int); and

– concludes that the application 𝑓 (2, 3) has type int (i.e. the return type of 𝑓 ).
Since all premises of this instance of [T-Let2] hold, the rule concludes that the whole
expression has type int.

6.5 The RISC-V Memory Layout, Stack, and Calling
Convention

To extend hyggec with functions and applications (according to the specification above)
we follow the usual steps, that we discuss later (in the Implementation section).

However, the code generation step is far from trivial: in order to generate the correct
code for functions and applications, we need to be aware of The RISC-V Memory Layout,
and the details of Implementing Functions in RISC-V — in particular, the RISC-V calling
convention. We now discuss all these topics.

6.5.1 The RISC-V Memory Layout

When discussing the RISC-V Assembly Program Structure we mentioned that, when a
program runs on a RISC-V architecture, its memory is divided into segments — and we
highlighted the data segment and the text segment. Fig.6.1 shows a more detailed view.

Fig.6.1 outlines the following memory layout:

• the reserved memory area (placed on low memory addresses) is typically used by
the operating system;

• the text segment contains the program code; the program counter (pc) register
should always point to a memory address within this segment;

• the data segment contains statically-allocated program data (e.g. constant strings
and values);

• the heap is a memory area for data allocated dynamically, while the program is
running. The heap grows upwards: new data is allocated in higher memory ad-
dresses; (we will talk about the heap in the next module)

• the stack is also a memory area for dynamically-allocated data — but unlike the
heap, it grows downwards (from high to low memory addresses) and its data is
allocated and removed in LIFO (last-in-first-out) order. Its main use is to store the
local state of a running function: when a function is called, it will add its data on
the stack, and then remove it before returning to the caller. When a program uses
the stack, it leverages two registers:

138 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Fig. 6.1: Typical memory layout of a program running on a RISC-V system. Memory
addresses are only indicative.

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 139



02247 Compiler Construction, Spring 2023

– the stack pointer (sp) register points to the last-allocated memory address
on the stack;

– the frame pointer (fp) points to the beginning of the current stack frame,
i.e. the portion of the stack used by the function that is currently running.

Being a register-based architecture, RISC-V favours using registers instead of memory.
However, using the stack becomes hardly avoidable as soon as a program needs to call
a function, or perform a system call: we now see why.

6.5.2 Implementing Functions in RISC-V

We illustrate how functions can be implemented in a RISC-V architecture by first dis-
cussing a series of scenarios of growing complexity, and concluding with The RISC-V
Calling Convention and Its Code Generation.

Calling a Function: a Simple Case

Consider the following Hygge program, where the “main” program body calls a function
f that immediately returns the same value.

fun f(x: int): int = x;

f(42)

We could compile this program by following a simple convention on how to call a func-
tion and return a value, as follows:

• the caller of function f (i.e. the main body of the program) must:

1. write the function call integer arguments in the registers a0 to a7 (in this
case, we only need to use register a0 for the argument 42);

2. write the return address in the register ra (which in fact stands for “return
address”). More precisely, the return address is the memory address of the
assembly instruction that follows the function call f(1, 2);

3. jump to the memory address where the code of the function f begins; and

4. when f returns (i.e. jumps back to the memory address in register ra), find
its return value in register a0;

• the function f (i.e. the callee) must:

1. find its integer arguments in registers a0 to a7 (in this case, it only uses
register a0);

2. compute its result and write it in the return value register a0; and

3. jump to the memory address in register ra, thus returning to the caller.

140 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Calling a Function While Saving Temporary Registers

Consider the following Hygge program, where the “main” body has some local variables
and computation, and calls a function f which also performs some computation.

fun f(x: int, y: int): int = {
// ... other expressions ...
x + y

};

let a: int = 1 + 1;
let b: int = a + 2;
// ... other expressions ...
f(a, b)
a + b

If we compile this program according to the simple calling convention outlined in above,
we run into a problem. Observe that (according to the Code Generation Strategy of
hyggec):

• in the “main” body of the program:

– the values of variables a and b will be written in the temporary registers t0
and t1;

– the “other expressions” may use further registers — including registers s0,
s1, etc.;

• in the body of f:

– the result of its “other expressions”, and the result of x + y, will be written
(at least temporarily, before returning) in register t0, and possibly in other
registers.

As a consequence, the execution of function f will overwrite the value of register t0
(and possibly other registers) used by its caller; consequently, the result of the final
expression a + b will be incorrect!

To avoid this scenario, we need to refine the simple calling convention outlined above: we
need to save and restore registers to preserve their value. More concretely, the RISC-V
conventions specify that some registers should be saved by the caller of a function, while
others should be saved by the function being called:

• the caller of function f must:

1. save on the stack all used registers which are marked as “caller-saved” in
the table of RISC-V Base and Floating-Point Registers;

2. write the integer function arguments in the registers a0 to a7 (in this case,
we only need to use registers a0 and a1 for arguments 2 and 42);

3. write the return address (i.e. the memory address of the instruction that
follows the call f(1, 2)) in the register ra (return address);

4. jump to the memory address where the code of the function f begins; and

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 141



02247 Compiler Construction, Spring 2023

5. when f returns (i.e. jumps back to the memory address in register ra)

– restore from the stack all caller-saved registers that were saved before
calling f;

– find the return value of f in register a0;

• the function f (i.e. the callee) must:

1. save on the stack all the registers it uses which are marked as “callee-saved”
in the table of RISC-V Base and Floating-Point Registers;

2. find its integer arguments in registers a0 to a7 (in this case, it only uses a0
and a1);

3. compute its result, and write its return value in the register a0;

4. restore from the stack all callee-saved registers that were saved earlier; and

5. jump to the return memory address in register ra.

A Function That Performs a System Call

Consider the following Hygge program:

fun f(x: int, y: int): int = {
let z = readInt();
x + y + z

};

f(1, 2)

Notice that, in order to perform the system call readInt, the function f needs to do the
following (according to the specification of RARS System Calls):

• write the system call number in register a7, and

• find the system call result in register a0.

However, by doing so, the system call will overwrite the register a0, that holds the func-
tion argument x!

For this reason, when performing a system call, f needs to proceed as follows:

1. before the system call, save on the stack any used register between a0 and a7
that is also needed by the system call;

2. after the system call, restore from the stack any register between a0 and a7 saved
earlier.

This can be seen as a special case of Calling a Function While Saving Temporary Registers:
registers a0 to a7 are “caller-saved”, so they must be saved before calling a function (or
performing a system call).

142 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Calling a Function with More Than 8 Arguments

Consider the following Hygge program:

fun g(x1: int, x2: int, ..., x9: int, x10: int): int = {
x1 + x2 + ... + x9 + x10;

};

g(1, 2, ..., 8, 9, 10)

If a function g takes more than 8 arguments, then registers a0 to a7 are not sufficient for
storing all arguments needed to call g. Therefore, we need to further refine the calling
convention outlined above:

• the caller of function g must:

1. save on the stack all used registers which are marked as “caller-saved” in the
table of RISC-V Base and Floating-Point Registers;

2. write the first 8 integer function arguments in the registers a0 to a7;

3. write on the stack all integer function arguments above the 8th;

4. write the return address (i.e. the memory address after the call g(1, 2, ...)
in the register ra (return address);

5. jump to the memory address where the function g begins; and

6. when g returns (i.e. jumps back to the memory address in register ra)

– restore from the stack all caller-saved registers that were saved before
calling f;

– find the return value of f in register a0;

• the function g (i.e. the callee) must:

1. save on the stack all the registers it uses which are marked as “callee-saved”
in the table of RISC-V Base and Floating-Point Registers;

2. find its first 8 integer arguments in registers a0 to a7;

3. find the integer arguments above the 8th on the stack;

4. compute its result, and write its return value in the register a0;

5. restore from the stack all callee-saved registers that were saved earlier; and

6. jump to the return memory address in register ra.

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 143



02247 Compiler Construction, Spring 2023

The RISC-V Calling Convention and Its Code Generation

We can now specify in more detail the RISC-V calling convention, by illustrating how it
impacts code generation. To this end, we explore:

• the Code Generation for a Function Instance;

• the Code Generation for a Function Call; and

• a Detailed Example: the RISC-V Calling Convention in Action.

Important: When discussing the RISC-V calling convention below, we say “integer
argument” to actually mean “any function argument whose value (as represented in the
compiled assembly code) can be stored in a base RISC-V integer register”. In the case of
hyggec, such “integer arguments” includes all types of values except float: so, an “integer
argument” (for code generation) includes values of type int, bool (represented as integer
value 0 or 1), and also string (because strings are represented by their memory address).
Values of type unit have no fixed representation (in fact, hyggec typically discards values
of type unit), but they can harmlessly stored in integer registers.

Code Generation for a Function Instance

Consider a Hygge function instance (a.k.a. lambda term) fun (𝑥1 ∶ 𝑇1, … , 𝑥𝑛 ∶ 𝑇𝑛) → 𝑒.
When generating the assembly code for this function instance, we need to follow these
steps.

1. Generate an assembly label to mark the memory address of the function assembly
code (so it can be called later).

2. Generate the assembly code of a function prologue that:

• saves on the stack all registers which are marked as callee-saved in the table
of RISC-V Base and Floating-Point Registers, and

• initialises the frame pointer register fp with the value of the stack pointer
sp before the callee-saved registers were saved.

3. Generate the assembly the code of the function body 𝑒, making sure that it ac-
cesses the arguments 𝑥1, … , 𝑥𝑛 by using:

• registers a0…a7 for the first 8 integer arguments;

• registers fa0…fa7 for the first 8 floating-point arguments;

• the stack for the remaining arguments (if any):

– the first argument passed on the stack is located at the memory address
contained in the frame pointer register fp;

– the following arguments are stored at correspondingly higher addresses.

4. Generate the assembly the code of an function epilogue that:

144 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

• copies the value produced by the function body 𝑒 into the register a0 (for
integer values) or fa0 (for float values);

• restores from the stack all registers that were saved in the prologue;

• returns to the caller, by jumping to the memory address in register ra;

5. Finally, produce the result of the whole function instance, which is the memory
address marked with a label at point 1 above.

Remark 1 (Why Are We Updating the Frame Pointer Register?)

In the explanation above, the use of the frame pointer register fp may seem redundant:
it is just a copy of the value of the stack pointer sp at the beginning of the function. So,
why not just use sp, and keep the fp register (a.k.a. s0) available for other uses?

In fact, this is actually possible: using a register as a frame pointer is not necessary,
and RISC-V allows us to use register fp (a.k.a. s0) for any other purpose. Correspond-
ingly, compilers like gcc and clang include options (such as -fomit-frame-pointer and
-fno-omit-frame-pointer) to disable or enable the use of a register as frame pointer in
the generated code.

When used as frame pointer, the register fp contains the memory address of the begin-
ning of the portion of the stack used by a function: this portion of the stack is called
function frame. Knowing where the current function frame begins serves two main
purposes.

1. Using a frame pointer register is convenient for us, compiler writers. This is be-
cause:

• the value of the frame pointer register fp never changes while a function
is being executed. Therefore, the code of the function body 𝑒 (generated in
point 4 above) can use fp to access e.g. arguments passed on the stack with
fixed offsets: the first argument will be always at memory address 0(fp) (i.e.
address in fp plus offset 0), the second argument at 4(fp) (i.e. fp plus offset
4), etc.;

• instead, the value of the stack pointer sp changes every time the code of the
function body 𝑒 adds more data to the stack. For instance:

– the first function argument passed on the stack is initially at position
0(sp);

– however, if the code of 𝑒 allocates 1024 bytes on the stack, the value of
sp decreases by 1024: from that point, the compiler must remember that
the location of the first argument on the stack is 1024(sp).

Keeping track of the changes of sp is possible, but it is tedious and makes
the generated assembly harder to understand.

2. The frame pointer register can be used to inspect the stack of a running program,
e.g. by debuggers. By reading the current value of fp, and knowing the calling
convention in use, a debugger can find and identify the local data of a function:

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 145



02247 Compiler Construction, Spring 2023

• the arguments passed on the stack are located in memory addresses equal to
or higher than fp:

• other data is located in memory addresses lower than fp.

Code Generation for a Function Call

Now, consider a function application 𝑒 (𝑒1, … , 𝑒𝑛). When generating code for this func-
tion application, we need to follow these steps.

1. Generate the assembly code of 𝑒 (i.e. the expression being applied as a function):
this code should return a memory address produced by a function instance (see
above). We will jump to that address to “call” the function.

2. Generate the assembly code of each function argument 𝑒1, … , 𝑒𝑛.

3. Generate “before-call” assembly code that:

• saves on the stack all registers which are marked as caller-saved in the table
of RISC-V Base and Floating-Point Registers; (when doing this, we can omit
saving the target register of the application: its value is not used and it will
be overwritten by the return value of the call)

• makes sure that the values produced by argument expressions 𝑒1, … , 𝑒𝑛 are
in the right place:

– the first 8 integer arguments go into registers a0…a7;

– the first 8 floating-point arguments go into registers fa0…fa7;

– the remaining arguments are written on the stack, in reverse order
(i.e. the first argument passed on the stack is written last, in the lowest
memory address, and is pointed by the sp register).

4. Generate the assembly code that performs the function call, with a jump and link
register instruction (jalr) which does two things:

• writes the return address in register ra (such return address is automati-
cally computed by the jalr instruction, as the current value of the program
counter register pc + 4); and

• jumps to the memory address returned by expression 𝑒 (see point 1 above).

5. Generate after-call assembly code which, immediately after the function call re-
turns:

• moves the result of the function call from register a0 (or fa0) into the target
register for the whole function application; and

• restores from the stack all registers that were saved in the “before-call” as-
sembly code.

146 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Detailed Example: the RISC-V Calling Convention in Action

Example 39 below shows how a program with a function call is executed according to
the RISC-V calling convention.

Example 39 (The RISC-V Calling Convention in Action)

Let us explore how a simple Hygge program is expected to manipulate the stack and
registers, according to The RISC-V Calling Convention and Its Code Generation. Each
execution step below is analysed by showing the current state of the program, registers,
and stack, and then discussing them. In the program, the comment “//<” highlights the
current execution point.

Important: Unfortunately the tables in this example are not formatted correctly in the
PDF version of these lecture notes. Please refer to the HTML version, until I find a way
to fix the formatting of this example. Apologies for the trouble!

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 147



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

␣
↪ //<
let x = 42;
let y = f(1,... 9,

↪ x);
print(x + y)

pc = 0x00400000
sp = 0x7fffeffc
fp = 0x7fffeffc
ra = ?
a0 = ?
...
a7 = ?
t0 = ?
t1 = ?
t2 = ?
...
t6 = ?
s1 = ?
...
s4 = ?
s5 = ?
...

The code, registers, and stack above show that, at the beginning of the execution, the
program counter pc points to the first instruction of the program, and the stack pointer
sp points at the beginning of the stack. The frame pointer fp is initialised with the same
value of sp. The other registers may be uninitialised, hence they may contain arbitrary
values (which we ignore).

148 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42; ␣
↪ //<
let y = f(1,... 9,

↪ x);
print(x + y)

pc = 0x00400004
sp = 0x7fffeffc
fp = 0x7fffeffc
ra = ?
a0 = ?
...
a7 = ?
t0 = 42
t1 = ?
t2 = ?
...
t6 = ?
s1 = ?
...
s4 = ?
s5 = ?
...

After the first execution step, the program loads value 42 in register t0, and the program
counter pc advences to the next instruction.

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 149



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x)//<
print(x + y)

pc = 0x00400030
sp = 0x7fffeffc
fp = 0x7fffeffc
ra = ?
a0 = ?
...
a7 = ?
t0 = 42
t1 = 0x00401000
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Then, the program loads the memory address of function f in register t1, and the values
of the function call arguments in registers t2…t6 and s1…s5.

150 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x)//<
print(x + y)

pc = 0x00400080
sp = 0x7fffefbc
fp = 0x7fffeffc
ra = ?
a0 = ?
...
a7 = ?
t0 = 42
t1 = 0x00401000
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Now, the program starts preparing the function call: it executes the before-call code that
saves on the stack all registers that are “caller-saved” (according to the table of RISC-V
Base and Floating-Point Registers). Such caller-saved registers consist of:

• the argument registers a0…a7,

• the return address register ra, and

• the temporary registers t0…t6.

(For simplicity, here we are only considering integer registers, and we are ignoring the
fact that some of them are not currently in use, so saving them is not necessary.)

Observe that the stack pointer sp decreases by 64 bytes (remember that the stack grows
downwards) tomake room for saving such 16 registers (of 32 bits each); the frame pointer
fp is not changed.

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 151



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x)//<
print(x + y)

pc = 0x004000a0
sp = 0x7fffefbc
fp = 0x7fffeffc
ra = ?
a0 = 1
...
a7 = 8
t0 = 42
t1 = 0x00401000
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

The program keeps preparing the function call: it copies the first 8 arguments of the call
into registers a0…a7.

152 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x)//<
print(x + y)

pc = 0x004000ac
sp = 0x7fffefb4
fp = 0x7fffeffc
ra = ?
a0 = 1
...
a7 = 8
t0 = 42
t1 = 0x00401000
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Next, the program copies the function call arguments above the 8th on the stack, in re-
verse order (i.e. first argument passed on the stack becomes last, getting a lower memory
address.). To this purpose, the program advances the stack pointer sp by 8 bytes (to make
room for 2 arguments, taking 4 bytes each). (Notice that the frame pointer fp does not
change).

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 153



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int, ␣
↪ //<

...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x);
print(x + y)

pc = 0x00401000
sp = 0x7fffefb4
fp = 0x7fffeffc
ra = 0x004000b0
a0 = 1
...
a7 = 8
t0 = 42
t1 = 0x00401000
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Now the program performs the function call, invoking the RISC-V assembly instruction
jalr ra, 0(t1), which means:

1. save in register ra the return address (which is the value of pc + 4), and

2. jump to the memory address computed by taking the value of register t1 and
adding the offset 0.

After jalr ra, 0(t1) is executed, we have that:

• pc is updated with the memory address in t1 (plus offset 0), and

• the old value of pc + 4 is written in register ra.

154 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int, ␣
↪ //<

...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x);
print(x + y)

pc = 0x00401038
sp = 0x7fffef84
fp = 0x7fffeffc
ra = 0x004000b0
a0 = 1
...
a7 = 8
t0 = 42
t1 = 0x00401000
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Next, the called function executes its prologue, which decreases the stack pointer sp by
48 bytes to save its callee-saved registers. Such callee-saved registers consist of:

• the frame pointer fp,

• the temporary registers s1…s11,

• the stack pointer sp — although we do not need to actually save sp on the stack,
because we can easily compute its old value later.

(For simplicity, here we are only considering integer registers, and we ignore the fact
the function f may not use use all registers between s1 and s11, so saving all of them
might not be necessary.)

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 155



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int, ␣
↪ //<

...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x);
print(x + y)

pc = 0x0040103c
sp = 0x7fffef84
fp = 0x7ffff0b4
ra = 0x004000b0
a0 = 1
...
a7 = 8
t0 = 42
t1 = 0x00401000
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Then, the function prologue updates the frame pointer fp to the value of the stack pointer
sp before its last update (i.e. before the callee-saved registers were saved on the stack):
in this example, the frame pointer is set to sp + 48.

156 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10; //<
};

let x = 42;
let y = f(1,... 9,

↪ x);
print(x + y)

pc = 0x0040106c
sp = 0x7fffef84
fp = 0x7ffff0b4
ra = 0x004000b0
a0 = 1
...
a7 = 8
t0 = 87
t1 = 1
t2 = 2
...
t6 = 6
s1 = 7
...
s4 = 42
s5 = 42
...

Now, the body of the function begins its execution. To compute the sum, it will load its
arguments from registers r0…r7 and from the stack, and write the result of their addition
(which is 87) in the target register t0. As a consequence, the values in registers t0…t6
and s1…s4 are overwritten.

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 157



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10; //<
};

let x = 42;
let y = f(1,... 9,

↪ x);
print(x + y)

pc = 0x004010ac
sp = 0x7fffefb4
fp = 0x7fffeffc
ra = 0x004000b0
a0 = 87
...
a7 = 8
t0 = 87
t1 = 1
t2 = 2
...
t6 = 6
s1 = 6
...
s4 = 9
s5 = 42
...

The function assembly code can now prepare for returning back to the caller, by execut-
ing the function epilogue, which performs the following steps:

• it copies the result of the function body (available in its target register t0) into the
return value register a0;

• it restores all callee-saved registers to the values they had before the function was
called:

– it retrieves the old values of registers fp and s1…s11 from the stack, and

– it restores the old value of sp by adding the number of restored registers
multiplied by 4 (their size) to the current value of sp (hence, by adding 12 *
4 = 48 to the current value of fp).

158 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x)//<
print(x + y)

pc = 0x0040110c
sp = 0x7fffeffc
fp = 0x7fffeffc
ra = ?
a0 = ?
...
a7 = ?
t0 = 42
t1 = 87
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Now the execution jumps back to the caller, i.e. to the address stored in register ra —
which is the first instruction after the function call. That instruction is the beginning of
the after-call assembly code, which:

• copies the function’s return value from register a0 to the target register for the
call (in this example, t1), and

• restores all caller-saved registers excluding the target register t1 from the stack,
and

• updates the stack pointer by adding to the current value of sp:

– the number of restored registers (16) multiplied by 4 (their size), and

– the number of arguments passed on the stack (2) multiplied by 4 (their size).

Observe that now all registers are back to the same values they had before the function
call — with the exception of the program counter pc (which has advanced to the current

6.5. The RISC-V Memory Layout, Stack, and Calling Convention 159



02247 Compiler Construction, Spring 2023

instruction) and the target register t1 (which contains the return value of the function
call).

Program Registers Stack

fun f(x1: int,
...,
x10: int):␣

↪int = {
x1 + ... +␣

↪x10;
};

let x = 42;
let y = f(1,... 9,

↪ x);
print(x + y) ␣

↪ //<

pc = 0x00401110
sp = 0x7fffeffc
fp = 0x7fffeffc
ra = ?
a0 = ?
...
a7 = ?
t0 = 42
t1 = 87
t2 = 1
...
t6 = 5
s1 = 6
...
s4 = 9
s5 = 42
...

Now function call is complete and the execution can continue regularly: the code gener-
ation for the expression print(x, y)will find the values of variables x and y in registers
t0 and t1, respectively.

160 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

6.6 Implementation

We now have a look at how hyggec is extended to implement function instances (i.e.
lambda terms) and applications, according to the specification illustrated in the previous
sections.

Tip: To see a summary of the changes described below, you can inspect the differences
in the hyggec Git repository between the tags while and functions.

6.6.1 Lexer, Parser, Interpreter, and Type Checking

These parts of the hyggec compiler are extended along the lines of Example: Extending
Hygge0 and hyggec with a Subtraction Operator .

• We extend AST.fs in two ways, according to Definition 21:

– we extend the data type Expr<'E,'T> with two new cases:

* Lambda for “fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒”, and
* Application for “𝑒 (𝑒1, … , 𝑒𝑛)”;

– we also extend the data type Pretype with a new case called TFun, corre-
sponding to the new function pretype “(𝑡1, … , 𝑡𝑛) → 𝑡”:

and Pretype =
// ...
/// A function pretype, with argument pretypes and return pretype.
| TFun of args: List<PretypeNode>

* ret: PretypeNode

• We extend PrettyPrinter.fs to support the new expressions Lambda and
Application, and the new pretype TFun.

• We extend Lexer.fsl to support three new tokens:

– FUN for the new keyword “fun”;

– RARROW (right arrow) for the arrow “->” used to define lambda terms and
function pretypes; and

– COMMA for the symbol “,” used to separate arguments in function instances,
applications, and pretypes.

Warning: If you have implemented min and max as part of Project
Idea: Extend Hygge0 and hyggec with New Arithmetic Operations, then
you should have already introduced a token corresponding to COMMA: you
should reuse it (i.e. you should not have two tokens that match the same
sequence of input characters).

6.6. Implementation 161



02247 Compiler Construction, Spring 2023

• We extend Parser.fsy to recognise the desired sequences of tokens according to
Definition 21, and generate AST nodes for the new expressions. We proceed by
adding:

– a new rule under the simpleExpr category to generate Lambda instances;

– a new rule under the unaryExpr category to generate Application instances;

– a new rule under the pretype category to generate TFun pretype instances;

– various auxiliary syntactic categories and rules to recognise the syntactic
elements needed by the rules above. For instance:

* parenTypesSeq is a sequence of comma-separated pretypes, between
parentheses (needed to parse function pretypes);

* parenArgTypesSeq is a sequence of comma-separated variables with
type ascriptions, between parentheses (needed to parse the arguments
of a lambda term);

– finally, we also add a new rule to implement the syntactic sugar for simplified
function definitions. To this purpose, we extend the expr syntactic category
(because our simplified function definitions are just “let…” binders, so we
want to give them the same precedence). The syntactic sugar rule looks as
follows:

expr:
// ...
| FUN ident parenArgTypesSeq COLON pretype EQ simpleExpr SEMI expr {

let (_, args) = List.unzip $3 // Extract argument pretypes
mkNode(..., Expr.Let($2, mkPretypeNode(..., Pretype.TFun(args,

↪$5)),
mkNode(..., Lambda($3, $7)), $9))

}

In other words, when the parser sees an expression like fun f(x: int, y:
int): int = x + 1, it creates a Let expression instance that binds the vari-
able f (with pretype (int, int) -> int) with the lambda term fun (x:
int, x: int) -> x + 1 (as expected by Definition 21).

• We extend the function subst in ASTUtil.fs to support the new expressions
Lambda and Application, according to Definition 22.

• We extend Interpreter.fs according to Definition 23:

– in the function isValue, we add a new case for Lambda (which is a value); and

– in the function reduce:

* we add two new cases for Lambda and Application, and

* we adjust the case for LetMut to match the rule [R-LetM-Res2].

• We extend Type.fs by adding a new case to the data type Type, according to Def-
inition 24: the new case is called TFun. We also add a a corresponding new case to
the function freeTypeVars in the same file.

162 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Note: Correspondingly, we also extend the pretty-printing function formatType
in PrettyPrinter.fs, to display the function type we have just introduced.

• We extend Typechecker.fs:

– we extend the type resolution function resolvePretype with a new case for
function types, according to Definition 25;

– we extend the function typer according to Definition 26, to support the new
cases for the expressions Lambda and Application.

• As usual, we add new tests for all compiler phases.

6.6.2 Code Generation

This is certainly the trickiest part of the extension, because the RISC-V calling convention
has many moving parts.

The extension of the function doCodegen (in the file Typechecker.fs) consists of the
following main elements (detailed in the following sections):

• Code Generation for Lambda Terms

• Code Generation for Named Functions

• Code Generation for Applications

Code Generation for Lambda Terms

We add a new case to the function doCodegen to handle Lambda expressions, i.e. function
instances. The key intuition is that, in order to turn a lambda term into an actual RISC-
V function, according to our discussion on Code Generation for a Function Instance, we
need to generate assembly code to:

1. place a RISC-V assembly label to mark the memory address of the beginning of
the function code: we will use that label to call the function;

2. generate code for the function prologue, to save the callee-saved registers and
update the frame pointer;

3. generate code for the function body;

4. generate code for the function epilogue, to restore the caller-saved registers and
copy the function result onto the return register a0;

5. make sure that all the function code is placed at the end of the assembly code
generated by the compiler (because the execution starts from the beginning of
the code, and we only want the function to run when it is called/applied);

6. finally, place in the target register the memory address where the function is lo-
cated (i.e. the label generated at point 1 above).

6.6. Implementation 163



02247 Compiler Construction, Spring 2023

Note: As a consequence of points 1 and 5 above, the label and the assembly code of a
function instance are globally visible in the generated RISC-V assembly — even when
the original function instance was only visible in a limited scope (e.g. like the function
privateFun) in Example 34). To avoid potential clashes, the compiler must ensure that
the label assigned to each function is unique across the generated assembly file.

The doCodegen case for Lambda looks as follows. (Note: the actual code on the hyggec
Git repository contain many more comments, and you should read it.)

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
// ...
| Lambda(args, body) ->

let funLabel = Util.genSymbol "lambda" // Position of lambda term body
let (argNames, _) = List.unzip args // Names of lambda term arguments

// Pairs of arguments and types
let argNamesTypes = List.map (fun a -> (a, body.Env.Vars[a])) argNames

let bodyCode = compileFunction argNamesTypes body env // Body code

let funCode = // Complete function code, with label placed before it
Asm(RV.LABEL(funLabel), "Lambda function code")

++ bodyCode
.TextToPostText // Move this code at the end of the text segment

// Finally, load the function address (label) in the target register
Asm(RV.LA(Reg.r(env.Target), funLabel), "Load lambda function address")

++ funCode

Steps 2, 3, and 4 are handled by the auxiliary function compileFunction: its code is not
reported here, but it has plenty of comments: you should read it to see what it does.

Exercise 29 (Understanding Code Generation for Function Instances)

Write a file called e.g. fun.hyg containing a simple function instance, such as:

fun (x: int, y: int) -> x + y

Invoke ./hyggec compile fun.hyg and observe the generated assembly. Using the com-
ments in the generated assembly, identify the corresponding parts of the functions
doCodegen (case for Lambda) and compileFunction.

Warning: The code of compileFunction is very limited, because:

• it only supports functions that take up to 8 arguments, passed via integer reg-
isters; and

164 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

• it only supports functions that return their value through an integer register;
and

• in addition, it has the overall limitations that we discuss later.

Some of the missing features (e.g. taking more than 8 integer arguments, taking and
returning float values) are part of the Project Ideas for this module.

Code Generation for Named Functions

The Code Generation for Lambda Terms (described above) assigns a random label to the
mark the location of the function’s compiled assembly code. This is not an issue for
lambda terms, which are anonymous. However, Hygge programs may define functions
by giving them a specific name, e.g. by using the syntactic sugar:

fun add(x: int, y: int): int = x + y;
add(1, 2)

which expands into:

let add: (int, int) -> int =
fun (x: int, y: int) ->

x + y;
add(1, 2)

The function doCodegen includes a dedicated case that matches such “let…” bindings that
directly use a lambda term to initialise a variable. In this case, hyggec performs code
generation as follows:

1. it uses the name of the variable to generate the function label in the assembly code;
and

2. when assigning storage information, it maps the variable directly to the assembly
label of the function (instead, the standard code generation for “let…” would store
the variable in a register, hence it would use one additional register).

The code for this case of doCodegen looks as follows (and it is essentially a blend between
the case for Let and the Code Generation for Lambda Terms):

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
// ...
| Let(name, _,

{Node.Expr = Lambda(args, body);
Node.Type = TFun(targs, _)}, scope) ->

let funLabel = Util.genSymbol $"fun_%s{name}" // Function label
let (argNames, _) = List.unzip args // Names of lambda term arguments

let argNamesTypes = List.zip argNames targs // Pairs or argument & type

(continues on next page)

6.6. Implementation 165



02247 Compiler Construction, Spring 2023

(continued from previous page)
let bodyCode = compileFunction argNamesTypes body env // Compiled body

let funCode = // Compiled function code, with label placed in front
(Asm(RV.LABEL(funLabel), $"Code for function '%s{name}'")

++ bodyCode).TextToPostText

/// Storage info with name of compiled function pointing to 'funLabel'
let varStorage2 = env.VarStorage.Add(name, Storage.Label(funLabel))

// Compile the 'let...'' scope with newly-defined function visible
(doCodegen {env with VarStorage = varStorage2} scope)

++ funCode

Exercise 30 (Understanding Code Generation for Named Functions)

Write a file called e.g. fun-named.hyg containing a simple named function instance, such
as:

fun add(x: int, y: int): int = x + y;
()

Invoke ./hyggec compile fun-named.hyg and observe the generated assembly. Notice
the difference with Exercise 29. Using the comments in the generated assembly, identify
the corresponding parts of the functions doCodegen (case for Letwith lambda terms) and
compileFunction.

Code Generation for Applications

We add a new case to the function doCodegen to handle Application expressions, i.e.
function calls. The key intuition is that, in order to turn an application into an actual
RISC-V function call, according to our discussion on Code Generation for a Function Call,
we need to generate assembly code to:

1. compute the term being applied as a function (e.g. retrieve the memory address
of the function being applied);

2. compute each argument of the function call;

3. perform the “before-call” procedures: save the caller-saved registers, and prepare
the function arguments (by copying them onto the ‘a’ registers or on the stack);

4. perform the function call; and

5. perform the “after-call” procedures: copy the function call result from the return
register a0 onto the target register of the call.

The doCodegen case for Application looks as follows. (Note: the actual code on the
hyggec Git repository contain many more details and comments, and you should read
it!)

166 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
// ...
| Application(expr, args) ->

let saveRegs = // ...Saved registers (except the target register)

let appTermCode = // ...Code for expression being applied

let argsCode = // ...Generate code to compute each application argument

let argsLoadCode = // ...Copy each application arg into an 'a' register

let callCode = // Code that performs the function call
appTermCode
++ argsCode // Code to compute each argument of the function call

.AddText(RV.COMMENT("Before call: save caller-saved registers"))
++ (saveRegisters saveRegs [])
++ argsLoadCode // Code to load arg values into arg registers

.AddText(RV.JALR(Reg.ra, Imm12(0), Reg.r(env.Target)), "Call")

let retCode = // Code that handles the function return value (if any)
Asm(RV.MV(Reg.r(env.Target), Reg.a0),

$"Copy function return value to target register")

callCode // Put everything together, restore the caller-saved registers
.AddText(RV.COMMENT("After function call"))
++ retCode
.AddText(RV.COMMENT("Restore caller-saved registers"))

++ (restoreRegisters saveRegs [])

Exercise 31 (Understanding Code Generation for Function Application)

This is a follow-up to Exercise 29 and Exercise 30. Write a file called e.g. fun-app.hyg
containing a simple function instance and application, such as:

(fun (x: int, y: int) -> x + y)(1, 2)

Invoke ./hyggec compile fun-app.hyg and observe the generated assembly. Using the
comments in the generated assembly, identify the corresponding parts of the functions
doCodegen (case for Application).

Now try a similar experiment on a file with a corresponding named function definition
and application, such as:

fun add(x: int, y: int): int = x + y;
add(1, 2)

Observe the differences with the assembly code generated in the previous case.

6.6. Implementation 167



02247 Compiler Construction, Spring 2023

Warning: Thecode generation for Application expressions is very limited, because:

• it only supports functions that take up to 8 arguments, passed via integer reg-
isters; and

• it only supports functions that return their value through an integer register;
and

• in addition, it has the overall limitations that we discuss later.

Some of the missing features (e.g. passing more than 8 integer arguments, passing
and returning float values) are part of the Project Ideas for this module.

6.7 Limitations of the Current Specification and Code
Generation

To conclude, we highlight that the treatment of functions presented in this module has
relevant limitations in the support for closures, i.e. lambda terms that capture variables
from their surrounding scope. Here is a simple program with a closure:

let x: int = 1;

fun addX(y: int): int = y + x; // x is captured from the surrounding scope

assert(addX(42) = 43)

In particular:

• the Code Generation does not support closures at all, and the code generation for
examples like the one above is incorrect;

• the Operational Semantics and Typing Rules correctly support closures for im-
mutable variables (like in the example above), but do not correctly support clo-
sures for mutable variables. As a consequence, a well-typed program that captures
mutable variables may get stuck!

These limitations require further improvements of the Hygge language and hyggec com-
piler: we will address them later in the course.

6.8 References and Further Readings

The treatment of lambda terms, applications, and function types in Hygge is inspired by
languages with functional programming support (like Java 8 or higher, Kotlin, F#, Scala,
Haskell…), and its specification based on programming language theory concepts. To
know more, you can refer to:

168 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

• Benjamin Pierce. Types and Programming Languages. MIT Press, 2002. Available
on DTU Findit30. These chapters, in particular, may be useful:

– Chapter 5 (The Untyped Lambda-Calculus)

– Chapter 9 (Simply Typed Lambda-Calculus)

The RISC-V calling convention is documented here:

• https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc

Note: For simplicity, in thismodulewe have omitted a requirement of the RISC-V calling
convention: the frame pointer address should always be aligned to 16 bytes (128 bits).
This requirement is not enforced by RARS — but when targeting real RISC-V hardware,
hyggec (or any other compiler) should keep track of the alignment of register fp and
always increase/decrease it by multiples of 16 bytes.

6.9 Project Ideas

For your group project, you should implement at least 3 of the following project ideas:

• Project Idea: Function Subtyping

• Project Idea: Recursive Functions

• Project Idea: Improved Implementation of the RISC-V Calling Convention: Pass and
Return Floats via Registers

• Project Idea: Improved Implementation of the RISC-V Calling Convention: Pass more
than 8 Integer (or Float) Arguments via The Stack

6.9.1 Project Idea: Function Subtyping

The extensions described in this module does not change the subtyping judgement (Defi-
nition 10). As a consequence, whenever two function types are compared to see whether
one is subtype of the other, the only applicable rule is [TSub-Refl], which requires the
two types to be exactly equal. This leads to the restriction illustrated in Example 40
below.

Example 40 (Consequences of Lack of Function Subtyping)

The following program does not type-check: you can see it by yourself, by saving this
program in a file and running ./hyggec typecheck file.hyg.

30 https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f

6.9. Project Ideas 169

https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f
https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f
https://github.com/riscv-non-isa/riscv-elf-psabi-doc/blob/master/riscv-cc.adoc


02247 Compiler Construction, Spring 2023

type MyInt = int;

fun f(x: MyInt): MyInt = x + 1; // Type error!

let fAlias: (int) -> int = f; // Type error!

assert(fAlias(42) = f(42))

The reasons for the type errors reported by hyggec are the following:

• when defining f, the function should be of type (MyInt) -> MyInt, but its defini-
tion has type (MyInt) -> int (because the expression x + 1 has type int, instead
of MyInt);

• when defining fAlias, the initialisation value should be a function of type (int)
-> int, but f has type (MyInt) -> MyInt.

These type errors certainly feel spurious: since MyInt is just an alias of int, those func-
tion types should be all subtypes of each other! And indeed, if we interpret the program
above (using ./hyggec interpret file.hyg), the program runs correctly and passes the
assertion (in fact, there is a test case for the hyggec interpreter that corresponds to this
example).

For this Project Idea, you should extend hyggec with function subtyping, by adding the
following rule to Definition 10:

∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑇 ′
𝑖 ⩽ 𝑇𝑖 Γ ⊢ 𝑇 ⩽ 𝑇 ′

[TSub-Fun]
Γ ⊢ (𝑇1, … , 𝑇𝑛) → 𝑇 ⩽ (𝑇 ′

1, … , 𝑇 ′
𝑛) → 𝑇 ′

Recall that, by the Liskov Substitution Principle (Definition 9), an instance of a subtype
should be safely usable whenever an instance of a larger type is required. Correspond-
ingly rule [TSub-Fun] above says that a function type (𝑇1, … , 𝑇𝑛) → 𝑇 is subtype of
(𝑇 ′

1, … , 𝑇 ′
𝑛) → 𝑇 ′ if:

• both function types expect 𝑛 arguments;

• for all 𝑖 ∈ 1..𝑛, the argument type 𝑇 ′
𝑖 is subtype of the corresponding argument

type 𝑇𝑖 (in other words, the “smaller” function is more permissive in the types of
arguments it accepts); and

• the return type 𝑇 is subtype of the return type 𝑇 ′ (in other words, the “smaller”
function is more restrictive in the type of value it returns).

To extend hyggec with function subtyping, you will need to:

• extend the function isSubtypeOf in the file Typechecker.fs; and

• add some test cases that would not type-check without function subtyping (e.g.
using Example 40 as a starging point). Your tests should include functions that take
other functions as arguments, and functions that return functions, as in Example
34.

170 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

Note: If you choose this Project Idea, you will also need to add more test cases after we
introduce structured data and its subtyping, in the next module.

6.9.2 Project Idea: Recursive Functions

The goal of this Project Idea is to allow a function to call itself recursively. To this end,
you should:

1. extend the Hygge programming language with a “let rec…” expression, similar to
F# (and similar to the existing “let…” for immutable variables); and

2. you should modify the syntactic sugar for fun name(...)... in Parser.fsy to
expand into a “let rec…” expression (instead of the regular “let…”).

More in detail, you will need to implement the following specification.

First, you need to add a new expression to the Hygge syntax (notice that this introduces
a new token for the symbol rec).

Expression 𝑒 ∶∶= …
∣ let rec 𝑥 ∶ 𝑡 = 𝑒; 𝑒′

Youwill need to add a new LetRec expression in AST.fs, similar to Let. Youwill also need
to update the rule that parses the syntactic sugar fun name(...):... = ... in Parser.
fsy: instead of creating a Let AST node, the updated rule should create a LetRec AST
node. This way, it becomes possible for a Hygge programmer to write a named function
that calls itself recursively.

Then, you will need to implement the substitutions and the semantic rules for the new
“let rec…” expression. For substitution, you need to add these new cases to Definition 2:

(let rec 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2) [𝑥 ↦ 𝑒′] = let rec 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2
(let rec 𝑦 ∶ 𝑡 = 𝑒1; 𝑒2) [𝑥 ↦ 𝑒′] = let rec 𝑦 ∶ 𝑡 = 𝑒1 [𝑥 ↦ 𝑒′]; 𝑒2 [𝑥 ↦ 𝑒′] (when 𝑦 ≠ 𝑥)

There is only one difference between the substitution above and the substitu-
tion for the regular “let 𝑥…” (Definition 2): in the first case above (i.e. when
we substitute a variable 𝑥 that has the same name of the variable bound by “let rec
𝑥…"), 𝑡ℎ𝑒𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛ℎ𝑎𝑠𝑛𝑜𝑒𝑓𝑓𝑒𝑐𝑡(𝑖𝑛𝑠𝑡𝑒𝑎𝑑, 𝑖𝑛𝑡ℎ𝑒𝑟𝑒𝑔𝑢𝑙𝑎𝑟"𝑙𝑒𝑡x..."𝑤𝑒𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑒𝑡ℎ𝑒𝑠𝑢𝑏𝑠𝑡𝑖𝑡𝑢𝑡𝑖𝑜𝑛𝑖𝑛𝑡ℎ𝑒𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑜𝑓x).𝑇 ℎ𝑒𝑟𝑒𝑎𝑠𝑜𝑛𝑖𝑠𝑡ℎ𝑎𝑡𝑖𝑛"𝑙𝑒𝑡𝑟𝑒𝑐x...", 𝑡ℎ𝑒𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒x$
is visible and bound in the initialisation expression, hence we “block” its substitution.

For the “let rec…” semantics, you need to add the following rule to Definition 4:

𝑣′ = 𝑣 [𝑥 ↦ (let rec 𝑥 ∶ 𝑡 = 𝑣; 𝑥)]
[R-LetRec-Subst]

⟨𝑅 • let rec 𝑥 ∶ 𝑡 = 𝑣; 𝑒⟩ → ⟨𝑅 • 𝑒 [𝑥 ↦ 𝑣′]⟩

The difference between rule [R-Let-Subst] (in Definition 4) and rule [R-LetRec-Subst]
above is that:

• in rule [R-Let-Subst], the variable being defined (𝑥) is replaced by the initialisation
value 𝑣 in the scope of the “let…” expression;

6.9. Project Ideas 171



02247 Compiler Construction, Spring 2023

• in rule [R-LetRec-Subst], instead, the variable being defined (𝑥) is replaced by 𝑣′,
which is obtained by taking the initialisation value 𝑣 and replacing each occur-
rence of 𝑥 within 𝑣 with an instance of let rec 𝑥 ∶ 𝑡 = 𝑣; 𝑥. Notice that this
substitution can only have an effect when 𝑣 is a lambda term that contains in-
stances of 𝑥. (See Example 41 below.)

Then, you will need to implement the following typing rule for the new “let rec…” ex-
pression:

Γ ⊢ 𝑡 ▷ 𝑇 Γ′ = {Γ with Vars + (𝑥 ↦ 𝑇 ) and Mutables \ {𝑥}} Γ′ ⊢ 𝑒1 ∶ 𝑇 Γ′ ⊢ 𝑒2 ∶ 𝑇 ′
[T-LetRec]

Γ ⊢ let rec 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2 ∶ 𝑇 ′

The new rule [T-LetRec] above is similar to [T-Let2] in Definition 16, except that:

• in [T-Let2], the initialisation expression 𝑒1 is typed with the typing environment
Γ. As a consequence, 𝑒1 cannot refer to the same variable 𝑥 being defined by the
“let…” expression;

• in [T-RetLec] above, instead, the initialisation expression 𝑒1 is typed with the ex-
tended typing environment Γ′, which includes the type of 𝑥 (and the same Γ′ is
also used to type 𝑒2). As a consequence, 𝑒1 can be well-typed even if it recursively
refers to 𝑥, i.e. the variable being defined by the “let rec…”.

Finally, you will need to extend doCodegen (in RISCVCodegen.fs) as follows.

1. You should add a new case for compiling the new LetRec expression. This should
be similar to the Let code generation, except that the variable being defined should
be made visible in env.VarStoragewhen compiling the initialisation expression.

2. You should also add a new special case for compiling functions with a given name
(which are generated by the revised fun name(...)... syntactic sugar). This
should be similar to the existing analogous special case for Let, but it shouldmatch
a LetRec expression instead, and compile the function by making its name visible
by the function body.

As usual, you should write tests for all the compiler phases you modified.

Example 41 (Reductions of a Recursive Function)

Consider the following Hygge program, where function 𝑓 calls itself:

fun f (𝑥) ∶ int = 𝑓 (𝑥 + 1);
𝑓 (0)

Intuitively, this expression should execute forever by calling 𝑓 (0), then 𝑓 (0 + 1), then
𝑓 (1 + 1)…
According to this Project Idea, the expression above should desugar the function defini-
tion into a “let rec…” expression:

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓 (0)

172 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

If we reduce this expression in a runtime environment 𝑅, using the new rule
[R-LetRec-Subst], we get:

𝑣′ = (fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1)) ⎡⎢
⎣

𝑓 ↦ ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

⎤⎥
⎦

[R-LetRec-Subst]

⟨𝑅 •
let rec 𝑓 ∶ (int) → int =

fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);
𝑓 (0)

⟩ → ⟨𝑅 • ⎛⎜
⎝

fun (𝑥 ∶ int) → ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(𝑥 + 1)⎞⎟
⎠

(0) ⟩

The next reduction performs the top-level function application:

[R-App-Res]

⟨𝑅 • ⎛⎜
⎝

fun (𝑥 ∶ int) → ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(𝑥 + 1)⎞⎟
⎠

(0) ⟩ → ⟨𝑅 • ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(0 + 1) ⟩

We now have another application, and we need to reduce the expression being applied
into a value. To this end, we use rule [R-LetRec-Subst] again:

𝑣′ = (fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1)) ⎡⎢
⎣

𝑓 ↦ ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

⎤⎥
⎦

[R-App-Eval-R1]

⟨𝑅 • ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(0 + 1) ⟩ → ⟨𝑅 • ⎛⎜
⎝

fun (𝑥 ∶ int) → ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(𝑥 + 1)⎞⎟
⎠

(0 + 1) ⟩

We now need to reduce the application argument into a value:

0 + 1 = 1 [R-Add-Res]
⟨𝑅 • 0 + 1⟩ → ⟨𝑅 • 1⟩

[R-App-Eval-R1]

⟨𝑅 • ⎛⎜
⎝

fun (𝑥 ∶ int) → ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(𝑥 + 1)⎞⎟
⎠

(0 + 1) ⟩ → ⟨𝑅 • ⎛⎜
⎝

fun (𝑥 ∶ int) → ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(𝑥 + 1)⎞⎟
⎠

(1) ⟩

And by performing the application, we get:

[R-App-Res]

⟨𝑅 • ⎛⎜
⎝

fun (𝑥 ∶ int) → ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(𝑥 + 1)⎞⎟
⎠

(1) ⟩ → ⟨𝑅 • ⎛⎜
⎝

let rec 𝑓 ∶ (int) → int =
fun (𝑥 ∶ int) → 𝑓 (𝑥 + 1);

𝑓
⎞⎟
⎠

(1 + 1) ⟩

Observe that this last reduction produced an expression that is very similar to the one
we obtained with the first use of rule [R-App-Res] above — except that the first time
we obtained an application of “let rec…” to (0 + 1), while now we have obtained an
application of the same “let rec…” to (1+1). Therefore, we can continue reducing forever,
and every time we will obtain an application of the same “let rec…” to a bigger value.

6.9. Project Ideas 173



02247 Compiler Construction, Spring 2023

6.9.3 Project Idea: Improved Implementation of the RISC-V Call-
ing Convention: Pass and Return Floats via Registers

Thegoal of this Project Idea is to extend hyggec to support functions that receive floating-
point arguments, or return a floating-point value. To this end, you should follow The
RISC-V Calling Convention and Its Code Generation, and improve the hyggec Code Gen-
eration. Note that your extension should support function that receive a mix of integer
and float arguments, in any order, such as:

fun f(w: int, x: float, y: bool, z: string): float = {
if y then println(z) else println(w+1);
x + 42.0f

};
println(f(2, 1.0f, true, "Hello"));
println(f(2, 2.0f, false, "Hello"))

6.9.4 Project Idea: Improved Implementation of the RISC-V Call-
ing Convention: Pass more than 8 Integer (or Float) Argu-
ments via The Stack

The goal of this Project Idea is to extend hyggec to support functions that receive more
that 8 integer arguments, by passing the arguments above the 8th on the stack. To
this end, you should follow The RISC-V Calling Convention and Its Code Generation, and
improve the hyggec Code Generation.

Hint: To implement this project idea, you will need to extend the type Storage in
RISCVCodegen.fs with a new case, describing a variable that can be found on the stack.
The new case for Storage may look as follows:

type internal Storage =
// ...
/// This variable is stored on the stack, at the given offset (in bytes)
/// from the memory address contained in the frame pointer (fp) register.
| Frame of offset: int

Note: If you have also selected the Project Idea on passing/returning floats, keep in mind
that what you should pass on the stack are:

• all integer arguments above the 8th integer argument, and

• all float arguments above the 8th float argument.

As a consequence, a call to the following function should not pass any argument via the
stack:

174 Module 6: Functions and the RISC-V Calling Convention



02247 Compiler Construction, Spring 2023

fun f(x1: int, x2: int, x3: int, x4: int, x5: int,
y1: float, y2: float, y3: float, y4: float, y5: float): bool = {

// ...
}
//...

This is because, although f has 10 arguments in total, it takes less than 9 integer argu-
ments, and less than 9 float arguments.

6.9. Project Ideas 175



02247 Compiler Construction, Spring 2023

176 Module 6: Functions and the RISC-V Calling Convention



7
Module 7: Structured Data Types and the Heap

In this module we study how to extend Hygge with structured data types; more specifi-
cally, these lecture notes introduce a data type constructor called struct, inspired by the
C programming language. A struct instance is a sequence of fields, each one having its
own name and value. The struct data type constructor provides a blueprint for further
extensions of Hygge. Notably, Hygge structs are modelled in a way that is very similar
to Java objects: i.e. when a struct instance is created, the program only gets a pointer
to the memory heap location where the actual data of the struct is written. As a con-
sequence, structs are passed and returned by reference when invoking functions, and
survive outside the scope where they are created.

7.1 Overall Objective

Our goal is to interpret, compile and run Hygge programs like the one shown in Example
42 below.

Example 42 (A Hygge Program with Structures)

1 // Three type aliases for structure types
2 type Shape = struct { name: string;
3 area: float };
4 type Circle = struct { name: string;
5 area: float;
6 radius: float };
7 type Square = struct { name: string;
8 area: float;
9 side: float };

10

11 // Function that takes a structure as argument
12 fun displayShape(shape: Shape): unit = {
13 print("Name: "); print(shape.name);
14 print("; area: "); println(shape.area)
15 };

(continues on next page)

177



02247 Compiler Construction, Spring 2023

(continued from previous page)
16

17 // Structure constructors
18 let c: Circle = struct { name = "Circle";
19 area = 10.0f * 10.0f * 3.14f;
20 radius = 10.0f };
21 let s: Square = struct { name = "Square";
22 area = 2.0f * 2.0f;
23 side = 2.0f };
24 let r: struct {name: string; area: float} =
25 struct { name = "Rectangle";
26 area = 3.0f * 4.0f;
27 width = 3.0f;
28 height = 4.0f };
29

30 // Function calls with structures as arguments. Note: the structures
31 // passed as arguments have more fields than required by the function.
32 displayShape(c);
33 displayShape(s);
34 displayShape(r);
35

36 // Assignment to structure fields
37 c.area <- s.area <- r.area <- 0.0f;
38 assert(c.area = s.area);
39 assert(s.area = r.area);
40 assert(r.area = 0.0f)

To introduce structured data types in the Hygge specification, and make it possible to
write programs like the one in Example 42, we adopt a design that mixes ideas from Java,
F# and TypeScript.

• We adopt a so-called structural typing system (inspired by TypeScript31), where
struct types are compared by their fields, and their names are just a convenience
for programmers. For example: on lines 18, 21, and 24 of Example 42, the types
of variables c, s, and r are not called “Circle”; still, on lines 32–34, hyggec allows
those variables to be passed to function displayShape, which expects an argument
of type Circle. This is allowed because the types of c, s, and r include all the fields
required by Circle (this will be formalised in Definition 32 later on).

• We dynamically allocate structure instances, by saving them in the memory
heap; as a consequence, the creation of a structure just returns a pointer to a
heap location, that can be used to access the structure fields. (The heap of typi-
cal RISC-V programs has been shown in The RISC-V Memory Layout.) These heap
pointers appear in the program semantics, but they are not made directly accessi-
ble to Hygge programmers.

• To access a specific field of a structure instance, the semantics and code genera-
tion must use the structure pointer together with an offset which depends on the

31 https://www.typescriptlang.org/docs/handbook/type-compatibility.html

178 Module 7: Structured Data Types and the Heap

https://www.typescriptlang.org/docs/handbook/type-compatibility.html


02247 Compiler Construction, Spring 2023

shape of the structure instance. Therefore, we will need to associate each structure
pointer to some information about the shape of the structure it points to. We
will keep this information in the runtime environment (for the interpreter) or in
the structure types (for the compiled code).

This design implies that we also need some way to deallocate unused structure in-
stances from the heap to support long-running programs that may create and discard
large quantities of structures. We will mention this topic in the References and Further
Readings, but we will not attempt the implementation of an actual garbage collector for
hyggec, since this would require a very substantial effort that is beyond the scope of this
course.

Important: The extension described in this module is already implemented in the up-
stream Git repository of hyggec: you should pull and merge the latest changes into your
project compiler. The Project Ideas of this module further extend Hygge with support
for other kinds structured data types.

7.2 Syntax

Definition 27 below extends the syntax of Hygge with structures and pointers applica-
tions, and with a new pretype that specifies the syntax of a new structure type.

Definition 27 (Syntax of Structures and Pointers)

We define the syntax of Hygge0 with structures and pointers by extending Definition
1 as follows.

Expression 𝑒 ∶∶= …
∣ struct {𝑓1 = 𝑒1, … , 𝑓𝑛 = 𝑒𝑛} (Structure constructor, with 𝑛 ≥ 1)
∣ 𝑒.f (Field selection)

Value 𝑣 ∶∶= …
∣ 𝑝 (Pointer (runtime value))

Pretype 𝑡 ∶∶= …
∣ struct {𝑓1 ∶ 𝑡1; … ; 𝑓𝑛 ∶ 𝑡𝑛} (Structure pretype, with 𝑛 ≥ 1)

Field 𝑓 ∶∶= z ∣ foo ∣ a123 ∣ … (Any non-reserved identifier)

Pointer 𝑝 ∶∶= 0x00000042 ∣ 0x12abcdef ∣ … (Memory address)

Definition 27 introduces the following syntactic elements:

• a structure constructor “struct {𝑓1=𝑒1, … , 𝑓𝑛=𝑒𝑛}” is used to instantiate a
structure instance with 𝑛 fields called 𝑓1, … , 𝑓𝑛 (with 𝑖 ≥ 1); each field 𝑓𝑖 is

7.2. Syntax 179



02247 Compiler Construction, Spring 2023

initialised by an expression 𝑒𝑖. Fields names have their own new syntactic cate-
gory: they are syntactically similar to variables, in the sense that a field name can
be any non-reserved identifier. Notice that the structure constructor is an expres-
sion, but it is not a value; in other words, structure constructors are not passed
around directly (e.g. when calling a function), but they need to be reduced into
values first (as we will see shortly);

• a field selection “𝑒.f ” is used to access the field 𝑓 of a target expression 𝑒 (which,
intuitively, is expected to be a structure instance);

• a pointer “𝑝” denotes a memory address. We will see shortly that pointers are
produced by structure constructors. Notice that pointers are runtime values: this
means that they are part of the formal grammar of Hygge, but they are not sup-
posed to be written directly by Hygge programmers, and should only be created
during the execution of a program;

• a structure pretype “struct {𝑓1 ∶ 𝑡1, … , 𝑓𝑛 ∶ 𝑡𝑛}” describes the shape of a struc-
ture instance with 𝑛 fields called 𝑓1, … , 𝑓𝑛 (with 𝑖 ≥ 1); each field 𝑓𝑖 has pretype
𝑡𝑖.

7.3 Operational Semantics

Definition 28 formalises how substitution works for structure constructors, field selec-
tions, and pointers.

Definition 28 (Substitution for Structures Constructors and Pointers)

We extend Definition 2 (substitution) with the following new cases:

(struct {𝑓1 = 𝑒1, … , 𝑓𝑛 = 𝑒𝑛}) [𝑥 ↦ 𝑒′] = struct {𝑓1 = 𝑒1 [𝑥 ↦ 𝑒′], … , 𝑓𝑛 = 𝑒𝑛 [𝑥 ↦ 𝑒′]}
(𝑒.f ) [𝑥 ↦ 𝑒′] = (𝑒 [𝑥 ↦ 𝑒′]).f

𝑝 [𝑥 ↦ 𝑒′] = 𝑝

According to Definition 28, the substitution of variable 𝑥 with expression 𝑒′ works as
follows:

• when performing the substitution on a structure constructor
“struct {𝑓1=𝑒1, … , 𝑓𝑛=𝑒𝑛}”, we simply propagate the substitution through
each sub-expression 𝑒𝑖 (for 𝑖 ∈ 1..𝑛);

• when performing the substitution on a field selection “𝑒.f ”, we propagate the sub-
stitution through the target expression 𝑒;

• finally, substitutions applied on a pointer 𝑝 have no effect.

Definition 29 below formalises the semantics of structure constructors and field selec-
tions and assignments. To this purpose, we extend the runtime environment 𝑅 with a
simple model of a memory heap, as a mapping frommemory addresses to values; we also

180 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

use 𝑅 to save information on each known memory pointer 𝑝: this is needed to correctly
access the contents of the memory block pointed by 𝑝.

Definition 29 (Semantics of Structures, Pointers, and the Heap)

We extend the definition of the runtime environment 𝑅 in the Structural Operational
Semantics of Hygge0 by adding the following fields to the record 𝑅:

• 𝑅.Heap is a mapping from memory addresses to Hygge values, specifying which
memory addresses are currently allocated in the heap, and what is the current
value written in the corresponding memory location. Given a heap mapping ℎ,
we write maxAddr(ℎ) to retrieve the highest allocated address in ℎ; if ℎ is empty,
then maxAddr(ℎ) is 0x00000000;

• 𝑅.PtrInfo is a mapping from memory addresses to lists of structure fields, speci-
fying which structure fields are saved at the given address. We represent lists of
structure fields as [𝑓0; 𝑓1; … ; 𝑓𝑛].

Then, we define the semantics of Hygge0 structures and pointers by extending Defini-
tion 4 to use the extended runtime environment 𝑅 above, and by adding the following
rules:

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Struct-F]

⟨𝑅 • struct {𝑓1=𝑣1, … , 𝑓𝑖−1=𝑣𝑖−1, 𝑓𝑖=𝑒𝑖, … , 𝑓𝑛=𝑒𝑛}⟩ → ⟨𝑅′ • struct {𝑓1=𝑣1, … , 𝑓𝑖−1=𝑣𝑖−1, 𝑓𝑖=𝑒′, … , 𝑓𝑛=𝑒𝑛}⟩

ℎ = 𝑅.Heap
𝑝 = maxAddr(ℎ) + 1

ℎ′ = ℎ + {(𝑝 + 𝑖) ↦ 𝑣𝑖}𝑖∈0..𝑛
𝑖′ = 𝑅.PtrInfo + (𝑝 ↦ [𝑓0; … ; 𝑓𝑛]) 𝑅′ = {𝑅 with Heap = ℎ′

PtrInfo = 𝑖′}
[R-Struct-Res]

⟨𝑅 • struct {𝑓0=𝑣0, … , 𝑓𝑛=𝑣𝑛}⟩ → ⟨𝑅′ • 𝑝⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-FieldSel-Eval]

⟨𝑅 • 𝑒.f ⟩ → ⟨𝑅′ • 𝑒′.f ⟩

𝑅.PtrInfo(𝑝) = [𝑓0; … ; 𝑓𝑛] ∃𝑖 ∈ 0..𝑛 ∶ 𝑓 = 𝑓𝑖 𝑅.Heap(𝑝 + 𝑖) = 𝑣
[R-FieldSel-Res]

⟨𝑅 • 𝑝.f ⟩ → ⟨𝑅′ • 𝑣⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Assign-FieldSel-Target]

⟨𝑅 • 𝑒.f ← 𝑒2⟩ → ⟨𝑅′ • 𝑒′.f ← 𝑒2⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Assign-FieldSel-Arg]

⟨𝑅 • 𝑣.f ← 𝑒⟩ → ⟨𝑅′ • 𝑣.f ← 𝑒′⟩

𝑅.PtrInfo(𝑝) = [𝑓0; … ; 𝑓𝑛] ∃𝑖 ∈ 0..𝑛 ∶ 𝑓 = 𝑓𝑖 𝑅′ = {𝑅 with Heap + ((𝑝 + 𝑖) ↦ 𝑣)}
[R-Assign-FieldSel-Res]

⟨𝑅 • 𝑝.f ← 𝑣 ⟩ → ⟨𝑅′ • 𝑣⟩

The rules in Definition 29 work as follows.

• By rule [R-Struct-F], we reduce a structure constructor
“struct {𝑓1=𝑒1, … , 𝑓𝑛=𝑒𝑛}” by first reducing all its field initialisation ex-
pressions 𝑒1, … , 𝑒𝑛, from left to right, until all of them become values.

• By rule [R-Struct-Res], a structure constructor “struct {𝑓1=𝑣0, … , 𝑓𝑛=𝑣𝑛}”

7.3. Operational Semantics 181



02247 Compiler Construction, Spring 2023

(where all fields are initialised by values) reduces by storing the structure data
on the heap, and returning the memory address where such data is located. More
in detail, the premises of the rule say that:

– ℎ is the current heap, taken from the runtime environment 𝑅 (i.e. 𝑅.Heap);

– 𝑝 is the memory address of the first location after the maximum address
currently used in ℎ; (e.g. if ℎ assigns values to addresses between 0x00000001
to 0x000000a8, then 𝑝 will be 0x000000a9)

– ℎ′ is an updated heap that is equal to ℎ, except that the memory locations
in the range from 𝑝 + 0 to 𝑝 + 𝑛 are mapped to the values 𝑣0, … , 𝑣𝑛 that
initialise the structure constructor fields. Notice that the memory addresses
from 𝑝 + 0 to 𝑝 + 𝑛 were not used in the original heap ℎ, but are now being
used in ℎ′;

– 𝑖′ is an updated pointer information mapping that is equal to 𝑅.PtrInfo, ex-
cept that the pointer 𝑝 is now mapped to the list of fields [𝑓0; … ; 𝑓𝑛] used in
the structure constructor;

– 𝑅′ is an updated runtime environment that is equal to 𝑅, except that
𝑅′.Heap is ℎ′ and 𝑅′.PtrInfo is 𝑖′, thus reflecting the fact that the structure
instance is now allocated on the heap.

When all these premises hold, the reduction produces the updated runtime envi-
ronment 𝑅′, together with the pointer 𝑝 where the structure instance has been
allocated. As a consequence, 𝑅′ is “aware” of 𝑝, and it is possible to inspect and
use the contents of the heap area pointed by 𝑝 via 𝑅′.PtrInfo and 𝑅′.Heap.

• By rule [R-FieldSel-Eval], we reduce a field selection expression “𝑒.f ” by first re-
ducing 𝑒, until it becomes a value;

• By rule [R-FieldSel-Res], a field selection expression “𝑝.f ” (where 𝑝 is a pointer
value) expects that 𝑝 is a known pointer in the runtime environment 𝑅, where a
structure with a field called 𝑓 is allocated. More in detail, the premises of the rule
say that:

– 𝑅.PtrInfo maps the pointer 𝑝 to a list of structure fields names [𝑓0; … ; 𝑓𝑛];
– one of such fields names 𝑓𝑖 (for some 𝑖 ∈ 1..𝑛) is equal to 𝑓 (i.e. the field that

is being accessed);

– the heap 𝑅.Heap maps the memory address 𝑝 + 𝑖 to the value 𝑣.
When all these premises hold, the reduction produces and unchanged runtime
environment 𝑅 and the value 𝑣.

• Rule [R-Assign-FieldSel-Target] says that if we attempt to perform an assignment
onto a structure field selected with “𝑒.f ”, then we first need to reduce 𝑒, until it
becomes a value.

• Rule [R-Assign-FieldSel-Arg] says that to perform an assignment “𝑣.f←𝑒” (where
the target of the field selection is a value 𝑣), we first need to reduce the expression
𝑒 (on the right-hand-side of the assignment) until it becomes a value.

182 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

• Rule [R-Assign-FieldSel-Res] says that an assignment “𝑝.f ← 𝑣” (where the field
selection target is a pointer, and the right-hand-side of the assignment is a value)
reduces by updating the structure data allocated on the heap. More in detail, the
rule premises say that:

– 𝑅.PtrInfo maps the pointer 𝑝 to a list of structure field names [𝑓0; … ; 𝑓𝑛];
– one of such field names 𝑓𝑖 (for some 𝑖 ∈ 1..𝑛) is equal to 𝑓 (i.e. the field that

is receiving the assignment);

– 𝑅′ is a runtime environment that is equal to 𝑅, except that in 𝑅′.Heap, the
memory address 𝑝 + 𝑖 (where the value of field 𝑓𝑖 is stored) maps to the
newly-assigned value 𝑣.

When all these premises hold, the reduction produces the updated runtime envi-
ronment 𝑅′ and the newly-assigned value 𝑣.

Example 43 (Reductions of Structure Construction and Assignment)

Consider the following expression, which creates a structure instance and updates one
of its fields.

let s ∶ 𝑡 = struct {name = ”Circle”;
area = 42 };

𝑠.area ← 𝑠.area + 2

Let us now consider the reductions of this expression, in a runtime environment 𝑅
where:

• 𝑅.Heap is empty, i.e. there is no allocated memory address on the heap;

• 𝑅.PtrInfo is empty, i.e. we have no information about any known pointer.

In the first reduction below, the expression that initialises the “let…” expression is re-
duced, hence we perform the construction of a “struct” instance, via rule [R-Struct-Res]
in Definition 29 . As a consequence, the reduction produces an updated runtime environ-
ment 𝑅′ that is equal to 𝑅, except that:

• 𝑅′.Heap is updated to make room for all the fields of the structure. In this case, we
have two fields called name and area, carrying respectively a string and an integer,
and each one of them is stored in a consecutive heap address. Consequently:

– the heap address 0x0001 will point to the string ”Circle”, and

– the heap address 0x0002 will point to the integer 42;
• 𝑅′.PtrInfo records the fact that the memory address 0x0001 is the beginning of a
structure with two fields, called name and area.

The reduction yields the updated runtime environment 𝑅′ and the memory address
0x0001 where the structure is saved.

7.3. Operational Semantics 183



02247 Compiler Construction, Spring 2023

ℎ = 𝑅.Heap = ∅
maxAddr(ℎ) + 1 = 0x0001

ℎ′ = {0x0001 ↦ ”Circle”
0x0002 ↦ 42 }

𝑖′ = {0x0001 ↦ [name; area]}
𝑅′ = {𝑅 with Heap = ℎ′

PtrInfo = 𝑖′}

[R-Struct-Res]

⟨𝑅 • struct {name = ”Circle”;
area = 42 } ⟩ → ⟨𝑅′ • 0x0001⟩

[R-Let-Eval-Init]

⟨𝑅 • let s ∶ 𝑡 = struct {name = ”Circle”;
area = 42 };

𝑠.area ← 𝑠.area + 2
⟩ → ⟨𝑅′ • let s ∶ 𝑡 = 0x0001;

𝑠.area ← 𝑠.area + 2 ⟩

In the second reduction below, a standard application of rule [R-Let-Subst] (from Defi-
nition 4) replaces each occurrence of the variable 𝑠 with its initialisation value, i.e. the
memory address 0x0001 obtained in the previous reduction.

[R-Let-Subst]

⟨𝑅′ • let s ∶ 𝑡 = 0x0001;
𝑠.area ← 𝑠.area + 2 ⟩ → ⟨𝑅′ • 0x0001.area ← 0x0001.area + 2⟩

In the third reduction, the assignment “0x0001.area ← 0x0001.area + 2” reduces the
addition on its right-hand-side. This reduction, in turn, retrieves the value of the field
access “0x0001.area” from the runtime environment, via rule [R-FieldSel-Res] in Defi-
nition 29 . The premises of that rule inspect the runtime environment 𝑅′ and find out
that:

• according to 𝑅′.PtrInfo, the address 0x0001 (on which a field selection is being
attempted) points to a structure with a list of two fields, called name and area. We
index the field names according to their position on the list, hence the field area
has index 1;

• therefore, to access “0x0001.area” we need to read the heap at the address 0x0002
(i.e. the address 0x0001 plus the offset 1 for the field area);

• the location 𝑅′.Heap(0x0002) contains the value 42, which becomes the result of
the reduction of “0x0001.area”.

𝑅′.PtrInfo(0x0001) = [𝑓0; 𝑓1]
where 𝑓0 = name and 𝑓1 = area 𝑅′.Heap(0x0002) = 42

[R-FieldSel-Res]
⟨𝑅′ • 0x0001.area⟩ → ⟨𝑅′ • 42⟩

[R-Add-L]
⟨𝑅′ • 0x0001.area + 2⟩ → ⟨𝑅′ • 42 + 2⟩

[R-Assign-FieldSel-Arg]
⟨𝑅′ • 0x0001.area ← 0x0001.area + 2⟩ → ⟨𝑅′ • 0x0001.area ← 42 + 2⟩
The fourth reduction computes the addition 42 + 2.

[R-Add-Res]
⟨𝑅′ • 42 + 2⟩ → ⟨𝑅′ • 44⟩

[R-Assign-FieldSel-Arg]
⟨𝑅′ • 0x0001.area ← 42 + 2⟩ → ⟨𝑅′ • 0x0001.area ← 44⟩
The fifth reduction performs the assignment of value 44 to the field selection
“0x0001.area”, via rule [R-Assign-FieldSel-Res] in Definition 29 . The rule premises in-
spect the runtime environment 𝑅′ similarly to rule [R-FieldSel-Res] in the third reduc-
tion step above:

184 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

• the premises determine that “0x0001.area” is located at the heap address 0x0002,
and

• they produce an updated runtime environment 𝑅″ that is equal to 𝑅′, except that
in 𝑅″.Heap the address 0x0002 points to the newly-assigned value 44.

𝑅′.PtrInfo(0x0001) = [𝑓0; 𝑓1]
where 𝑓0 = name and 𝑓1 = area 𝑅″ = {𝑅′ with Heap + (0x0002 ↦ 44)}

[R-Assign-FieldSel-Res]
⟨𝑅′ • 0x0001.area ← 44⟩ → ⟨𝑅″ • 44⟩

Therefore, the expression given at the beginning of this example terminates its reduc-
tions by reaching the value 44. Notice, however, that the runtime environment 𝑅″ is
different from the initial runtime environment 𝑅, because we have:

𝑅″.PtrInfo = {0x0001 ↦ [name; area]} and 𝑅″.Heap = {0x0001 ↦ ”Circle”
0x0002 ↦ 44 }

Exercise 32

Write the reductions of the following expression:

let s ∶ 𝑡 = struct {name = ”Circle”;
area = 40 + 2 };

let s2 ∶ 𝑡 = 𝑠;
s2.area ← 𝑠2.area ∗ 2

7.4 Typing Rules

In order to type-check programs that use structures, we need to introduce a new struc-
ture type (Definition 30), a new rule for pretype resolution (Definition 31), a new subtyp-
ing rule (Definition 32), and some new typing rules (Definition 33).

Definition 30 (Structure Type)

We extend the Hygge0 typing systemwith a structure type by adding the following case
to Definition 5:

Type 𝑇 ∶∶= …
∣ struct {𝑓1 ∶ 𝑇1; … ; 𝑓𝑛 ∶ 𝑇𝑛} (Structure type, with 𝑛 ≥ 1

and 𝑓1, … , 𝑓𝑛 pairwise distinct)

By Definition 30, a structure type describes a structure instance where each field 𝑓𝑖 (for
𝑖 ∈ 𝑖..𝑛, with 𝑛 ≥ 1) has a type 𝑇𝑖. Note that the field names must be distinct from each
other.

7.4. Typing Rules 185



02247 Compiler Construction, Spring 2023

Example 44 (Structure Types)

The following type describes a structure with a field 𝑓 of type int, and a field 𝑔 of type
bool.

struct {𝑓 ∶ int; 𝑔 ∶ bool}

The following type describes a structure with a field 𝑓 of type int, and a field 𝑔 having a
structure type, which in turn has a field 𝑎 of type float and a field 𝑏 of type bool.

struct {𝑓 ∶ int; 𝑔 ∶ struct {𝑎 ∶ float; 𝑏 ∶ bool}}

We also need a way to resolve a syntactic structure pretype (from Definition 27 ) into a
valid structure type (from Definition 30): this is formalised in Definition 31 below.

Definition 31 (Resolution of Structure Types)

We extend Definition 7 (type resolution judgement) with this new rule:

𝑓1, … , 𝑓𝑛 pairwise distinct ∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑡𝑖 ▷ 𝑇𝑖 [TRes-Struct]
Γ ⊢ struct {𝑓1 ∶ 𝑡1; … 𝑓𝑛 ∶ 𝑡𝑛} ▷ struct {𝑓1 ∶ 𝑇1; … , 𝑓𝑛 ∶ 𝑇𝑛}

According to Definition 31, a function pretype is resolved by ensuring that field names
are distinct from each other, and then by recursively resolving the type of each field.

We also extendDefinition 10 (subtyping) with a new rule for structure types, according to
Definition 32 below. This extension is not strictly necessary, but it adds great flexibility
to the Hygge programming language, as we will see shortly. Notice that, without Def-
inition 32, the subtyping for structure types would only be allowed by rule [TSub-Refl]
in Definition 10, which only relates types that are exactly equal to each other.

Definition 32 (Subtyping for Structure Types)

We define the subtyping of Hygge0 with structure types by extending Definition 10
with the following new rule:

𝑚 ≥ 𝑛 ∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑇𝑖 ⩽ 𝑇 ′
𝑖 [TSub-Struct]

Γ ⊢ struct {𝑓1 ∶ 𝑇1; … , 𝑓𝑚 ∶ 𝑇𝑚} ⩽ struct {𝑓1 ∶ 𝑇 ′
1; … , 𝑓𝑛 ∶ 𝑇 ′

𝑛}

According to rule [TSub-Struct] in Definition 32, a structure type
“struct {𝑓1 ∶ 𝑇1, … , 𝑓𝑚 ∶ 𝑇𝑚}” is subtype of another structure type
“struct {𝑓1 ∶ 𝑇 ′

1, … , 𝑓𝑛 ∶ 𝑇 ′
𝑛}” when:

• the subtype contains at least all the structure fields that appear in the supertype,
and such fields appear first and in the same order (this is enforced by the shape of
the structure types and by the rule premise “𝑚 ≥ 𝑛”); and

186 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

• if a field 𝑓𝑖 appears in the structure supertype with type 𝑇 ′
𝑖 , then 𝑇 ′

𝑖 is a supertype
of the corresponding field type 𝑇𝑖 in the structure subtype.

The rationale for rule [TSub-Struct] is based on Definition 9 (Liskov Substitution Prin-
ciple): an instance of a subtype should be safely usable whenever an instance of the
supertype is required. See Example 45 below.

Example 45

Consider the following structure type:

struct {𝑓 ∶ int; 𝑔 ∶ bool}

Consider any well-typed Hygge program that uses an instance of such a structure type:
intuitively, that program will only access the field 𝑓 (using it as an int) and the field 𝑔
(using it as a bool).

Therefore, that Hygge program will also work correctly if it operates on a structure
instance of the following type:

struct {𝑓 ∶ int; 𝑔 ∶ bool; ℎ ∶ string}

The reason is that the program will still be able to access the structure fields 𝑓 and 𝑔,
since they appear in the expected order and have the expected types; the program will
simply ignore the additional field ℎ. For this reason, Definition 32 considers the second
structure type as a subtype of the first.

In some sense, this is similar to inheritance in object-oriented programming languages:
the second structure type above “derives” the first structure type (because it “imple-
ments” all its fields), hence the second structure type is a “subclass” of the first.

This idea is also visible in Example 42, where the function displayShape is called with
arguments that have all the fields expected by the structure type Shape, plus other fields
(that displayShape does not use). This is allowed because all the arguments passed to
displayShape have a subtype of Shape, according to Definition 32.

We now have all the ingredients to define the typing rules for structure constructors and
field accesses and assignments: they are formalised in Definition 33 below.

Definition 33 (Typing Rules for Structures and Field Access and Assignment)

We define the typing rules of Hygge0 with structures and field assignments by ex-
tending Definition 11 with the following rules (which use the structure type introduced

7.4. Typing Rules 187



02247 Compiler Construction, Spring 2023

in Definition 30 above):
𝑓1, … , 𝑓𝑛 pairwise distinct ∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑒𝑖 ∶ 𝑇𝑖 [T-Struct]

Γ ⊢ struct {𝑓1 = 𝑒1, … , 𝑓𝑛 = 𝑒𝑛} ∶ struct {𝑓1 ∶ 𝑇1, … , 𝑓𝑛 ∶ 𝑇𝑛}

Γ ⊢ 𝑒 ∶ struct {𝑓1 ∶ 𝑇1, … , 𝑓𝑛 ∶ 𝑇𝑛} ∃𝑖 ∈ 1..𝑛 ∶ 𝑓 = 𝑓𝑖 [T-FieldSel]Γ ⊢ 𝑒.f ∶ 𝑇𝑖

Γ ⊢ 𝑒1.f ∶ 𝑇 Γ ⊢ 𝑒2 ∶ 𝑇
[T-Assign-FieldSel]Γ ⊢ 𝑒1.f ← 𝑒2 ∶ 𝑇

The typing rules in Definition 33 work as follows.

• By rule [T-Struct], a structure constructor “struct {𝑓1=𝑒1, … , 𝑓𝑛=𝑒𝑛}” has
a structure type “struct {𝑓1 ∶ 𝑇1, … , 𝑓𝑛 ∶ 𝑇𝑛}”, where (according to the rule
premises) each field 𝑓𝑖 has the type of the corresponding initialisation expression
𝑒𝑖. The first premise of the rule also requires that all field names 𝑓𝑖 are distinct
from each other.

• By rule [T-FieldSel], a field selection “𝑒.f ” is well-typed if (according to the rule
premises) 𝑒 has a structure type, and there is a field 𝑓𝑖 of that structure type which
matches 𝑓 (i.e. the field being accessed). If these premises hold, then the whole
field access has type 𝑇𝑖 (i.e. the type of the structure field 𝑓𝑖).

• By rule [T-Assign-FieldSel], an assignment to a field selection “𝑒1.f ← 𝑒2” is type-
checked by ensuring that the field selection “𝑒1.f ” has a type 𝑇 (first premise of
the rule), and that such a type 𝑇 is also the type of the assigned expression 𝑒2
(second premise of the rule). If these premises hold, then the whole assignment
has type 𝑇 .

Example 46

Consider the following expression, which initialises variable 𝑠 with a structure instance,
and updates the value of the field 𝑠.area:

let s ∶ struct {area ∶ int} =
struct {area = 42;

name = ”Circle”} ;
𝑠.area ← 𝑠.area + 2

We have the following typing derivation — where the typing environment Γ′ is equal to
Γ, except that we have Γ′.Vars(𝑠) = struct {area ∶ int}.

[TRes-Int]Γ ⊢ ”int” ▷ int
[TRes-Struct]

Γ ⊢ ”struct {area ∶ int} ” ▷ struct {area ∶ int}

[T-Int]Γ ⊢ 42 ∶ int [T-String]Γ ⊢ ”Circle” ∶ string
[T-Struct]

Γ ⊢ struct {area = 42;
name = ”Circle”} ∶ struct {area ∶ int

name ∶ string}

[TSub-Refl]Γ ⊢ int ⩽ int [TSub-Struct]
Γ ⊢ struct {area ∶ int

name ∶ string} ⩽ struct {area ∶ int}
[T-Sub]

Γ ⊢ struct {area = 42;
name = ”Circle”} ∶ struct {area ∶ int}

Γ′(𝑠) = struct {area ∶ int}
[T-Var]

Γ′ ⊢ 𝑠 ∶ struct {area ∶ int}
[T-FieldSel]

Γ′ ⊢ 𝑠.area ∶ int

Γ′(𝑠) = struct {area ∶ int}
[T-Var]

Γ′ ⊢ 𝑠 ∶ struct {area ∶ int}
[T-FieldSel]

Γ′ ⊢ 𝑠.area ∶ int
[T-Val-Int]

Γ′ ⊢ 2 ∶ int [T-Add]
Γ′ ⊢ 𝑠.area + 2 ∶ int [T-Assign-FieldSel]

Γ′ ⊢ 𝑠.area ← 𝑠.area + 2 ∶ int
[T-Let]

Γ ⊢
let s ∶ struct {area ∶ int} =

struct {area = 42;
name = ”Circle”} ;

𝑠.area ← 𝑠.area + 2
∶ int

Notice that the “let…” binder declares a variable 𝑠 with type “struct {area ∶ int}”, but
initialises 𝑠 with a structure constructor that has an additional field “name”: to satisfy

188 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

the premises of rule [T-Let], we need to show that such a structure constructor also
has type “struct {area ∶ int}” (i.e. without the additional field “name”). To this end, the
derivation uses the subsumption rule [T-Sub] (fromDefinition 11) and the new subtyping
rule [TSub-Struct] (from Definition 32); without rule [TSub-Struct], this program would
not type-check.

7.5 Implementation

Wenowhave a look at how hyggec is extended to implement structures and field accesses
and assignments, according to the specification illustrated in the previous sections.

Tip: To see a summary of the changes described below, you can inspect the differences
in the hyggec Git repository between the tags functions and structures.

7.5.1 Lexer, Parser, Interpreter, and Type Checking

These parts of the hyggec compiler are extended along the lines of Example: Extend-
ing Hygge0 and hyggec with a Subtraction Operator , except that, in order to implement
Definition 32, we need to extend the function isSubtypeOf.

• We extend AST.fs in two ways, according to Definition 27 :

– we extend the data type Expr<'E,'T> with three new cases:

* Struct for the structure constructor “struct {𝑓1 = 𝑡1, … , 𝑓𝑛 = 𝑒𝑛}”;
* FieldSelect for “𝑒.f ”; and
* Pointer for “𝑝”;

– we also extend the data type Pretype with a new case called TStruct, corre-
sponding to the new structure pretype “struct {𝑓1 ∶ 𝑡1, … , 𝑓𝑛 ∶ 𝑡𝑛}”:

and Pretype =
// ...
/// A structure pretype, with pretypes for each field.
| TStruct of fields: List<string * PretypeNode>

• We extend PrettyPrinter.fs to support the new expressions and pretype.

• We extend Lexer.fsl to support two new tokens:

– STRUCT for the new keyword “struct”, and

– DOT for the symbol “.” used to access structure fields in the expression “𝑒.f ”.
• We extend Parser.fsy to recognise the desired sequences of tokens according to

Definition 27 , and generate AST nodes for the new expressions. We proceed by
adding:

7.5. Implementation 189



02247 Compiler Construction, Spring 2023

– a new rule under the pretype category to generate TStruct pretype in-
stances;

– two new rules under the primary category to generate Struct and
FieldSelect instances;

– various auxiliary syntactic categories and rules to recognise the syntactic
elements needed by the rules above. In particular:

* field matches a structure field;

* fieldInitSeq is a non-empty sequence of field assignments, separated
by semicolons (needed to parse structure constructors);

* fieldTypeSeq is a sequence of fields with type annotations, separated
by semicolons (needed to parse structure pretypes).

Note: Wedo not extend Parser.fsywith new rules for parsing Pointer instances.
The reason is that, as we mentioned when introducing the syntax of structures, we
want to treat pointers as runtime values that are only produced by the semantics
(while a program reduces) and cannot be written by Hygge programmers.

• We extend the function subst in ASTUtil.fs to support the new expressions
Struct, FieldSelect and Pointer, according to Definition 28.

• We extend Interpreter.fs according to Definition 29 :

– we extend the definition of the record RuntimeEnv to include the new fields
Heap and PtrInfo;

– in the function isValue, we add a new case for Pointer; and

– in the function reduce:

* we add a new case for Pointer (which does not reduce);

* we add a new case for Struct, with an auxiliary function called
heapAlloc that helps allocating new values on top of the heap, as re-
quired by rule [R-Struct-Res];

* we add a new case for Fieldselect; and

* we add a new case to reduce an Assign expression when the left-
hand-side of the assignment is a field selection, according rules
[R-Assign-FieldSel-Target] and [R-Assign-FieldSel-Arg].

• We extend Type.fs by adding a new case to the data type Type, according to Defi-
nition 30: the new case is called TStruct. We also add a a corresponding new case
to the function freeTypeVars in the same file.

Note: Correspondingly, we also extend the pretty-printing function formatType
in PrettyPrinter.fs, to display the stucture type we have just introduced.

190 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

• We extend Typechecker.fs:

– we extend the type resolution function resolvePretype with a new case for
structure types, according to Definition 31;

– we extend the function isSubtypeOf with a new case for structure types,
according to Definition 32;

– we extend the function typer according to Definition 33, to support the new
cases for the expressions Struct and FieldSelect, and type-check assign-
ments to structure fields.

• As usual, we add new tests for all compiler phases.

7.5.2 Code Generation

We extend RISCVCodegen.fs in three ways:

• Code Generation for Structure Constructors

• Code Generation for Field Selection

• Code Generation for Assignments to Structure Fields

Code Generation for Structure Constructors

When compiling a structure constructor, we need to add a new case to the function
doCodegen in RISCVCodegen.fs matching the expression Struct. We need to generate
RISC-V assembly code that:

1. allocates enough space on the heap to contain all the structure fields, and

2. initialises each structure fields with the value produced by the corresponding field
initialisation expression.

To allocate space on the heap, we use the RARS system call Sbrk: it extends the heap by
allocating the amount of bytes specified in the register a0, and returns the address of the
newly-allocated memory block in the register a0 itself. In order to compute the required
amount of bytes, we need to know the the size of the structure instance — which is quite
straightforward: each type of Hygge value, once compiled, fits in a single 32-bit word,
and therefore, we obtain the structure size by multiplying the number of structure fields
by 4.

The resulting code looks as follows

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
// ...
| Struct(fields) ->

/// Assembly code for initialising each field of the struct
let fieldsInitCode = // ...

/// Assembly code that allocates space on the heap for the new
(continues on next page)

7.5. Implementation 191



02247 Compiler Construction, Spring 2023

(continued from previous page)
/// structure, through an 'Sbrk' system call. The size of the structure
/// is computed by multiplying the number of fields by the word size (4)
let structAllocCode =

(beforeSysCall [Reg.a0] [])
.AddText([

(RV.LI(Reg.a0, fields.Length * 4),
"Amount of memory to allocate for a struct (in bytes)")
(RV.LI(Reg.a7, 9), "RARS syscall: Sbrk")
(RV.ECALL, "")
(RV.MV(Reg.r(env.Target), Reg.a0),
"Move syscall result (struct mem address) to target")

])
++ (afterSysCall [Reg.a0] [])

// Put everything together: allocate heap space, init all struct fields
structAllocCode ++ fieldsInitCode

Code Generation for Field Selection

The assembly code for field selections needs to establish what is the memory location of
the selected structure field. To this end:

1. we compile the target expression of the field selection, which is expected to leave
a memory address in the target register; and then

2. use the target expression type (which should be TStruct) to find out the offset of
the selected field from that memory address.

We then use the RISC-V instruction lw (load word) to read a value from the memory
location of the structure field, and write it in the target register.

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
// ...
| FieldSelect(target, field) ->

/// Generated code for the target object whose field is being selected
let selTargetCode = doCodegen env target
/// Assembly code to access the struct field in memory
let fieldAccessCode =

match (expandType node.Env target.Type) with
| TStruct(fields) ->

let (fieldNames, fieldTypes) = List.unzip fields
let offset = List.findIndex (fun f -> f = field) fieldNames
match fieldTypes.[offset] with
// ...
| _ ->

Asm(RV.LW(Reg.r(env.Target), Imm12(offset * 4),
Reg.r(env.Target)),

$"Retrieve value of struct field '%s{field}'")

(continues on next page)

192 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

(continued from previous page)
// Put everything together: compile the target, access the field
selTargetCode ++ fieldAccessCode

Code Generation for Assignments to Structure Fields

To support assignments to structure fields, we extend the code generation for the Assign
expression. The new case generates RISC-V assembly code to:

• compute the target expression of the field selection (which should produce the
memory address of a structure instance on the heap);

• compute the assigned value, and

• compute thememory address of the structure field that is receiving the assignment
(as in the Code Generation for Field Selection).

Then, the generated code overwrites that memory address with the value being assigned.

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
// ...
| Assign(lhs, rhs) ->

match lhs.Expr with
// ...
| FieldSelect(target, field) ->

let selTargetCode = // ...Code for target expression of selection
let rhsCode = // ...Code for the right-hand-side of the assignment

match target.Type with
| TStruct(fields) ->

let (fieldNames, _) = List.unzip fields // Struct field names
/// Offset of the selected struct field beginning of struct
let offset = List.findIndex (fun f -> f = field) fieldNames
let assignCode = // Assembly code to perform field assignment

match rhs.Type with
// ...
| _ ->

Asm([(RV.SW(Reg.r(env.Target + 1u), Imm12(offset * 4),
Reg.r(env.Target)),

$"Assigning value to struct field '%s{field}'")
(RV.MV(Reg.r(env.Target), Reg.r(env.Target + 1u)),
"Copying assigned value to target register")])

// Put everything together
rhsCode ++ selTargetCode ++ assignCode

7.5. Implementation 193



02247 Compiler Construction, Spring 2023

7.6 References and Further Readings

The treatment of structure types inHygge is inspired by languageswith structural typing
systems, such as F#, OCaml, Scala, TypeScript. To know more about the programming
language concepts behind this, you can refer to:

• Benjamin Pierce. Types and Programming Languages. MIT Press, 2002. Available
on DTU Findit32.

– Chapter 19 (Case Study: Featherweight Java) — in particular, section 19.3
(Nominal and Structural Type Systems)

Although this version of Hygge allocates structures on the heap, it does not provide any
facility to deallocate them. Therefore, the heap usage of a programwill tend to grow until
the program terminates — and it is possible to write programs that allocate too many
structures and are killed by the operating system (or by RARS) with an out-of-memory
error. This issue can be addressed in two ways.

1. We could add a C-style expression like free(e) which removes from the heap the
contents of e (which is supposed to reduce into a structure pointer). This is not
entirely straightforward to implement — but most importantly, manual memory
deallocation would introduce the typical problems of C programs, such as miss-
ing deallocations causing memory leaks, or duplicate deallocations that crash a
program.

2. We could tweak the semantics of Hygge with the automatic removal of structures
that are not pointed from anywhere within the program, nor the heap. Corre-
spondingly, we could extend the hyggec code generation to include the assembly
code of a garbage collector that is informed every time a new structure is allo-
cated, and deallocates that structure when it becomes unreferenced. Writing (or
finding) a garbage collector that can be compiled to run under RARS is not a trivial
task. The Boehm-Demers-Weiser garbage collector33 is a popular option that can
be integrated into C/C++ programs, and could also be used in the runtime system
of a compiled programming language.

7.7 Project Ideas

For your group project, you should implement at least 3 of the following project ideas
(listed in order of difficulty):

• Project Idea: Extend Hygge with Reference Cells

• Project Idea: Extend Hygge with Tuples

• Project Idea: Mutable vs. Immutable Structure Fields

• Project Idea: Extend Hygge with Arrays

• Optional Challenge: Extend Hygge with Copying of Structures
32 https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f
33 https://github.com/ivmai/bdwgc

194 Module 7: Structured Data Types and the Heap

https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f
https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f
https://github.com/ivmai/bdwgc


02247 Compiler Construction, Spring 2023

The last project idea includes an optional challenge: if you wish to take this challenge
instead of some other project idea, please speak with the teacher.

Important: If, in the previousmodule, you chose Project Idea: Function Subtyping, please
remember to add some test cases to show how function subtyping interplays with struc-
ture subtyping.

7.7.1 Project Idea: Extend Hygge with Reference Cells

The goal of this project idea is to extend Hygge and hyggec with a construct similar to
reference cells in the F# programming language34. Hygge programmers programmer
should be able to write, interpret, type-check, compile and run a program like the fol-
lowing:

let x: ref {int} = ref {40 + 2};
x.value <- x.value + 10;
assert(x.value = 52)

where ref {int} is the type of a reference to a value of type int, while the reference
constructor ref {40 + 2} represents a reference to a location on the heap, where the
result of the expression 40 + 2 is saved.

You should describe how you modify the Hygge language specification and the hyggec
implementation to achieve this extension. As usual, you should also provide tests that
leverage this extension.

Hint: You can approach this project idea by using F# reference cells as a blueprint:

• the type ref {int} is just syntactic sugar for a structure type struct {value:
int}, and

• the reference constructor ref {42} is just syntactic sugar for a structure construc-
tor struct {value = 42}.

7.7.2 Project Idea: Extend Hygge with Tuples

The goal of this project idea is to extend Hygge and hyggecwith tuples, i.e. sequences of
elements of a fixed length determined statically (not at run-time), and with each element
having its own predetermined type. Tuples can have any length (minimum one element).
Hygge programmers should be able to write, interpret, type-check, compile and run a
program like the following:

34 https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/reference-cells

7.7. Project Ideas 195

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/reference-cells


02247 Compiler Construction, Spring 2023

let t: tuple {string, int, bool} = tuple {"Hello", 40 + 2, true};
t._1 <- "Hej";
t._2 <- t._2 + 10;
assert(t._2 = 52)

where:

• tuple {string, int, bool} is the type of a tuple containing 3 values, such that
the first has type string, the second has type int, and the third has type bool;

• tuple {"Hello", 40 + 2, true} is the constructor of a tuple containing 3 values,
initialised as "Hello", 40 + 2, and true;

• the selectors _1, _2, etc. are used to access and assign a value to the corresponding
element of the tuple. The tuple length determines which selectors are available:
for instance, a tuple of length 12 has selectors ranging from _1 to _12. (This is
inspired by tuples in the Scala 2 programming language35.)

You should describe how you modify the Hygge language specification and the hyggec
implementation to achieve this extension. As usual, you should also provide tests that
leverage this extension.

Hint: The hint given for the project idea on reference cells might be helpful…

7.7.3 Project Idea: Mutable vs. Immutable Structure Fields

The goal of this project idea is to allow Hygge and hyggec to distinguish between mu-
table and immutable structure fields. You can choose between two possible alternative
designs:

1. all structure fields are mutable by default (as specified in this module) — but a
programmer can optionally specify that some fields are immutable, e.g. by writing
a structure type like: struct { f: int; immutable g: string}. Or,

2. all structure fields are immutable by default, but a programmer can optionally
specify that some fields are mutable, e.g. by writing a structure type like: struct
{ f: int; mutable g: string}. This approach is similar to F#, but it will require
the revision of several existing hyggec tests.

You should describe how you modify the Hygge language specification and the hyggec
implementation to achieve this extension. As usual, you should also provide tests that
leverage this extension.

Hint:

• You don’t need to substantially change the Hygge semantics with respect to Defi-
nition 28: since mutable/immutable structure fields are only specified in structure
types, you can keep treating all fields as mutable in the interpreter.

35 https://docs.scala-lang.org/tour/tuples.html

196 Module 7: Structured Data Types and the Heap

https://docs.scala-lang.org/tour/tuples.html


02247 Compiler Construction, Spring 2023

• You do need to revise the types and type checking:

– you need to remember which fields of a structure type are mutable, and
which fields are immutable;

– if a program attempts to perform an assignment “𝑒.f ← 𝑒′” where 𝑓 is an
immutable field of the structure type of 𝑒, then the assignment should not
type-check, and a corresponding error should be reported.

• Structure subtyping (Definition 32) should be extended to distinguish mutable and
immutable fields. For maximum flexibility, you can extend subtyping as follows:

– if a structure field 𝑓 is immutable in the supertype, then 𝑓 can be either
mutable or immutable in the subtype;

– if a structure field 𝑓 is mutable in the supertype, then 𝑓 must also be mutable
in the subtype.

7.7.4 Project Idea: Extend Hygge with Arrays

The goal of this project idea is to extend Hygge and hyggec with arrays, i.e. sequences
of values of a same type, with a fixed length determined at run-time (unlike tuples).
Arrays can have any length (minimum one element). Hygge programmers should be
able to write, interpret, type-check, compile and run a program like the following (but
feel free to change the syntax as you like):

let n: int = readInt();
let arr: array {int} = array(n, 40 + 2);

let mutable i: int = 0;
while (i < arrayLength(arr)) do {

arrayElem(arr, i) <- arrayElem(arr, i) + i;
i <- i + 1

};

i <- 0;
while (i < arrayLength(arr)) do {

assert(arrayElem(arr, i) = 42 + i)
i <- i + 1

}

where:

• array {int} is the type of an array containing elements of type int;

• array(n, 40 + 2) is the constructor of an array containing n values, each one
initialised with the result of the expression 40 + 2;

• arrayLength(arr) is the size (number of elements) of the array arr;

• arrayElem(arr, i) is used to access and assign a value to element i of array arr
(with elements numbered from 0). The program should get stuck if the index i is

7.7. Project Ideas 197



02247 Compiler Construction, Spring 2023

not smaller than the size of the array.

You should describe how you modify the Hygge language specification and the hyggec
implementation to achieve this extension. As usual, you should also provide tests that
leverage this extension.

Hint: Intuitively, an array instance could imagined as a structure with two fields:

• a field length with the size of the array; and

• a field data with a pointer to the memory location where the array elements are
stored.

However, arrays are not just syntactic sugar for structures! The main difference is that
the array size is dynamic, so the data field in the intuition above needs a dedicated
treatment. Still, you can certainly reuse and adapt part of the specification and code for
structures to design and implement arrays…

7.7.5 Optional Challenge: Extend Hygge with Copying of Struc-
tures

In the current specification of Hygge, and in hyggec, structures are always handled by
reference. For example, consider the following program:

let s1: struct {f: int} = struct {f = 0};
let s2: struct {f: int} = s1;
s1.f <- 42;
assert(s1.f = 42);
assert(s2.f = 42)

The “let…” binder that introduces s2 initialises it with the same heap address of the struc-
ture s1; as a consequence, any change to the fields of s1 is reflected in s2—and vice versa.

The goal of this project idea is to extend Hygge and hyggec with an expression copy(e),
which takes an expression e (expected to be a structure) and returns a copy of e — i.e. a
new structure that has the same type, fields, and values of e, but does not share any data
with e.

As a consequence, Hygge programmers should be able to write, interpret, type-check,
compile and run a program like the following:

let s1: struct {f: int} = struct {f = 0};
let s2: struct {f: int} = copy(s1);
s1.f <- 42;
assert(s1.f = 42);
assert(s2.f = 0)

You should describe how you modify the Hygge language specification and the hyggec
implementation to achieve this extension. As usual, you should also provide tests that
leverage this extension.

198 Module 7: Structured Data Types and the Heap



02247 Compiler Construction, Spring 2023

Note: The formal specification of the semantics of the copy(e) expression can be quite
complicated, so you can omit it.

You can approach this project idea in two steps.

1. Extend Hygge and hyggec with shallow copying, i.e. copy the contents of struc-
ture fields, without recursively copying the structures pointed by those fields (if
any). For example, shallow copying would allow to correctly execute both the
example above, and the following program:

let s1: struct {f: struct {g: float}} = struct {f = struct {g = 0.0f}};
let s2: struct {f: struct {g: float}} = copy(s1);
s1.f.g <- 1.0f;
assert(s1.f.g = 1.0f);
assert(s2.f.g = 1.0f)

This is because shallow copying only copies the “first level” of the structure, and
thus copies the structure pointer of s1.f into s2.f. Consequently, s1.f and s2.f
point to the same structure, and any change to s1.f.g is visible in s2.f.g — and
vice versa.

2. Optional challenge: implement deep copying, i.e. copy the contents of structure
fields, and recursively copy any structure pointed by those fields. For example,
deep copying would allow to correctly execute the following program:

let s1: struct {f: struct {g: float}} = struct {f = struct {g = 0.0f}};
let s2: struct {f: struct {g: float}} = copy(s1);
s1.f.g <- 1.0f;
assert(s1.f.g = 1.0f);
assert(s2.f.g = 0.0f)

This is because deep copying duplicates the structure pointed by s1.f, and ini-
tialises s2.f with a pointer to the structure copy. Consequently, s1.f and s2.f
point to different structures that do not share any data, and any change to s1.f.g
is not reflected in s2.f.g — and vice versa.

Hint: To understand how many fields of a structure should be copied by copy(e) (in a
shallow or deep way), you can inspect either the runtime environment (when interpret-
ing the program) or the structure type of e (during code generation).

7.7. Project Ideas 199



02247 Compiler Construction, Spring 2023

200 Module 7: Structured Data Types and the Heap



8
Module 8: Lab Day

This module does not introduce new contents: on 23 March, from 8:00 to 12:00, you
can work on your project or past exercises. The teacher and TA will be present in the
classroom, and you can request help or ask them questions about your project, or course
topics, or technical issues.

We can arrange mini-sessions during the Lab Day to address specific questions and
topics requested by two or more students. To propose a question/topic for these mini-
sessions, please use the poll on the course website on DTU Learn, under “Contents”→
“Module 8”.

201



02247 Compiler Construction, Spring 2023

202 Module 8: Lab Day



9
Module 9: Closures

In this module we study and address the limitations of the specification and implemen-
tation of functions presented in Module 6: Functions and the RISC-V Calling Convention.
The key issue is that we do not (yet) have a proper treatment of closures, i.e. functions
that capture (“close over”) variables which are defined (“bound”) in their surrounding
scope. The solution to this issue is based on code rewriting in combination with struc-
tured data types.

9.1 Overall Objective

Our goal is to correctly interpret, compile and run Hygge programs like the one shown
in Example 47 and Example 48 below.

Example 47 (A Function that Captures an Immutable Variable)

Consider the following program:

1 // Take x, return a function that adds x to its argument
2 fun makeAdder(x: int): (int) -> int =
3 fun (y: int) ->
4 x + y; // x is captured from the surrounding scope
5

6 let add1: (int) -> int = makeAdder(1);
7 let add2: (int) -> int = makeAdder(2);
8

9 // These assertions succeed in the interpreter, but fail in code generation!
10 assert(add1(40) = 41);
11 assert(add2(40) = 42)

Here the issue is that when we call makeAdder, the argument x is passed via register a0;
however, a0 is also assigned to the argument y of the function returned by makeAdder.
Therefore, the compiled function ends up computing y + y (which is incorrect).

203



02247 Compiler Construction, Spring 2023

Example 48 (A Function that Captures a Mutable Variable)

Consider the following program:

// Return a function that counts how many times it is called
fun makeCounter(): () -> int = {

let mutable x: int = 0;
fun () ->

x <- x + 1 // x is captured from the surrounding scope
};

// This is interpreted and compiled incorrectly!
let c1: () -> int = makeCounter();
let c2: () -> int = makeCounter();
assert(c1() = 1);
assert(c1() = 2);
assert(c2() = 1)

Here we have two issues:

• when makeCounter is interpreted, according to Definition 15 it returns the lambda
term fun () -> x <- x + 1 — and when such a lambda term is called on the first
assertion, the program gets stuck on the expression assert((x <- x + 1) = 1)
(due to the unbound variable x); moreover,

• when makeCounter is compiled, it assigns register t0 to variable x — but when the
returned lambda term is called in the first assertion, then register t0 is used to
hold the variable c1. Therefore, the lambda term is reading the wrong register.

To address the issues highligthed in Example 47 and Example 48 above, we first discuss
what is a closure. Then, we address the limitations of Hygge and hyggec in two steps of
increasing difficulty:

• Closures that Capture Immutable Variables (which are already supported by the
hyggec interpreter, but are not correctly supported by the code generation);

• Closures that Capture Mutable Variables (which are not correctly supported neither
by the hyggec interpreter, nor the code generation).

We also address the special case of Closures that Capture Top-Level Variables, which
roughly correspond to accessing global variables in a programming language like C.

204 Module 9: Closures



02247 Compiler Construction, Spring 2023

9.2 What is a Closure?

The term closure was introduced in 1964 by Peter Landin to describe a lambda term
that “closes over” variables that are defined in its surrounding scope. More precisely, we
define what is a closure by using the notion of free variable (Definition 34 below), and
then formalising what it means for a Hygge expression to capture a variable (Definition
35 below).

9.2.1 Free Variables

A free variable (a.k.a. unbound variable) is a variable that appears in a Hygge expres-
sion without being bound (i.e. defined) earlier, according to Definition 34 below.

Definition 34 (Free Variables of a Hygge Expression)

The set of free variables of a Hygge expression 𝑒 (written fv(𝑒)) is defined as follows:

fv(𝑥) = {𝑥}
fv(𝑣) = ∅ (when 𝑣 is not a lambda term)

fv(fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒) = fv(𝑒) \ {𝑥1, … , 𝑥𝑛}
fv(𝑒1 + 𝑒2) = fv(𝑒1) ∪ fv(𝑒2)
fv(𝑒1 ∗ 𝑒2) = fv(𝑒1) ∪ fv(𝑒2)
fv(𝑒1; 𝑒2) = fv(𝑒1) ∪ fv(𝑒2)

⋮
fv(struct {𝑓1=𝑒1; … ; 𝑓𝑛=𝑒𝑛}) = fv(𝑒1) ∪ … ∪ fv(𝑒𝑛)

fv(𝑒 (𝑒1, … , 𝑒𝑛)) = fv(𝑒) ∪ fv(𝑒1) ∪ … ∪ fv(𝑒𝑛)
⋮

fv(let x ∶ 𝑡 = 𝑒1; 𝑒2) = fv(𝑒1) ∪ (fv(𝑒2) \ {𝑥})
fv(let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2) = fv(𝑒1) ∪ (fv(𝑒2) \ {𝑥})

⋮
fv(type 𝑥 = 𝑡; 𝑒) = fv(𝑒)

The intuition behind Definition 34 is that a variable 𝑥 is free in a Hygge expression 𝑒
when 𝑥 occurs in 𝑒, but there is at least one occurrences of 𝑥 at least one occurrence of
𝑥 such that:

1. 𝑥 is not in the scope of any “let x ∶ 𝑡 = …” nor “let mutable 𝑥 ∶ 𝑡 = …” binder in
𝑒, and

2. 𝑥 is not in the scope of any lambda term that has 𝑥 among its arguments.

Consequently, fv(𝑒) is computed as follows:

1. take all the sub-expressions 𝑒1, 𝑒2, … of 𝑒;
2. for each sub-expression, recursively compute the sets of free variables

fv(𝑒1) , fv(𝑒2) , …;

9.2. What is a Closure? 205



02247 Compiler Construction, Spring 2023

3. if 𝑒 itself is binding some variable 𝑥, then subtract 𝑥 from the free variables of the
scope where 𝑥 is defined (as in the cases for “let…”, “let mutable…”, and lambda
terms);

4. finally, compute the union of the remaining sets of free variables.

This recursive computation of free variables terminates with the base cases where either:

• 𝑒 is a “simple” value 𝑣 that is not a lambda term: in this case, the set of free variables
is the empty set ∅; or

• 𝑒 is a variable 𝑥: in this case, the set of free variables is the singleton set {𝑥}.

Example 49 (Free Variables of a Hygge Expression)

Consider the following Hygge expression:

𝑥 + 𝑦

The free variables in the expression above are:

fv(𝑥 + 𝑦) = fv(𝑥) ∪ fv(𝑦) = {𝑥} ∪ {𝑦} = {𝑥, 𝑦}

Now consider the expression:

let x ∶ int = 3; 𝑥 + 𝑦

The free variables in the expression above are:

fv(let x ∶ int = 𝑧; 𝑥 + 𝑦) = fv(𝑧) ∪ (fv(𝑥 + 𝑦) \ {𝑥})
= {𝑧} ∪ ((fv(𝑥) ∪ fv(𝑦)) \ {𝑥})
= {𝑧} ∪ ({𝑥, 𝑦} \ {𝑥})
= {𝑧} ∪ {𝑦}
= {𝑧, 𝑦}

Note: There is a strong connection between:

• the free variables of an expression 𝑒 (according to Definition 34), and

• the substitution of a variable 𝑥 in an expression 𝑒 (according to Definition 2 and
its extensions in Definition 14, Definition 18, Definition 22, and Definition 28).

In fact, a substitution 𝑒 [𝑥 ↦ 𝑒′] can have an effect (i.e. return an expression that is
different from 𝑒) only if 𝑥 is a free variable of 𝑒, i.e. only if 𝑥 ∈ fv(𝑒). If 𝑥 ∉ fv(𝑒) (e.g.
because 𝑥 only appears under a “let x…” binder in 𝑒, or because 𝑥 does not occur in 𝑒
at all), then the substitution 𝑒 [𝑥 ↦ 𝑒′] should return 𝑒 without any change. It is very
important to preserve this property whenever the Hygge (or any other programming
language) is extended with new expressions.

Important: When we talk about the “free variables” and “captured variables” of an
expression 𝑒, we are only referring to the variables of 𝑒 that can be substituted by values

206 Module 9: Closures



02247 Compiler Construction, Spring 2023

in the Hygge semantics (e.g. by a “let…” binder or a function call/application). We are not
referring to type variables introduced by “type x…”; in fact, the case for fv(type 𝑥 = 𝑡; 𝑒)
in Definition 34 simply ignores the type variable 𝑥 and computes fv(𝑒).

Exercise 33 (Computing the Free Variables of a Hygge Expression)

Compute the free variables of the following expressions, according to Definition 34:

• let x ∶ int = 3; 𝑥 + 4
• fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑦
• fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑧
• let f ∶ 𝑡 = fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑦; 𝑓 (2, 𝑧)

Exercise 34 (Defining the Free Variables of Hygge Expressions)

Definition 34 is incomplete. Provide a definition of the missing cases: you should define
one new case for each form of expression 𝑒 that is omitted in Definition 34, such as <,
=, if … then … else …, print(…). Write some examples showing how the updated
definition of free variables works.

9.2.2 Captured Variables and Closures

A captured variable (a.k.a. closed-over variable) is a variable that appears free inside a
Hygge value — and more specifically, inside a lambda term (since lambda terms are the
only kind of values that can contain variables). This is formalised in Definition 35 below.

Definition 35 (Captured Variables and Closures)

The set of variables captured (or closed over) by an expression 𝑒 (written cv(𝑒)) is

9.2. What is a Closure? 207



02247 Compiler Construction, Spring 2023

defined as follows:
cv(𝑥) = ∅
cv(𝑣) = fv(𝑣)

cv(𝑒1 + 𝑒2) = cv(𝑒1) ∪ cv(𝑒2)
cv(𝑒1 ∗ 𝑒2) = cv(𝑒1) ∪ cv(𝑒2)
cv(𝑒1; 𝑒2) = cv(𝑒1) ∪ cv(𝑒2)

⋮
cv(struct {𝑓1=𝑒1; … ; 𝑓𝑛=𝑒𝑛}) = cv(𝑒1) ∪ … ∪ cv(𝑒𝑛)

cv(𝑒 (𝑒1, … , 𝑒𝑛)) = cv(𝑒) ∪ cv(𝑒1) ∪ … ∪ cv(𝑒𝑛)
⋮

cv(let x ∶ 𝑡 = 𝑒1; 𝑒2) = cv(𝑒1) ∪ (cv(𝑒2) \ {𝑥})
cv(let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2) = cv(𝑒1) ∪ (cv(𝑒2) \ {𝑥})

⋮
cv(type 𝑥 = 𝑡; 𝑒) = cv(𝑒)

We say that a variable 𝑥 is captured (or “closed over”) in an expression 𝑒 if 𝑥 ∈ cv(𝑒).
When cv(𝑣) ≠ ∅, then we say that 𝑣 is a closure.

The crucial part of Definition 35 above is the case “cv(𝑣) = fv(𝑣)”, which says that a
variable is captured if it appears free inside a value 𝑣. There is only one kind of values
that (according toDefinition 34) can contain free variables: this kind of values are lambda
terms. Therefore, Definition 35 says that a lambda term 𝑣 = fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) →
𝑒 captures (or “closes over”) a variable 𝑥 when 𝑥 appears in 𝑣 as a free variable. This
means that:

• 𝑥 is not one of the arguments 𝑥1, … , 𝑥𝑛 of 𝑣, and
• there is some occurrence of 𝑥 in the lambda term body 𝑒 that is not bound by any
“let x…” or “let mutable x…”, nor by the arguments of any lambda term inside 𝑒.

When a value 𝑣 captures at least one variable (i.e. when cv(𝑣) ≠ ∅), then we say that 𝑣
is a closure; as discussed above, this can only happen if 𝑣 is a lambda term.

More generally, according to Definition 35, a variable 𝑥 is captured in an expression 𝑒 if
𝑒 contains (as a sub-expression) a lambda term that captures 𝑥.
Now, consider a program containing a lambda term 𝑒 that captures variable 𝑥: if such
a program type-checks, then any free occurrence of 𝑥 in 𝑒 must be a reference to a
variable that is defined in the scope surrounding 𝑒. This means that, when interpreting
𝑒 (or generating code for 𝑒), we must make sure that the correct value for the captured
𝑥 (or the correct storage location for 𝑥) is used. In this Module we explore how to do it.

Example 50 (Captured Variables of a Hygge Expression)

Consider the following Hygge expression:

𝑥 + 𝑦

The captured variables in the expression above are:

cv(𝑥 + 𝑦) = cv(𝑥) ∪ cv(𝑦) = ∅ ∪ ∅ = ∅

208 Module 9: Closures



02247 Compiler Construction, Spring 2023

Now consider the expression:

fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑦 + 𝑧

The captured variables in the expression above are:

cv(fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑦 + 𝑧) = fv(fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑦 + 𝑧)
= fv(𝑥 + 𝑦 + 𝑧) \ {𝑥, 𝑦}
= (fv(𝑥) ∪ fv(𝑦) ∪ fv(𝑧)) \ {𝑥, 𝑦}
= {𝑥, 𝑦, 𝑧} \ {𝑥, 𝑦}
= {𝑧}

Exercise 35 (Computing the Captured Variables of a Hygge Expression)

Compute the captured variables of the following expressions, according to Definition 35:

• let x ∶ int = 3; 𝑥 + 4
• fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑦
• fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑧
• let f ∶ 𝑡 = fun (𝑥 ∶ int, 𝑦 ∶ int) → 𝑥 + 𝑧; 𝑓 (2, 𝑤)

Exercise 36 (Defining the Captured Variables of Hygge Expressions)

Definition 35 is incomplete. Provide a definition of the missing cases: you should define
one new case for each form of expression 𝑒 that is omitted in Definition 34, such as <,
=, if … then … else …, print(…). Write some examples showing how the updated
definition of captured variables works.

9.3 Closures that Capture Immutable Variables

This section addresses the situation illustrated in Example 47 above: we have a lambda
term 𝑣 = fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 that captures an immutable variable 𝑥 which is
defined in a surrounding “let…” binder (by Definition 36). Observe that:

• the captured variable 𝑥 may not be in the scope of the lambda term 𝑣 when 𝑣 is
executed. Indeed, in Example 47 , the lambda term that captures x is executed out-
side the scope of the function makeAdder which defines x as one of its arguments.
Moreover,

• the closure 𝑣 may be instantiated multiple times, and the captured variable 𝑥 may
have a different value in each instance. Indeed, in Example 47 , the lambda term
that captures x is instantiated with x = 1 in add1, and x = 2 in add2.

The two points above suggest that:

9.3. Closures that Capture Immutable Variables 209



02247 Compiler Construction, Spring 2023

1. we need to store the value of x in a dedicated location that is never used for other
purposes. Clearly, such a dedicated location cannot be a register; and

2. wemay need to allocate and keep availablemultiple values of x, depending on how
many times makeAdder is invoked and x is closed over. Therefore, the allocation
of x must be performed dynamically, as needed, when the program runs.

To achieve all of this we apply a code transformation called closure conversion, ex-
plained below.

9.3.1 Closure Conversion of a Lambda Term

Intuitively, when generating code for a lambda term 𝑣, we perform its closure conversion
s as follows.

1. We save all variables captured by 𝑣 in a structure representing the closure envi-
ronment, which we will often call env below. Just like all Hygge structures, env is
dynamically allocated on the memory heap.

2. We rewrite the lambda term 𝑣 into a lambda term 𝑣′ that, when applied, performs
the same computations of 𝑣 — except that:

• 𝑣′ is a “plain” function that does not capture any variable. Instead,

• 𝑣′ takes the closure environment structure env as an additional argument,
and uses env’s fields instead of the variables captured by 𝑣.

3. We keep the rewritten 𝑣′ and its closure environment env “together” and make
sure that, whenever the program being compiled tries to apply the original lambda
term 𝑣, the generated code applies the plain function 𝑣′ instead, passing the closure
environment env as an additional argument.

This intuition is illustrated in Example 51 below; then, we explore closure conversion in
full detail.

Example 51 (Closure Conversion: an Intuition)

Consider again the following Hygge program, taken from Example 47 :

1 // Take x, return a function that adds x to its argument
2 fun makeAdder(x: int): (int) -> int =
3 fun (y: int) ->
4 x + y; // x is captured from the surrounding scope
5

6 let add1: (int) -> int = makeAdder(1);
7 let add2: (int) -> int = makeAdder(2);
8

9 // These assertions succeed in the interpreter, but fail in code generation!
10 assert(add1(40) = 41);
11 assert(add2(40) = 42)

210 Module 9: Closures



02247 Compiler Construction, Spring 2023

Our goal is to closure-convert the lambda term defined on lines 3 and 4, which captures
the variable x from the surrounding scope. The converted code looks as follows: (Note:
this is just pseudo-code)

1 // Take x, return a function that adds x to its argument
2 fun makeAdder(x: int): (int) -> int = {
3 // Capture environment, with a field for each captured variable
4 let env: struct {x: int} = struct {x = x};
5 // Rewritten lambda term, taking 'env' as an additional argument
6 let v' = fun (env: struct {x: int}, y: int) ->
7 env.x + y; // The captured x is replaced by env.x
8 // We return a pointer to a closure structure containing v' and env
9 struct {f = v'; env = env}

10 }
11

12 let add1: (int) -> int = makeAdder(1); // Points to a struct with f and env
13 let add2: (int) -> int = makeAdder(2); // Points to a struct with f and env
14

15 // The application 'add1(40)' is compiled as: (add1.f)(add1.env, 40)
16 assert(add1(40) = 41);
17 // The application 'add2(40)' is compiled as: (add2.f)(add2.env, 40)
18 assert(add2(40) = 42)

We now explore in more detail how closure conversion works. Suppose that we are
generating code for the following lambda term 𝑣, having type 𝑇𝑣:

𝑣 = fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒
𝑇𝑣 = (𝑇1, … , 𝑇𝑛) → 𝑇

To closure-convert 𝑣 above, we proceed as follows.

Important: Recall that, when we generate code for a lambda term 𝑣, we produce the
memory address where the lambda term’s code is stored (in the Text segment of the gen-
erated assembly program).

1. We compute the set 𝐶 containing the variables captured by 𝑣, i.e. 𝐶 = cv(𝑣).

Note: This description of closure conversion also works if 𝐶 is empty, i.e. the
lambda term 𝑣 does not capture any variable. In this case, in the next steps we
will create an empty env structure that will be unused.

2. Suppose that the set of captured variables is 𝐶 = {𝑦1, … , 𝑦𝑚}, and that their types
are respectively 𝑇 ′

1, … , 𝑇 ′
𝑚. We perform the closure conversion of 𝑣, as follows.

• We define the closure environment structure instance env, having the struc-
ture type 𝑇env:

env = struct {y1 = 𝑦1; … ; ym = 𝑦𝑚}
𝑇env = struct {y1 ∶ 𝑇 ′

1; … ; ym ∶ 𝑇 ′
𝑚}

9.3. Closures that Capture Immutable Variables 211



02247 Compiler Construction, Spring 2023

In other words, env is a structure where each field has the same name of a
captured variable 𝑦𝑖; moreover, each field env.yi is initialised with the value
of the corresponding variable 𝑦𝑖.

• We rewrite the lambda term 𝑣 as 𝑣′ below, with type 𝑇𝑣′ :

𝑣′ = fun (env ∶ 𝑡env, 𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 [𝑦1 ↦ env.y1] ⋯ [𝑦𝑚 ↦ env.ym]
𝑇𝑣′ = (𝑇env, 𝑇1, … , 𝑇𝑛) → 𝑇

(Above, 𝑡env is a pretype corresponding to type 𝑇env.) In other words:

– we add an argument called env to the rewritten lambda term 𝑣′, such
that env has type 𝑇env above (hence, env is a structure with one field for
each captured variable 𝑦𝑖, for 𝑖 ∈ 1..𝑚); and

– we rewrite the body 𝑒 of the lambda term 𝑣 such that, in the rewritten 𝑣′,
all references to any captured variable 𝑦𝑖 are replaced by a correspond-
ing structure field selection env.yi.

As a consequence, the rewritten 𝑣′ is similar to 𝑣, except that 𝑣′ is a “plain”
function that does not capture any variable; in fact, 𝑣′ only accesses its
arguments (including its additional argument env).

• We create the following structure instance clos, having type 𝑇clos:

clos = struct {𝑓 = 𝑣′; env = env}
𝑇clos = struct {𝑓 ∶ 𝑇𝑣′; env ∶ 𝑇env}

The structure clos is the actual representation of an instance of the lambda
term 𝑣: in fact, clos “keeps together” a pointer to the “plain” function 𝑣′, and
the closure environment env created when 𝑣 is instantiated.

3. We complete the compilation of the lambda term 𝑣 by producing the memory
address of the structure clos (instead of the memory address of the original 𝑣).

9.3.2 Applying a Closure-Converted Lambda Term

When we closure-convert each lambda term 𝑣 in a Hygge program (as described above),
we also need to revise the code generation for application expressionss. This is be-
cause:

• before introducing closure conversion, the code generation for a lambda term
yielded the memory address of the lambda term code. Therefore, to “call” a function
we just needed to jump to that memory address;

• however, after introducing closure conversion, the code generation for a lambda
term 𝑣 yields the memory address of a closure structure clos having the two fields
clos.f and clos.env, where:

– the first field clos.f is the memory address of the “plain” function 𝑣′ that
implements 𝑣. When called, clos.f expects to receive the structure clos.env
as first argument, followed by any other argument expected by 𝑣;

212 Module 9: Closures



02247 Compiler Construction, Spring 2023

– the second field clos.env is the memory address of a structure containing the
closure environment, i.e. a copy of all variables captured by 𝑣, as they were
when 𝑣 was instantiated.

Consequently, suppose that we want to apply a lambda term 𝑣 to some arguments
𝑒1, … , 𝑒𝑛, i.e.:

𝑣 (𝑒1, … , 𝑒𝑛)

To perform this application, we now need to “apply” the closure structure clos (corre-
sponding to 𝑣) to the arguments 𝑒1, … , 𝑒𝑛. Hence, the code generation for application
expressions must be revised to perform the following application:

clos.f (clos.env, 𝑒1, … , 𝑒𝑛)

i.e. we need to apply the “plain” function clos.f to the closure environment clos.env
followed by the arguments 𝑒1, … , 𝑒𝑛.

9.4 Closures that Capture Mutable Variables

This section addresses the situation illustrated in Example 47 : we have a lambda term
𝑣 = fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 that captures a mutable variable 𝑥 which is defined
by a surrounding “let mutable…” binder. This situation is, to some extent, similar to
Closures that Capture Immutable Variables: indeed, the same closure conversion solution
can address the simple case shown in Example 47 . Unfortunately, this approach does not
work correctly in more complex cases, like Example 52 below.

Example 52 (Two Functions that Capture a Mutable Variable)

Consider the following program:

1 type Counters = struct {f1: () -> int; f2: () -> int};
2

3 // Return a structure with two functions that share a counter, counting how
4 // many times they have been called.
5 fun makeCounters(): Counters = {
6 let mutable i: int = 0;
7 // The lambda terms below capture i twice
8 struct { f1 = fun () -> i <- i + 1;
9 f2 = fun () -> i <- i + 1 } : Counters

10 };
11

12 let c1: Counters = makeCounters();
13 assert(c1.f1() = 1); // c1.f1 and c2.f2 should share the same counter
14 assert(c1.f2() = 2);
15

16 let c2: Counters = makeCounters();
17 assert(c2.f2() = 1); // c2.f1 and c2.f2 should share another counter
18 assert(c2.f1() = 2)

9.4. Closures that Capture Mutable Variables 213



02247 Compiler Construction, Spring 2023

Note: The type ascription “... : Counters” on line 9 can be omitted if hyggec is ex-
tended with function subtyping.

If we simply apply a closure conversion to the example above, then the assertions on lines
14 and 18 fail. The reason is that a simple closure conversion would rewrite the lambda
terms assigned to the structure fields f1 and f2 as follows:

// ...
fun makeCounters(): Counters = {

let mutable i: int = 0;

// The lambda terms below do not capture any variable
struct { f1 = struct { f = fun (env: ...) -> env.i <- env.i + 1;

env = struct { i = i } }

f2 = struct { f = fun (env: ...) -> env.i <- env.i + 1;
env = struct { i = i } } } : Counters

};
// ...

Therefore, each lambda term assigned to the structure fields f1 and f2 would be trans-
formed into a closure structure with its own environment, containing its own copy of
the captured variable i. As a consequence, the function application on lines 14 and 18
will return 1, because calling c1.f1 would not change the counter used by c1.f2 — and
similarly, calling c2.f2 would not change the counter used by c2.f1.

To correctly support Example 52, we need to add another transformation step: we
rewrite captured mutable variables by moving them into the memory heap. This tech-
nique is also adopted by F#36. More in detail, we follow these steps.

1. Whenever we encounter a binder “let mutable 𝑥 ∶ 𝑡 = 𝑒; 𝑒′”, we check whether
the variable 𝑥 is captured somewhere in the scope 𝑒′ — i.e. we check whether
𝑥 ∈ cv(𝑒′) (according to Definition 35).

2. If 𝑥 is captured in 𝑒′, then we replace the “let mutable x…” binder with the follow-
ing immutable binder:

let x ∶ struct {value ∶ 𝑡} = struct {value = 𝑒}; (𝑒′ [𝑥 ↦ 𝑥.value])

In other words:

• we define 𝑥 as a (heap-allocated) structure with a unique field called value,
and

• we rewrite the scope of 𝑒′ by replacing each occurrence of 𝑥 with the struc-
ture field selection 𝑥.value.

36 https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/values/#mutable-variables

214 Module 9: Closures

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/values/#mutable-variables


02247 Compiler Construction, Spring 2023

3. After this rewriting, the updated scope of the “let x…” binder (i.e. the expression
𝑒′ [𝑥 ↦ 𝑥.value]) is still capturing 𝑥 — but now, 𝑥 is an immutable variable (point-
ing to a mutable structure on the heap).

4. We recursively repeat the above rewriting on awhole Hygge program, turning any
capturedmutable variable into an immutable variable pointing to a heap structure.

5. As a consequence, all lambda terms are rewritten to only capture immutable vari-
ables: hence, we can compile them by applying a normal closure conversion.

Example 53 (Rewriting Captured Mutable Variables)

Consider again the program in Example 52. The function makeCounter can be rewritten
as follows, to move its captured mutable variable i into the heap:

// ...
fun makeCounters(): Counters = {

let i: struct {value: int} = struct {value = 0};
// The lambda terms below capture i twice
struct { f1 = fun () -> i.value <- i.value + 1;

f2 = fun () -> i.value <- i.value + 1 } : Counters
};
// ...

After this rewriting, the closure conversion discussed in Closures that Capture Immutable
Variables will assign to f1 and f2 their own capture environments, each one with its own
copy of i — with the following resulting code:

// ...
fun makeCounters(): Counters = {

let i: struct {value: int} = struct {value = 0};

// The lambda terms below do not capture any variable
struct { f1 = struct { f = fun (env: ...) ->

env.i.value <- env.i.value + 1;
env = struct { i = i } }

f2 = struct { f = fun (env: ...) ->
env.i.value <- env.i.value + 1;

env = struct { i = i } } } : Counters
};
// ...

Since i is now a pointer to a structure on the heap, the fields env.i in the two closure
environments point to the same structure on the heap; therefore, the updates to i.value
will be applied to the same memory location, and will be visible across the two closures.

Note: This rewriting strategy turns a captured mutable variable into a reference cell.

9.4. Closures that Capture Mutable Variables 215



02247 Compiler Construction, Spring 2023

9.5 Closures that Capture Top-Level Variables

This section addresses the special case of variable capture illustrated in Example 54 be-
low: we have a lambda term 𝑣 = fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒′ that captures a (mutable
or immutable) variable 𝑥 which is defined by a top-level “let” binder.

Example 54 (A Function that Captures a Top-Level Variable)

Consider the following program, which captures a (mutable or immutable) variable x:

let x: int = 1; // This example can be adapted with x mutable

// Take an argument y, return x + y + 1 (using x above)
fun addXPlusOne(y: int): int = {

let y1: int = y + 1;
x + y1 // x is captured from the surrounding scope

};

// This is compiled incorrectly!
assert(addXPlusOne(40) = 42)

This program is not compiled correctly: when the generated assembly code runs, the
assertion fails. The reason is that the variable x is assigned to register t0 — but when
the function addXPlusOne is called, then t0 is overwritten by the content of variable y1.
Therefore, the compiled lambda term returned by addXPlusOne ends up computing y1 +
y1 (which is incorrect).

We can fix the issue outlined in Example 54 by applying the code transformations for im-
mutable andmutable variables discussed in the previous sections (depending onwhether
the captured variable x is mutable or immutable).

However, Example 54 also allows for an optimisation, based on the fact that the lambda
term that captures x never exits the scope of x; this happens because x is a “top-level”
binder in Hygge, i.e. it is akin to a global variable in C. The idea of “top-level” binder
is made precise in Definition 36 below.

Definition 36 (Top-Level and Local “let…” Binders and Variables)

Consider an Hygge program 𝑒. Take any binder 𝑒′ that occurs as a subterm of the pro-
gram 𝑒, and such that:

• 𝑒′ = let x ∶ 𝑡 = …, or

• 𝑒′ = let mutable 𝑥 ∶ 𝑡 = ….

We say that the binder 𝑒′ and its variable 𝑥 are top-level in the program 𝑒 when:

• 𝑒′ is not inside the initialisation expression of another “let” binder, and

• 𝑒′ is not inside the body of a function.

216 Module 9: Closures



02247 Compiler Construction, Spring 2023

We say that the binder 𝑒′ and its variable 𝑥 are local when they are not top-level in the
program 𝑒.

Note: When a variable 𝑥 is “top-level” according to Definition 36, it is intuitively similar
to a “global” variable in programming languages like C; however, a top-level variable is
not necessarily visible in a whole Hygge program, because its scope may be limited. For
instance, consider:

{
let x: int = 40;
let f: () -> int = fun() -> 2 + x;
assert(f() = 42)

}
println("Hello")

In the program above, the variable x is “top-level” according to Definition 36 (and is also
captured by the lambda term f); however, the scope of x is limited by the curly brackets,
hence x is not visible in the last line of the program.

Now, let us consider again Example 54 and the lambda term 𝑣 =
fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 that captures a top-level variable 𝑥: the key obser-
vation is that, since 𝑥 is top-level, the scope of 𝑥 always “surrounds” the lambda term
𝑣, whenever 𝑣 is called (i.e. applied to some values); moreover, x is not dynamically
instantiated: unlike the previous examples, we know at compile time that at most
one instance of the top-level variable x may exist.

Therefore, we can avoid the issues described in Example 54 without resorting to a full-
fledged closure conversion of x, and without using the heap for storing x:

1. we can allocate the memory address for x statically during code generation, in
the Data segment of the generated assembly program; and

2. during code generation for closures that capture immutable or mutable variables
(as described in the previous sections), we can simply disregard any top-level vari-
able x, and focus on local variables only.

Remark 2

The approach of storing a variables in a Data segment memory location is already
adopted in the Code Generation for Named Functions. Besides using less registers, this
code generation strategy allows a function to call another function defined in its sur-
rounding scope, without running into the capturing issues highlighted in Example 54.

9.5. Closures that Capture Top-Level Variables 217



02247 Compiler Construction, Spring 2023

9.6 Implementation

This section discusses a hyggec extension that introduces new functions to compute the
free and captured variables of anAST node. These functions are a stepping stone towards
implement closures — but to see what else is required, please see the Project Ideas.

Tip: To see a summary of the changes described below, you can inspect the differences
in the hyggec Git repository between the tags structures and free-captured-vars.

9.6.1 Free Variables of an AST Node

The function freeVars in the file ASTUtil.fs is an implementation of Definition 34. As
usual, it is a pattern matching over all possible Hygge expressions, and its code looks as
follows.

/// Compute the set of free variables in the given AST node.
let rec freeVars (node: Node<'E,'T>): Set<string> =

match node.Expr with
| UnitVal
| IntVal(_)
| BoolVal(_)
| FloatVal(_)
| StringVal(_)
| Pointer(_) -> Set[]
| Var(name) -> Set[name]
| Add(lhs, rhs)
| Mult(lhs, rhs) ->

Set.union (freeVars lhs) (freeVars rhs)
// ...
| Let(name, _, init, scope)
| LetMut(name, _, init, scope) ->

// All the free variables in the 'let' initialisation, together with all
// free variables in the scope --- minus the newly-bound variable
Set.union (freeVars init) (Set.remove name (freeVars scope))

// ...

9.6.2 Captured Variables of an AST Node

The function capturedVars in the file ASTUtil.fs is an implementation of Definition 35.
As usual, it is a pattern matching over all possible Hygge expressions, and its code looks
as follows.

/// Compute the set of captured variables in the given AST node.
let rec capturedVars (node: Node<'E,'T>): Set<string> =

match node.Expr with
(continues on next page)

218 Module 9: Closures



02247 Compiler Construction, Spring 2023

(continued from previous page)
| UnitVal
| IntVal(_)
| BoolVal(_)
| FloatVal(_)
| StringVal(_)
| Pointer(_)
| Lambda(_, _) ->

// All free variables of a value are considered as captured
freeVars node

| Var(_) -> Set[]
| Add(lhs, rhs)
| Mult(lhs, rhs) ->

Set.union (capturedVars lhs) (capturedVars rhs)
//...
| Let(name, _, init, scope)
| LetMut(name, _, init, scope) ->

// All the captured variables in the 'let' initialisation, together with
// all captured variables in the scope --- minus the newly-bound var
Set.union (capturedVars init) (Set.remove name (capturedVars scope))

// ...

9.7 References and Further Readings

This is the seminal paper that introduces the notion of closure, and a transformation that
is very similar to the closure conversion illustrated in this module:

• Peter Landin. The Mechanical Evaluation of Expressions. The Computer Journal,
Volume 6, Issue 4, January 1964. Available on DTU Findit37.

50 years later, Java 8 introduced lambda expressions, which are essentially syntactic
sugar for anonymous classes that can capture local variables. Notably, lambda expres-
sions in Java can only capture local immutable variables (which are called “effectively
final” in the Java documentation); capturing mutable variables causes a compilation er-
ror. For more details:

• https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
37 https://findit.dtu.dk/en/catalog/5cb987c5d9001d01a410601f

9.7. References and Further Readings 219

https://findit.dtu.dk/en/catalog/5cb987c5d9001d01a410601f
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html


02247 Compiler Construction, Spring 2023

9.8 Project Ideas

These project ideas extend Hygge and hyggec with consistent support for closures. The
meaning of “consistent” is: if a form of closure is not correctly supported, then it is
rejected by the type checker.

Therefore, you can choose one among the following 3 combinations of Project Ideas
(which are presented in order of increasing difficulty).

1. C-style closures (i.e. almost no closures). This combination of Project Ideas is
the most restrictive: it only supports the simplest form of closure (similar to using
“global variables” in C), and rejects any form of local variable closure by issuing
type checking errors.

• Project Idea: Code Generation for Top-Level Closures

• Project Idea: Forbid Closures of Local Variables

2. Java-style closures (i.e. only immutable closures). This combination of Project
Ideas is similar to Java, where lambda expressions can only capture immutable
variables (as discussed in the References and Further Readings) and capturing mu-
table variables causes a type checking error.

• Project Idea: Code Generation for Closures of Immutable Variables

• Project Idea: Forbid Closures of Mutable Variables

• Optional challenge: when a lambda term captures a top-level immutable
variable x, avoid copying x onto the heap during code generation, by adapt-
ing and integrating Project Idea: Code Generation for Top-Level Closures

3. F#-style closures. This combination of Project Ideas is the most advanced, and
similar to the features of most functional programming languages (including F#):
type checking is unchanged, but the interpreter and code generation are improved
to deliver full support for closures.

• Project Idea: Code Generation for Closures of Immutable Variables

• Project Idea: Support Closures of Mutable Variables

• Optional challenge: when a lambda term captures a top-level variable x,
avoid moving x onto the heap during code generation, by adapting and inte-
grating Project Idea: Code Generation for Top-Level Closures

Note: To implement the Project Ideas above, you should not change the syntax of Hygge
nor the lexer/parser of hyggec.

Important: To implement the Project Ideas above, you will also need to extend the def-
initions of freeVars and capturedVars in ASTUtil.fs (discussed in the Implementation
section above): you will need to add new cases to cover any expression that you added

220 Module 9: Closures



02247 Compiler Construction, Spring 2023

to hyggec in one of the previous Project Ideas. This corresponds to extending Definition
34 (free variables) and Definition 35 (captured variables).

All cases should be straightforward. If you have chosen the Project Idea on recursive
functions, then you will need to add the following case to Definition 34: (notice the slight
difference with respect to the existing case for “let x ∶ 𝑡 = …”)

fv(let rec 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2) = (fv(𝑒1) ∪ fv(𝑒2)) \ {𝑥}

9.8.1 Project Idea: Code Generation for Top-Level Closures

The goal of this Project Idea is to implement the limited form of closure described in
Closures that Capture Top-Level Variables, without supporting closures that capture local
variables.

You should extend the code generation environment CodegenEnv (in the file
RISCVCodegen.fs) with a new field that tracks whether code generation is taking place
in a “top-level” part of the input program. This new field could be called e.g. env.
AtTopLevel and have type boolean, and it should be updated during code generation:

• it should be set to true at the beginning of the code generation, and

• it should be turned to false when entering the initialisation expression of a let
binder, or the body of a lambda term, according to Definition 36.

When env.AtTopLevel is true, and you are generating code for a “let x…” or “let mutable
x…” binder, you can:

• assign to the variable x a Data segment memory location marked by a unique
assembly label called e.g. label_var_x; and

• in the code generation environment env, let env.VarStoragemap the variable x to
Storage.Label("label_var_x"). This way, any attempt to access x will look into
the corresponding memory address marked by the label.

You will also need to update doCodegen in RISCVCodegen.fs, as follows:

• you will need to extend the code generation case for Var(name), since it assumes
that, if a variable is stored in a data segment label, then it represents the address
of a function. To support other types of values, you will need to add a new case
similar to the following:

let rec internal doCodegen (env: CodegenEnv) (node: TypedAST): Asm =
match node.Expr with
// ...
| Var(name) ->

// To compile a variable, we inspect its type and where it is stored
match node.Type with
// ...
| _ -> // Default case for variables holding integer-like values

(continues on next page)

9.8. Project Ideas 221



02247 Compiler Construction, Spring 2023

(continued from previous page)
match (env.VarStorage.TryFind name) with
// ...
| Some(Storage.Label(lab)) ->

match (expandType node.Env node.Type) with // <-- New␣
↪from here

| TFun(_,_) ->
Asm(RV.LA(Reg.r(env.Target), lab), $"Load variable '%s

↪{name}'")
| _ ->

Asm([(RV.LA(Reg.r(env.Target), lab),
$"Load address of variable '%s{name}'")
(RV.LW(Reg.r(env.Target), Imm12(0), Reg.r(env.

↪Target)),
$"Load value of variable '%s{name}'")])

• you will also need to extend the code generation case for Assign(lhs, rhs), since
it does not currently support target variables that are stored in a memory address.

You should describe how you modify the hyggec compiler to achieve this extension. As
usual, you should also provide tests that leverage this extension: you can use Example
54 as a starting point.

9.8.2 Project Idea: Forbid Closures of Local Variables

Thegoal of this project idea is to reject anyHygge program that cannot be correctly com-
piled after implementing Project Idea: Code Generation for Top-Level Closures. Therefore,
the goal is to detect captured local variables at compile-time. More specifically, the goal
is to make the Hygge typing system and the hyggec type checking more strict, by reject-
ing closures of (mutable or immutable) local variables, according to Definition 36.

To this end, you should extend the typing environment Γ with a new field, called
Γ.AtTopLevel, which is a boolean that:

• is true when a type checking starts, and typing rules are applied in the top-level
part of a program, and

• becomes false when entering the initialisation expression of a “let x ∶ 𝑡 = …”
or “let mutable 𝑥 ∶ 𝑡 = …” binder, or the body of a lambda term, according to
Definition 36.

Then, you should implement the typing rules presented in Definition 37 below.

Definition 37 (Typing Rules for Rejecting Closures of Local Variables)

We define the following typing rules, that replace rules [T-MLet] and [T-Let2] in Defi-
nition 16, and rule [T-Fun] in Definition 26.

222 Module 9: Closures



02247 Compiler Construction, Spring 2023

Γ ⊢ 𝑡 ▷ 𝑇 {Γ with AtTopLevel=false} ⊢ 𝑒1 ∶ 𝑇 {Γ with Vars + (𝑥 ↦ 𝑇 )
Mutables ∪ {𝑥} } ⊢ 𝑒2 ∶ 𝑇 ′ Γ.AtTopLevel

or 𝑥 ∉ cv(𝑒2)
[T-MLet2]

Γ ⊢ let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2 ∶ 𝑇 ′

Γ ⊢ 𝑡 ▷ 𝑇 {Γ with AtTopLevel=false} ⊢ 𝑒1 ∶ 𝑇 {Γ with Vars + (𝑥 ↦ 𝑇 )
Mutables \ {𝑥} } ⊢ 𝑒2 ∶ 𝑇 ′ Γ.AtTopLevel

or 𝑥 ∉ cv(𝑒2)
[T-Let3]

Γ ⊢ let x ∶ 𝑡 = 𝑒1; 𝑒2 ∶ 𝑇 ′

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ fun (𝑥1 ∶ 𝑡1, ..., 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 ∶ 𝑇 {Γ with Vars + (𝑥 ↦ 𝑇 )
Mutables \ {𝑥} } ⊢ 𝑒2 ∶ 𝑇 ′

[T-LetFun]
Γ ⊢ let x ∶ 𝑡 = fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒; 𝑒2 ∶ 𝑇 ′

𝑥1, … , 𝑥𝑛 pairwise distinct ∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑡𝑖 ▷ 𝑇𝑖 {Γ with Vars + {𝑥𝑖 ↦ 𝑇𝑖}𝑖∈1..𝑛
AtTopLevel = false } ⊢ 𝑒 ∶ 𝑇

[T-Fun2]
Γ ⊢ fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒 ∶ (𝑇1, … , 𝑇𝑛) → 𝑇

The only differences between the rules in Definition 37 and their original versions are:

• the new rules [T-MLet2], [T-Let3] and [T-Fun2] set Γ.AtTopLevel to false when
entering the initialisation expression of a “let x ∶ 𝑡 = …” or “let mutable 𝑥 ∶ 𝑡 =
…” binder, or the body of a lambda term, according to Definition 36;

• rules rules [T-MLet2] and [T-Let3] do not allow capturing a local variable;

• the rule [T-LetFun] introduces a useful special case: if a “let” binder introduces
a variable as a “named function” (i.e. a variable that is initialised with a lambda
term) then that variable can be captured in the body of the “let…”, even when the
variable is local. With this rule we can type-check named functions, according
to Remark 2 above. (Also notice that rule [T-LetFun] corresponds to [T-Let2] in
Definition 16, except that [T-LetFun] is restricted to lambda terms).

You should describe how you modify the hyggec compiler to achieve this extension. As
usual, you should also provide tests that leverage this extension: you can use Example
54 as a starting point.

9.8.3 Project Idea: Code Generation for Closures of Immutable
Variables

The goal of this Project Idea is to support Closures that Capture Immutable Variables.
To this end, you should modify hyggec to implement closure conversion. This can be
addressed in various ways; the most immediate solution is to change RISCVCodegen.fs
as follows:

• when generating assembly code for a lambda term 𝑣, you should first rewrite the
lambda term to obtain its closure conversion, ensuring that the resulting code pro-
duces a pointer to the closure structure for 𝑣;

• when generating assembly code for Application(expr, args), you should con-

9.8. Project Ideas 223



02247 Compiler Construction, Spring 2023

sider that the memory address produced by expr is now the address of a closure
structure, as discussed in Applying a Closure-Converted Lambda Term.

You should describe how you modify the hyggec compiler to achieve this extension. As
usual, you should also provide tests that leverage this extension: you can use Example
47 as a reference.

9.8.4 Project Idea: Forbid Closures of Mutable Variables

The goal of this project idea is to reject any Hygge program that cannot be correctly
compiled after implementing Project Idea: Code Generation for Closures of Immutable
Variables. More specifically, the goal is to make the Hygge typing system and the hyggec
type checking more strict, by rejecting closures of mutable variables.

You should implement the typing rules presented in Definition 38 below.

Definition 38 (Typing Rules for Rejecting Closures of Mutable Variables)

We define the following typing rule, that replaces rule [T-MLet] in Definition 16.

Γ ⊢ 𝑡 ▷ 𝑇 Γ ⊢ 𝑒1 ∶ 𝑇 {Γ with Vars + (𝑥 ↦ 𝑇 )
Mutables ∪ {𝑥} } ⊢ 𝑒2 ∶ 𝑇 ′ 𝑥 ∉ cv(𝑒2)

[T-MLet2]
Γ ⊢ let mutable 𝑥 ∶ 𝑡 = 𝑒1; 𝑒2 ∶ 𝑇 ′

The only difference between the new rule [T-MLet2] and the original rule [T-MLet] in
Definition 16 is that [T-MLet2] does not allow capturing the mutable variable being de-
fined.

You should describe how you modify the hyggec compiler to achieve this extension. As
usual, you should also provide tests that leverage this extension.

9.8.5 Project Idea: Support Closures of Mutable Variables

The goal of this project idea is to extend Hygge and hyggec to support Closures that
Capture Mutable Variables. This involves two steps:

• Step 1: Updating the Hygge Semantics and the hyggec Interpreter , and

• Step 2: Updating the hyggec Code Generation.

For both steps, you should describe how you modify the hyggec compiler to achieve this
extension. As usual, you should also provide tests that leverage this extension, using
Example 48 and Example 52 as a reference.

224 Module 9: Closures



02247 Compiler Construction, Spring 2023

Step 1: Updating the Hygge Semantics and the hyggec Interpreter

You need to revise the semantics of Hygge, as illustrated in Definition 39 below.

Definition 39 (Semantics with Heap Promotion of Captured Mutable Variables)

We define the following semantic rules for Hygge expressions, that replace rules
[R-LetM-Eval-Init] and [R-LetM-Eval-Scope] in Definition 15:

𝑥 ∉ cv(𝑒2) ⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-LetM-Eval-Init2]

⟨𝑅 • let mutable 𝑥 ∶ 𝑡 = 𝑒; 𝑒2⟩ → ⟨𝑅′ • let mutable 𝑥 ∶ 𝑡 = 𝑒′; 𝑒2⟩

𝑥 ∉ cv(𝑒)
𝑅′ = {𝑅 with Mutables + (𝑥 ↦ 𝑣)} ⟨𝑅′ • 𝑒⟩ → ⟨𝑅″ • 𝑒′⟩

𝑅″.Mutables(𝑥) = 𝑣′

𝑅.Mutables(𝑥) = 𝑣?
𝑅‴ = {𝑅″ with Mutables(𝑥) = 𝑣?}

[R-LetM-Eval-Scope2]
⟨𝑅 • let mutable 𝑥 ∶ 𝑡 = 𝑣; 𝑒⟩ → ⟨𝑅‴ • let mutable 𝑥 ∶ 𝑡 = 𝑣′; 𝑒′⟩

𝑥 ∈ cv(𝑒2)
[R-LetM-ToStruct]

⟨𝑅 • let mutable 𝑥 ∶ 𝑡 = 𝑒; 𝑒2⟩ → ⟨𝑅 • let x ∶ struct {value ∶ 𝑡} = struct {value=𝑒}; 𝑒2 [𝑥 ↦ 𝑥.value]⟩

InDefinition 39 above, the rules [R-LetM-Eval-Init2] and [R-LetM-Eval-Scope2] are iden-
tical to the corresponding rules in Definition 15 — except that the new rules have an
additional premise (on the left) requiring that the declared mutable variable 𝑥 is not cap-
tured in the scope of the “let” binder. If that premise is false, then we can apply the new
rule [R-LetM-ToStruct], which rewrites the “let mutable…” binder into an immutable
“let” binder that initialises 𝑥 as a heap-allocated structure, as described in Closures that
Capture Mutable Variables.

Step 2: Updating the hyggec Code Generation

You should update the hyggec code generation to support the correct compilation of
Closures that Capture Mutable Variables. To achieve this, you should:

1. rewrite “let mutable…” binders of captured variables according to Definition 39
above, and then

2. further transform the resulting “let” binder by applying a closure conversion.

Hint: You can achieve the overall code transformation by combining the interpreter
code you wrote for Step 1: Updating the Hygge Semantics and the hyggec Interpreter with
your work on Project Idea: Code Generation for Closures of Immutable Variables…

9.8. Project Ideas 225



02247 Compiler Construction, Spring 2023

226 Module 9: Closures



10
Module 10: Discriminated Unions and Recursive

Types

In this module we study how to extend Hygge with discriminated union types (a.k.a.
sum types) and a pattern matching expression, with a design inspired by the corre-
sponding features of the F# programming language38. This allows Hygge programmers
to create values that can have one among different types, so they can write e.g. a func-
tion returning either an integer result, or an error string (which can be distinguished by
pattern matching).

We also discuss what is needed to extend Hygge with recursive types: we will see that
the combination of structures, discriminated unions, and recursive types enables the
definition and handling of complex data structures like lists or trees.

10.1 Discriminated Union Types and Pattern Matching

We now explore the Syntax, Operational Semantics, Typing Rules, and Implementation
of discriminated union types and pattern matching. But first, let us discuss the Overall
Objective.

10.1.1 Overall Objective

By extending Hygge and hyggecwith support for discriminated union types and pattern
matching, our goal is to interpret, compile and run Hygge programs like the one shown
in Example 55 below.

Example 55 (A Hygge Program with Union Types and Pattern Matching)

1 // An optional integer value.
2 type OptionalInt = union {

(continues on next page)

38 https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions

227

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions
https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/discriminated-unions


02247 Compiler Construction, Spring 2023

(continued from previous page)
3 Some: int;
4 None: unit
5 };
6

7 fun displayOption(o: OptionalInt): unit =
8 match o with {
9 Some{x} -> println(x);

10 None{_} -> println("None")
11 };
12

13 displayOption(Some{42});
14 displayOption(None{()});
15

16 // A shape type.
17 type Shape = union {
18 Circle: struct { radius: float };
19 Rectangle: struct { width: float; height: float };
20 Square: struct { side: float }
21 };
22

23 // Return the area of a shape.
24 fun area(s: Shape): float =
25 match s with {
26 Circle{c} -> c.radius * c.radius * 3.14f;
27 Rectangle{r} -> r.width * r.height;
28 Square{s} -> s.side * s.side
29 };
30

31 assert(area(Circle{struct {radius = 2.0f}}) = 12.56f);
32 assert(area(Rectangle{struct {width = 2.0f; height = 3.0f}}) = 6.0f);
33 assert(area(Square{struct {side = 5.0f}}) = 25.0f)

10.1.2 Syntax

We extend the Hygge syntax as specified in Definition 40 below.

Definition 40 (Syntax of Discriminated Unions)

We define the syntax of Hygge0 with discriminated unions by extending Definition 27
(syntax of Hygge with structures) as follows.

228 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

Expression 𝑒 ∶∶= …
∣ 𝑙 {𝑒} (Discriminated union constructor)
∣ match 𝑒 with {𝑙1{𝑥1} → 𝑒1; … ; 𝑙𝑛{𝑥𝑛} → 𝑒𝑛} (Pattern matching, with 𝑛 ≥ 1)

Pretype 𝑡 ∶∶= …
∣ union {𝑙1 ∶ 𝑡1; … ; 𝑙𝑛 ∶ 𝑡𝑛} (Discriminated union pretype, with 𝑛 ≥ 1)

Union label 𝑙 ∶∶= z ∣ foo ∣ a123 ∣ … (Any non-reserved identifier)

The intuition behindDefinition 40 above is that a discriminated union pretype 𝑡 describes
a value that can have one between several possible pretypes 𝑡1, … , 𝑡𝑛:

• each possible case of a union pretype 𝑡 consists of a label 𝑙𝑖 and a type 𝑡𝑖, for some
𝑖 ∈ 1..𝑛;

• to construct an instance of a discriminated union, a programmer specifies a label
𝑙 and an expression 𝑒 (between curly brackets);

• to use a discriminated union instance, a programmer needs to use pattern match-
ing to inspect 𝑣’s label and retrieve its corresponding value.

Note: In Definition 40 above we do not introduce the syntax of new values: this is
because a discriminated union constructor returns a pointer to a heap location, as we
will see later in the Operational Semantics.

This is the reason why Definition 40 above extends the syntax of Hygge structures (Def-
inition 27 ): our specification of discriminated unions requires the pointers introduced
there. Similarly, the Operational Semantics below will use the heap introduced with
Hygge structures.

10.1.3 Operational Semantics

Definition 41 formalises how substitution works for discriminated union constructors
and pattern matching expressions.

Definition 41 (Substitution for Discriminated Unions and Pattern Matching)

We extend Definition 28 (substitution for Hygge with structures) with the following new
cases:

10.1. Discriminated Union Types and Pattern Matching 229



02247 Compiler Construction, Spring 2023

(𝑙 {𝑒}) [𝑥 ↦ 𝑒′] = 𝑙 {𝑒 [𝑥 ↦ 𝑒′]}

⎛⎜⎜⎜⎜⎜⎜
⎝

match 𝑒 with {
𝑙1{𝑥1} → 𝑒1;
… ;
𝑙𝑛{𝑥𝑛} → 𝑒𝑛

}

⎞⎟⎟⎟⎟⎟⎟
⎠

[𝑥 ↦ 𝑒′] =

match 𝑒 [𝑥 ↦ 𝑒′] with {
𝑙1{𝑥1} → 𝑒′

1;
… ;
𝑙𝑛{𝑥𝑛} → 𝑒′

𝑛
}

where ∀𝑖 ∈ 1..𝑛 ∶ 𝑒′
𝑖 = {𝑒𝑖 [𝑥 ↦ 𝑒′] if 𝑥𝑖 ≠ 𝑥

𝑒𝑖 if 𝑥𝑖 = 𝑥

Notice that in Definition 41 above, a substitution of a variable 𝑥 is propagated through
a pattern matching case 𝑙{𝑥′} → 𝑒 only if the matching variable 𝑥′ is different from 𝑥.
This is because pattern matching acts as a binder for the matched variable 𝑥′, hence 𝑥′

is considered a newly-defined variable that must be treated as distinct from any other
occurrences of 𝑥′ in the surrounding scope. This corresponds to the treatment of Free
and Captured Variables of pattern matching expressions (presented later).

Definition 42 (Semantics of Discriminated Unions and Pattern Matching)

We define the semantics of Hygge discriminated unions and pattern matching by
adding the following rules to Definition 29 (semantics of Hygge with structures):

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-UnionCons-Eval]

⟨𝑅 • 𝑙 {𝑒}⟩ → ⟨𝑅′ • 𝑙 {𝑒′}⟩

ℎ = 𝑅.Heap
𝑝 = maxAddr(ℎ) + 1 ℎ′ = ℎ + {𝑝 ↦ ”l”

(𝑝 + 1) ↦ 𝑣} 𝑅′ = {𝑅 with Heap = ℎ′}
[R-UnionCons-Res]

⟨𝑅 • 𝑙 {𝑣}⟩ → ⟨𝑅′ • 𝑝⟩

⟨𝑅 • 𝑒⟩ → ⟨𝑅′ • 𝑒′⟩
[R-Match-Eval]

⟨𝑅 • match 𝑒 with {𝑙1{𝑥1} → 𝑒1; …}⟩ → ⟨𝑅′ • match 𝑒′ with {𝑙1{𝑥1} → 𝑒1; …}⟩

∃𝑘 ∈ 1..𝑛 𝑅.Heap(𝑝) = ”𝑙𝑘” 𝑅.Heap(𝑝 + 1) = 𝑣
[R-Match-Res]

⟨𝑅 • match 𝑝 with {𝑙1{𝑥1} → 𝑒1; … ; 𝑙𝑛{𝑥𝑛} → 𝑒𝑛}⟩ → ⟨𝑅 • 𝑒𝑘 [𝑥𝑘 ↦ 𝑣]⟩

The rules in Definition 42 above work as follows.

• By rule [R-UnionCons-Eval], we reduce a union construction expression “𝑙 {𝑒}”
by first reducing 𝑒, until it becomes a value.

• By rule [R-UnionCons-Res], a union constructor “𝑙 {𝑣}” (with a label followed by
a value) reduces by storing the label 𝑙 and value 𝑣 on the heap, and returning the
memory address where their data is located. (This is similar to rule [R-Struct-Res]
in Definition 29 .) More in detail, the premises of rule [R-UnionCons-Res] say that:

– ℎ is the current heap, taken from the runtime environment 𝑅 (i.e. 𝑅.Heap);

– 𝑝 is the memory address of the first location after the maximum address
currently used in ℎ; (e.g. if ℎ assigns values to addresses between 0x00000001
to 0x000000a8, then 𝑝 will be 0x000000a9)

230 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

– ℎ′ is an updated heap that is equal to ℎ, except that:
* the memory location 𝑝 contains the label 𝑙 (here represented as a string
”l”);

* the memory location 𝑝 + 1 contains the value 𝑣.
Notice that the memory addresses 𝑝 and 𝑝 + 1 were not used in the original
heap ℎ, but are now being used in ℎ′;

– 𝑅′ is an updated runtime environment that is equal to 𝑅, except that
𝑅′.Heap is ℎ′.

• By rule [R-Match-Eval], we reduce a pattern matching expression
“match 𝑒 with {…}” by first reducing 𝑒, until it becomes a value.

• By rule [R-Match-Res], we reduce a pattern matching expression
“match 𝑝 with {…}” (where 𝑝 is a memory pointer) as follows:

1. we check whether the heap location 𝑝 contains a label ”𝑙𝑘”, for some 𝑘 ∈ 𝑖..𝑛
(i.e. the label stored on the heap must be equal to one of those appearing in
the pattern matching cases);

2. if so, we take the value 𝑣 stored at the heap location 𝑝 + 1; and
3. we compute the patternmatching reduction by taking the thematch continu-

ation expression 𝑒𝑘 and substituting each occurrence of the matched variable
𝑥𝑘 with the value 𝑣.

Example 56 (Reductions of Structure Construction and Assignment)

Consider the following expression, which constructs a discriminated union instance and
updates one of its fields.

let x ∶ 𝑡 = Some {42};
match 𝑥 with {

None{𝑥} → ()
Some{𝑦} → println(𝑦)

}

In the first reduction below, the discriminated union constructor “Some {42}” reduces
by storing Some and 42 on consecutive heap addresses, and returning the base address
0x0001.

ℎ = 𝑅.Heap = ∅
maxAddr(ℎ) + 1 = 0x0001

ℎ′ = {0x0001 ↦ ”Some”
0x0002 ↦ 42 } 𝑅′ = {𝑅 with Heap = ℎ′}

[R-UnionCons-Res]
⟨𝑅 • Some {42}⟩ → ⟨𝑅′ • 0x0001⟩

[R-Let-Eval-Init]

⟨𝑅 •

let x ∶ 𝑡 = Some {42};
match 𝑥 with {

None{𝑥} → ()
Some{𝑦} → println(𝑦)

}

⟩ → ⟨𝑅′ •

let x ∶ 𝑡 = 0x0001;
match 𝑥 with {

None{𝑥} → ()
Some{𝑦} → println(𝑦)

}

⟩

10.1. Discriminated Union Types and Pattern Matching 231



02247 Compiler Construction, Spring 2023

In the second reduction below, we substitute each occurrence of 𝑥 with the value
(pointer) 0x0001.

[R-Let-Subst]

⟨𝑅′ •

let x ∶ 𝑡 = 0x0001;
match 𝑥 with {

None{𝑥} → ()
Some{𝑦} → println(𝑦)

}

⟩ → ⟨𝑅′ •
match 0x0001 with {

None{𝑥} → ()
Some{𝑦} → println(𝑦)

}
⟩

In the third reduction, rule [R-Match-Res] checks that the heap location 0x0001 con-
tains ”Some”, which corresponds to the second pattern matching case 𝑆𝑜𝑚𝑒{𝑦} → …;
therefore, the rule takes the corresponding continuation expression println(𝑦), and sub-
stitutes each occurrence of the matched variable 𝑦 with the value 42 (found on the heap
in the location that follows 0x0001).

𝑅′.Heap(0x0001) = ”Some” 𝑅′.Heap(0x0002) = 42
[R-Match-Res]

⟨𝑅′ •
match 0x0001 with {

None{𝑥} → ()
Some{𝑦} → println(𝑦)

}
⟩ → ⟨𝑅′ • println(42)⟩

Then, the expression println(42) continues reducing according to the usual semantics.

10.1.4 Free and Captured Variables

As mentioned when discussing variable substitution (Definition 41 above), the cases of
the pattern matching expression bind the matched variable. Correspondingly, the defi-
nition of free and captured variables (Definition 43 and Definition 44 below) exclude that
matched variable from their results.

Definition 43 (Free Variables of Union Constructors and Pattern Matching)

We extend Definition 34 (free variables) with the following new cases:

fv(𝑙 {𝑒}) = fv(𝑒)
fv(match 𝑒 with {𝑙1{𝑥1} → 𝑒1; … ; 𝑙𝑛{𝑥𝑛} → 𝑒𝑛}) = fv(𝑒) ∪ ⋃𝑖∈1..𝑛 (fv(𝑒𝑖) \ {𝑥𝑖})

Example 57

232 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

Consider the following Hygge expression:

let x ∶ 𝑡 = Some {42};
match 𝑥 with {

None{𝑦} → 𝑧 + 1
Some{𝑦} → println(𝑦)

}

By Definition 43, the free variables of this expression are:

fv
⎛⎜⎜⎜⎜⎜⎜
⎝

let x ∶ 𝑡 = Some {42};
match 𝑥 with {

None{𝑦} → 𝑧 + 1
Some{𝑦} → println(𝑦)

}

⎞⎟⎟⎟⎟⎟⎟
⎠

= fv(Some {42}) ∪
⎛⎜⎜⎜⎜
⎝

fv
⎛⎜⎜⎜⎜
⎝

match 𝑥 with {
None{𝑦} → 𝑧 + 1
Some{𝑦} → println(𝑦)

}

⎞⎟⎟⎟⎟
⎠

\ {𝑥}
⎞⎟⎟⎟⎟
⎠

= ∅ ∪ ((fv(𝑥) ∪ ((fv(𝑧 + 1) \ {𝑦}) ∪
(fv(println(𝑦)) \ {𝑦}))) \ {𝑥})

= (fv(𝑥) ∪ (({𝑧} \ {𝑦}) ∪
({𝑦} \ {𝑦}) )) \ {𝑥}

= ({𝑥} ∪ ({𝑧} ∪ ∅)) \ {𝑥}
= {𝑥, 𝑧} \ {𝑥}
= {𝑧}

Definition 44 (Captured Variables of Union Constructors and Pattern Matching)

We extend Definition 35 (captured variables) with the following new cases:

cv(𝑙 {𝑒}) = cv(𝑒)
cv(match 𝑒 with {𝑙1{𝑥1} → 𝑒1; … ; 𝑙𝑛{𝑥𝑛} → 𝑒𝑛}) = ⋃𝑖∈1..𝑛 (cv(𝑒𝑖) \ {𝑥𝑖})

10.1.5 Typing Rules

In order to type-check programs that use discriminated unions and patternmatching, we
need to introduce a new discriminated union type (Definition 45), a new rule for pretype
resolution (Definition 46), a new subtyping rule (Definition 47 ), and some new typing
rules (Definition 48).

Definition 45 (Discriminated Union Type)

We extend the Hygge typing system with a discriminated union type by adding the
following case to Definition 30:

Type 𝑇 ∶∶= …
∣ union {𝑙1 ∶ 𝑇1; … ; 𝑙𝑛 ∶ 𝑇𝑛} (Discriminated union type, with 𝑛 ≥ 1

and 𝑙1, … , 𝑙𝑛 pairwise distinct )

10.1. Discriminated Union Types and Pattern Matching 233



02247 Compiler Construction, Spring 2023

By Definition 45 above, a discriminated union type describes various cases where a label
𝑙𝑖 (for 𝑖 ∈ 𝑖..𝑛, with 𝑛 ≥ 1) tags a type 𝑇𝑖. Note that the labels names must be distinct
from each other.

Example 58 (Discriminated Union Types)

The following type describes a union type with two cases: 𝑎 with type int, and 𝑏 with
type bool.

struct {𝑎 ∶ int; 𝑏 ∶ bool}

The following type describes a union type with two cases: 𝑐 with type int, and 𝑑 with
structure type, which in turn has a field 𝑎 of type float and a field 𝑏 of type bool.

struct {𝑐 ∶ int; 𝑑 ∶ struct {𝑎 ∶ float; 𝑏 ∶ bool}}

We also need a way to resolve a syntactic union pretype (from Definition 40) into a valid
union type (from Definition 45): this is formalised in Definition 46 below.

Definition 46 (Resolution of Discriminated Union Types)

We extend Definition 31 (type resolution judgement) with this new rule:

𝑙1, … , 𝑙𝑛 pairwise distinct ∀𝑖 ∈ 1..𝑛 ∶ Γ ⊢ 𝑡𝑖 ▷ 𝑇𝑖 [TRes-Union]
Γ ⊢ union {𝑙1 ∶ 𝑡1, … 𝑙𝑛 ∶ 𝑡𝑛} ▷ union {𝑙1 ∶ 𝑇1, … , 𝑙𝑛 ∶ 𝑇𝑛}

According to rule [TRes-Union] in Definition 46 above, we resolve a discriminated union
pretype by ensuring that all labels 𝑙𝑖 are distinct from each other, and all types 𝑇𝑖 used
in the union can be resolved.

We also introduce a new subtyping rule for discriminated union types, according to
Definition 47 below. This extension adds flexibility to the typing system, and is also
necessary to type-check union constructors, as we will see later in Example 60. Notice
that, without Definition 47 , the subtyping for union types would only be allowed by rule
[TSub-Refl] inDefinition 10, which only relates types that are exactly equal to each other.

Definition 47 (Subtyping for Discriminated Union Types)

We define the subtyping of Hygge with discriminated union types by extending Defi-
nition 32 with the following new rule:

∀𝑖 ∈ 1..𝑚 ∶ ∃𝑗 ∈ 1..𝑛 ∶ 𝑙𝑖 = 𝑙′𝑗 and Γ ⊢ 𝑇𝑖 ⩽ 𝑇 ′
𝑗 [TSub-Union]

Γ ⊢ union {𝑙1 ∶ 𝑇1; … , 𝑙𝑚 ∶ 𝑇𝑚} ⩽ union {𝑙′1 ∶ 𝑇 ′
1; … , 𝑙′𝑛 ∶ 𝑇 ′

𝑛}

According to rule [TSub-Union] in Definition 47 above:

234 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

• for each label 𝑙𝑖 in the subtype, there must be an equal label 𝑙′𝑗 in the supertype
(but the supertype can have more labels that do not appear in the subtype); and

• when two labels 𝑙𝑖 and 𝑙′𝑗 are equal, then the type 𝑇𝑖 must be subtype of 𝑇 ′
𝑗 .

Important: According to Definition 47 , the order of the labels in the union subtype and
supertype is not important.

This is unlike subtyping for structures (Definition 32), where the order of the fields in
the subtype must match the order of fields in the supertype.

Example 59

Consider the following union type:

union {A ∶ int; B ∶ bool}

Consider any well-typed Hygge program that uses an instance of such a union type:
intuitively, that program can only access the content that instance via pattern matching,
obtaining either case A (with an integer) or case B (with a boolean).

Therefore, that Hygge program will also work correctly if it operates on an instance of
the following union type:

union {A ∶ int}

The reason is that the program will still support case A, while case B will not be used.
For this reason, Definition 47 considers the second union type as a subtype of the first.

Definition 48 (Typing Rules for Union Constructors and Pattern Matching)

We define the typing rules of Hygge with discriminated union constructors and pat-
tern matching by extending Definition 33 with the following rules (which use the union
type introduced in Definition 45 above):

Γ ⊢ 𝑒 ∶ 𝑇 [T-UnionCons]
Γ ⊢ 𝑙 {𝑒} ∶ union {𝑙 ∶ 𝑇 }

Γ ⊢ 𝑒 ∶ union {𝑙′1 ∶ 𝑇1; … ; 𝑙′𝑚 ∶ 𝑇𝑚} 𝑙1 … , 𝑙𝑛 pairwise distinct
∀𝑖 ∈ 1..𝑛 ∶ ∃𝑗 ∈ 1..𝑚 ∶ 𝑙𝑖 = 𝑙′𝑗 and {Γ with Env + (𝑥𝑖 ↦ 𝑇𝑗)} ⊢ 𝑒𝑖 ∶ 𝑇

[T-Match]
Γ ⊢ match 𝑒 with {𝑙1{𝑥1} → 𝑒1; … ; 𝑙𝑛{𝑥𝑛} → 𝑒𝑛} ∶ 𝑇

The typing rules in Definition 48 above work as follows.

• By rule [T-UnionCons], a discriminated union constructor 𝑙 {𝑒} has a union type
with just one case: the label 𝑙, and the type 𝑇 that type-checks the expression 𝑒.

• By rule [T-Match], a pattern matching expression match 𝑒 with {…} has type 𝑇
only if:

10.1. Discriminated Union Types and Pattern Matching 235



02247 Compiler Construction, Spring 2023

1. the labels 𝑙1, … , 𝑙𝑛 used in the pattern matching expression are distinct from
each other;

2. the expression 𝑒 type-checks, and it has a union type with labels 𝑙′𝑖, … , 𝑙′𝑚;

3. each label 𝑙𝑖 used in the pattern matching expression is equal to some label
𝑙′𝑗 in the union type of 𝑒;

4. each continuation expression 𝑒𝑖 of the pattern matching cases can be type-
checked by extending the typing environment Γ with a new entry, where the
matched variable 𝑥𝑖 has the corresponding type 𝑇𝑗;

5. under such extended Γ, each continuation expression 𝑒𝑖 has the same type
𝑇 (which is also the type of the whole pattern matching expression).

Example 60 (Typing Derivation of Unions and Pattern Matching)

Consider the following Hygge expression:

let x ∶ 𝑡 = Some {42};
match 𝑥 with {

None{𝑥} → ()
Some{𝑦} → print(𝑦)

}

Using the typing rules in Definition 48, the expression above can be type-checked with
the following typing derivation — where:

• the typing environment Γ′ is equal to Γ, except that we have Γ(𝑥) =
union {Some ∶ int; None ∶ unit};

• the typing environment Γ″ is equal to Γ′, except that we have Γ″(𝑥) = unit;

• the typing environment Γ‴ is equal to Γ′, except that we have Γ‴(𝑦) = int.

[TRes-Int]Γ ⊢ ”int” ▷ int
[TRes-Unit]Γ ⊢ ”unit” ▷ unit

[TRes-Union]
Γ ⊢ ”union {Some ∶ int;

None ∶ unit} ” ▷ union {Some ∶ int;
None ∶ unit}

[T-Val-Int]Γ ⊢ 42 ∶ int [T-UnionCons]
Γ ⊢ Some {42} ∶ union {Some ∶ int}

[TSub-Refl]Γ ⊢ int ⩽ int [TSub-Union]
Γ ⊢ union {Some ∶ int} ⩽ union {Some ∶ int;

None ∶ unit}
[T-Sub]

Γ ⊢ Some {42} ∶ union {Some ∶ int;
None ∶ unit}

Γ′(𝑥) = union {Some ∶ int;
None ∶ unit}

[T-Var]
Γ′ ⊢ 𝑥 ∶ union {Some ∶ int;

None ∶ unit}𝑤𝑒𝑐𝑎𝑛
[T-Val-Unit]

Γ″ ⊢ () ∶ unit

Γ‴(𝑦) = int
[T-Var]

Γ‴ ⊢ 𝑦 ∶ int
[T-Print]

Γ‴ ⊢ print(𝑦) ∶ unit
[T-Match]

Γ′ ⊢
match 𝑥 with {

None{𝑥} → ()
Some{𝑦} → print(𝑦)

}
∶ unit

[T-Let]

Γ ⊢

let x ∶ union {Some ∶ int; None ∶ unit} = Some {42};
match 𝑥 with {

None{𝑥} → ()
Some{𝑦} → print(𝑦)

}

∶ unit

In the derivation above, we can see that:

• we use the new subtyping rule [TSub-Union] (Definition 47 ) to initialise variable
𝑥 (whose union type has the two case labels “Some” and “None”) with the union
constructor Some {42} (whose union type only has the label “Some”);

• to type-check the pattern matching on 𝑥, we type-check the continuation expres-
sion print(𝑦) with a typing environment Γ‴, where the variable 𝑦 (bound in the
pattern matching case for the label “Some”) has type int — which in turn is taken
from the case “Some” in the union type of 𝑥.

236 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

10.1.6 Implementation

We now have a look at how hyggec is extended to implement discriminated unions and
pattern matching, according to the specification illustrated in the previous sections.

Tip: To see a summary of the changes described below, you can inspect the differences
in the hyggec Git repository between the tags free-captured-vars and union-rec-types.

Important: Code generation for discriminated unions and pattern matching is not im-
plemented! This is one of the Project Ideas for this Module.

10.1.7 Lexer, Parser, Interpreter, and Type Checking

These parts of the hyggec compiler are extended along the lines of Example: Extending
Hygge0 and hyggec with a Subtraction Operator .

• We extend AST.fs in two ways, according to Definition 40:

– we extend the data type Expr<'E,'T> with two new cases:

* UnionCons for the discriminated union constructor “𝑙 {𝑒}”;
* Match for the pattern matching expression
“match 𝑒 with {𝑙{𝑥} → 𝑒′; …}”;

– we also extend the data type Pretype with a new case called TUnion, corre-
sponding to the new union pretype “union {𝑙1 ∶ 𝑡1, … , 𝑙𝑛 ∶ 𝑡𝑛}”:

and Pretype =
// ...
/// Discriminated union type. Each case consists of a name and a␣

↪pretype.
| TUnion of cases: List<string * PretypeNode>

• We extend PrettyPrinter.fs to support the new expressions and pretype.

• We extend Lexer.fsl to support three new tokens:

– UNION for the new keyword “union”, and

– MATCH for the new keyword “match”, and

– WITH for the new keyword “with”.

• We extend Parser.fsy to recognise the desired sequences of tokens according to
Definition 40, and generate AST nodes for the new expressions. We proceed by
adding:

10.1. Discriminated Union Types and Pattern Matching 237



02247 Compiler Construction, Spring 2023

– a new rule under the pretype category to generate TUnion pretype instances
(this rule reuses the fieldTypeSeq category to parse the union type cases,
since they are syntactically similar to structure fields);

– a new rule under the primary category to generate UnionCons instances;

– a new rule under the simpleExpr category to generate Match instances

– a new auxiliary parsing rule matchCases that recognises a non-empty se-
quence of patterh matching cases “𝑙{𝑥} → 𝑒”.

• We extend ASTUtil.fs as follows:

– we extend the function subst in to support the new expressions UnionCons
and Match, according to Definition 41;

– we extend the function freeVars according to Definition 43;

– we extend the function capturedVars according to Definition 44.

• We extend Interpreter.fs according to Definition 42. In the function reduce:

– we add a new case for UnionCons, and

– we add a new case for Match.

• We extend Type.fs by adding a new case to the data type Type, according to Def-
inition 45: the new case is called TUnion. We also add a a corresponding new case
to the function freeTypeVars in the same file.

Note: Correspondingly, we also extend the pretty-printing function formatType
in PrettyPrinter.fs, to display the stucture type we have just introduced.

• We extend Typechecker.fs:

– we extend the type resolution function resolvePretype with a new case for
discriminated union types, according to Definition 46;

– we extend the function isSubtypeOf with a new case for union types, ac-
cording to Definition 47 ;

– we extend the function typer according to Definition 48, to support the new
cases for the expressions UnionCons and Match.

• As usual, we add new tests for all compiler phases.

238 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

10.2 Recursive Types

We now study how to extend Hygge with recursive type definitions, allowing us to
define data structures like lists and trees. We discuss the Overall Objective, and then the
changes that are necessary for extensions to hyggec and Extending Subtyping to Support
Recursive Types. Then we briefly discuss their implementation.

10.2.1 Overall Objective

Our goal is to fully support Hygge programs like the one illustrated in Example 61 below.

Example 61 (A Hygge Program with Recursive Types)

1 // A tree type, where nodes can have zero, one, or two children.
2 type Tree = union {
3 Leaf: int;
4 Node1: struct {value: int; child: Tree};
5 Node2: struct {value: int; child1: Tree; child2: Tree}
6 };
7

8 // A (non-empty) list, where each node can have zero or one child.
9 type List = union {

10 Leaf: int;
11 Node1: struct {value: int; child: List}
12 };
13

14 // Check whether the given tree only has one element.
15 fun hasSize1(t: Tree): bool =
16 match t with {
17 Leaf{_} -> true;
18 Node1{_} -> false;
19 Node2{_} -> false
20 };
21

22 // Here, 't' can be given type Tree or List (both type-check)
23 let t: Tree = Node1{struct{value = 1;
24 child = Node1{struct{value = 2;
25 child = Leaf{3}}}}};
26

27 // If 't' above has type List, we get a stack overflow during type checking!
28 assert(not hasSize1(t))

The program above can be interpreted, type-checked, compiled and executed correctly.
However, if we modify the type annotation on line 23 from Tree to List, then the hyggec
compiler crashes during type-checking: the function isSubtypeOf enters in an infinite
loop that causes a stack overflow. (Try it!)

10.2. Recursive Types 239



02247 Compiler Construction, Spring 2023

To support a program like the one in Example 61, we need two changes to Hygge and
hyggec:

1. Extending Type Definitions to Support Recursive Types (NOTE: this is already im-
plemented in the hyggec version presented in this module); and

2. Extending Subtyping to Support Recursive Types (which is not implemented, and is
one of the Project Ideas for this Module).

10.2.2 Extending Type Definitions to Support Recursive Types

According to the typing rule [T-Type] of Hygge0 (Definition 8), a type definition
type 𝑥 = 𝑡; 𝑒 does not allow the defined type 𝑡 to mention the type variable 𝑥: this
prevents definition of recursive types like Tree and List in Example 61 above. To solve
this issue, we extend the typing system as shown in Definition 49 below.

Definition 49 (Type System with Recursive Type Definitions)

We define the Hygge typing system with recursive type definitions by replacing rule
[T-Type] in Definition 8 with the following rule:

𝑥 ∉ {bool, int, float, string, unit} 𝑥 ∉ Γ.TypeVars
{Γ with TypeVars + (𝑥 ↦ unit)} ⊢ 𝑡 ▷ 𝑇 {Γ with TypeVars + (𝑥 ↦ 𝑇 )} ⊢ 𝑒 ∶ 𝑇 ′ 𝑥 ∉ 𝑇 ′

[T-Type-Rec]
Γ ⊢ type 𝑥 = 𝑡; 𝑒 ∶ 𝑇 ′

There is only one differences between rule [T-Type-Rec] in Definition 49 and [T-Type]
in Definition 8: in order to resolve the pretype 𝑡, the premise of rule [T-Type-Rec] uses a
typing environment extended by assigning a “dummy” type to 𝑥 (in this case unit — but
any other type would work). This way, if 𝑡 resolves to type 𝑇 , then 𝑇 can refer to the
type variable 𝑥.

Exercise 37

To see why rule [T-Type-Rec] in Definition 49 resolves pretypes in an extended environ-
ment with a “dummy” entry, consider the following recursive pretype:

union {a ∶ int; b ∶ List}

Try to resolve the pretype above into an actual type, using Definition 46 with the follow-
ing typing environments:

• first, by using Γ.TypeVars = ∅ (i.e. no type variables are defined);

• then, by using Γ.TypeVars = {List ↦ unit} (i.e. a “dummy” entry for the type
variable List is defined).

240 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

10.2.3 Extending Subtyping to Support Recursive Types

Before extending the subtyping of Hygge, we illustrate its limitations in Example 62
below.

Example 62 (Why We Need to Extend Subtyping to Handle Recursive Types)

Consider again the program in Example 61, changing the type annotation of t on line 23
from Tree to List. In this case, on line 28, the application of function hasSize1 needs to
check whether List (the type of the argument t) is subtype of the expected argument
type Tree. This creates the derivation below, where we use the typing environment:

Γ.TypeVars =

⎧{{{{{{
⎨{{{{{{⎩

Tree↦ union

⎧{{{
⎨{{{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ Tree} ;

Node2 ∶ struct
⎧{
⎨{⎩

value ∶ int;
child1 ∶ Tree;
child2 ∶ Tree

⎫}
⎬}⎭

⎫}}}
⎬}}}⎭

List↦ union
⎧{
⎨{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ List}
⎫}
⎬}⎭

⎫}}}}}}
⎬}}}}}}⎭

and the subtyping rules in Definition 10, Definition 32, and Definition 47 .

[TSub-Refl]Γ ⊢ int ⩽ int

[TSub-Refl]Γ ⊢ int ⩽ int
⋮ [TSub-Var-L]Γ ⊢ List ⩽ Tree [TSub-Struct]

Γ ⊢ struct {value ∶ int;
child ∶ List} ⩽ struct {value ∶ int;

child ∶ Tree}
[TSub-Union]

Γ ⊢ union
⎧{
⎨{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ List}
⎫}
⎬}⎭

⩽ union
⎧{{
⎨{{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ Tree} ;
Node2 ∶ …

⎫}}
⎬}}⎭

[TSub-Var-R]

Γ ⊢ union
⎧{
⎨{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ List}
⎫}
⎬}⎭

⩽ Tree

[TSub-Var-L]Γ ⊢ List ⩽ Tree

Observe that, going bottom-up towards the the top-right branch, the derivation reaches
a point where it is trying to prove that List is subtype of Tree — which is the starting
point of the derivation! Therefore, we can extend this derivation infinitely, by repeating
the rules above. The hyggec function isSubtypingOf tries to do precisely this, and thus,
it enters in an infinite loop.

Intuitively, an infinite derivation like the one shown in Example 62 suggests that, indeed,
List should be considered a subtype Tree. However, until now we have only considered
finite derivations — and the implementation of isSubtypeOf reflects this assumption and
does not handle recursive types correctly.

10.2. Recursive Types 241



02247 Compiler Construction, Spring 2023

To resolve the issue illustrated in Example 62 above, we need to detect whether a subtyp-
ing derivation is infinite — and if this happens, we want to conclude that the subtyping
judgement holds. We obtain this by revising the subtyping judgement as formalised in
Definition 50 below.

Definition 50 (Recursive Subtyping in Hygge)

To extend Hygge with support for recursive subtyping, we replace the Definition 10
(subtyping judgement) by introducing a new subtyping judgement which has the same
form:

Γ ⊢ 𝑇 ⩽ 𝑇 ′

However, the new subtyping judgement is defined with just one rule:

∅, Γ ⊢ 𝑇 ⩽ 𝑇 ′
[TSub]

Γ ⊢ 𝑇 ⩽ 𝑇 ′

In rule [TSub] above, the premise uses the subtyping judgement with assumptions,
which has the following form:

𝐴, Γ ⊢ 𝑇 ⩽ 𝑇

where 𝐴 is a set of subtyping assumptions, i.e. a set of pairs of types (𝑇 , 𝑇 ′), meaning
“we assume that 𝑇 is subtype of 𝑇 ′”.

The subtyping judgement with assumptions is defined by the following rules:

[TSubA-Refl]
𝐴, Γ ⊢ 𝑇 ⩽ 𝑇

(𝑇 , 𝑇 ′) ∈ 𝐴
[TSubA-Assume]

𝐴, Γ ⊢ 𝑇 ⩽ 𝑇 ′

𝐴 ∪ {(𝑥, 𝑇 )}, Γ ⊢ Γ.TypeVars(𝑥) ⩽ 𝑇
[TSubA-Var-L]

𝐴, Γ ⊢ 𝑥 ⩽ 𝑇
𝐴 ∪ {(𝑇 , 𝑥)}, Γ ⊢ 𝑇 ⩽ Γ.TypeVars(𝑥)

[TSubA-Var-R]
𝐴, Γ ⊢ 𝑇 ⩽ 𝑥

𝑚 ≥ 𝑛 ∀𝑖 ∈ 1..𝑛 ∶ 𝐴, Γ ⊢ 𝑇𝑖 ⩽ 𝑇 ′
𝑖 [TSubA-Struct]

𝐴, Γ ⊢ struct {𝑓1 ∶ 𝑇1; … , 𝑓𝑚 ∶ 𝑇𝑚} ⩽ struct {𝑓1 ∶ 𝑇 ′
1; … , 𝑓𝑛 ∶ 𝑇 ′

𝑛}

∀𝑖 ∈ 1..𝑚 ∶ ∃𝑗 ∈ 1..𝑛 ∶ 𝑙𝑖 = 𝑙′𝑗 and 𝐴, Γ ⊢ 𝑇𝑖 ⩽ 𝑇 ′
𝑗 [TSubA-Union]

𝐴, Γ ⊢ union {𝑙1 ∶ 𝑇1; … , 𝑙𝑚 ∶ 𝑇𝑚} ⩽ union {𝑙′1 ∶ 𝑇 ′
1; … , 𝑙′𝑛 ∶ 𝑇 ′

𝑛}

Observe that in Definition 50 above, the subtyping rules with assumptions
[TSubA-Struct] and [TSubA-Union] are identical (respectively) to the subtyping rules
[TSub-Struct] (from Definition 32) and [TSub-Union] (from Definition 47 ) — except that
the new rules recursively propagate the set of assumptions 𝐴 between the conclusion
and premises of the rule. Such assumptions are pairs of types (𝑇 , 𝑇 ′) and represent the
“belief’’ that 𝑇 is subtype of 𝑇 ′. The subtyping assumptions are used as follows:

• new assumptions are introduced in the premises of rule [TSubA-Var-L] and
[TSubA-Var-R]. When we build a derivation bottom-up, these assumptions “re-
member” that the derivation is trying to prove that 𝑇 is a subtyping of 𝑇 ′ (where
at least one between 𝑇 and 𝑇 ′ is a type variable);

242 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

• the assumptions are then used in rule [TSubA-Assume]: to prove that 𝑇 is sub-
type of 𝑇 ′, we can use rule [TSubA-Assume] if the pair (𝑇 , 𝑇 ′) is in the set of
assumptions 𝐴.

The effect of these new subtyping rules with assumptions can be seen in Example 63
below.

Example 63 (Recursive Subtyping in Action)

Let us revise Example 62 using the new subtyping rules with assumptions in Definition
50. We use the same typing environment Γ; for brevity, let us define the following alias:

𝑇 = union
⎧{
⎨{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ List}
⎫}
⎬}⎭

Then, we prove that List is subtype of Tree with the following derivation:

[TSubA-Refl]
{(List, Tree),

(𝑇 , Tree) }, Γ ⊢ int ⩽ int

[TSubA-Refl]
{(List, Tree),

(𝑇 , Tree) }, Γ ⊢ int ⩽ int

(List, Tree) ∈ {(List, Tree),
(𝑇 , Tree) }

[TSubA-Assume]
{(List, Tree),

(𝑇 , Tree) }, Γ ⊢ List ⩽ Tree
[TSubA-Struct]

{(List, Tree),
(𝑇 , Tree) }, Γ ⊢ struct {value ∶ int;

child ∶ List} ⩽ struct {value ∶ int;
child ∶ Tree}

[TSubA-Union]

{(List, Tree),
(𝑇 , Tree) }, Γ ⊢ union

⎧{
⎨{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ List}
⎫}
⎬}⎭

⩽ union
⎧{{
⎨{{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ Tree} ;
Node2 ∶ …

⎫}}
⎬}}⎭

[TSubA-Var-R]

{(List, Tree)}, Γ ⊢ union
⎧{
⎨{⎩

Leaf ∶ int;
Node1 ∶ struct {value ∶ int;

child ∶ List}
⎫}
⎬}⎭

⩽ Tree

[TSubA-Var-L]
∅, Γ ⊢ List ⩽ Tree

[TSub]Γ ⊢ List ⩽ Tree

Observe that, going bottom-up, the derivation propagates the assumption (List, Tree)
from its root across all branches — andwhen the derivation reaches the top-right branch,
rule [TSubA-Assume] terminates the derivation (instead of continuing infinitely). As a
consequence, we are now able to prove that the recursive type List is subtype of the
recursive type Tree, using a finite derivation.

10.2.4 Implementation of Recursive Types and Subtyping

The improved typing rule presented in Definition 49 is already implemented in the func-
tion typer (case for expression Type(...)). To see what has been changed, you can in-
spect the differences in the hyggec Git repository between the tags free-captured-vars
and union-rec-types.

Instead, the recursive subtyping presented in Definition 50 is not yet implemented: it is
one of the Project Ideas for this Module.

10.2. Recursive Types 243



02247 Compiler Construction, Spring 2023

10.3 References and Further Readings

The revised subtyping judgement with support for Recursive Types, and the resulting
function to check whether 𝑇 is subtype of 𝑇 ′, are based on the following seminal paper.

• Roberto M. Amadio and Luca Cardelli. 1993. Subtyping Recursive Types. ACM
Transactions on Programming Languages and Systems, 15, 4 (September 1993).
https://doi.org/10.1145/155183.155231

The subtyping algorithm that derives from the treatment above has exponential com-
plexity w.r.t. the size of the types being checked. However, the algorighm can be opti-
mised to achieve quadratic complexity (at the price of a slight complication). This topic
is addressed in the following reference, together with a comprehensive treatment of re-
cursive types and coinduction.

• Benjamin Pierce. Types and Programming Languages. MIT Press, 2002. Available
on DTU Findit39. These chapters, in particular, may be useful:

– Chapter 20 (Recursive Types)

– Chapter 21 (Metatheory of Recursive Types) — in particular, Sections 21.9
and 21.10 discuss how to optimise the recursive subtyping algorithm

10.4 Project Ideas

For your group project, you should implement at least 2 of the following project ideas
(listed in order of increasing difficulty).

• Project Idea: Exhaustive Pattern Matching

• Project Idea: Implement Code Generation for Union Type Constructors and Pattern
Matching

• Project Idea: Implement Recursive Subtyping

• Project Idea: Better Inference of Pattern Matching Result Type

10.4.1 Project Idea: Exhaustive Pattern Matching

Thegoal of this project idea is tomake the type checking of patternmatching expressions
more strict, by requiring them to cover all possible labels allowed for the variable being
matched.

For example, consider the following Hygge program:

1 // An optional integer value.
2 type OptionalInt = union {
3 Some: int;

(continues on next page)

39 https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f

244 Module 10: Discriminated Unions and Recursive Types

https://doi.org/10.1145/155183.155231
https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f
https://findit.dtu.dk/en/catalog/5c34980ed9001d2f3820637f


02247 Compiler Construction, Spring 2023

(continued from previous page)
4 None: unit
5 };
6

7 fun displayOption(o: OptionalInt): unit =
8 match o with {
9 // Some{x} -> println(x);

10 None{_} -> println("None")
11 };
12

13 displayOption(Some{42})

This program type-checks — but when interpreted, it gets stuck on the assertion on line
13: this happens because the mattern matching on lines 8–11 does not handle the case
where o is None.

If you choose this project idea, you will need to:

1. explain how to adjust the typing rule [T-Match] in Definition 48 to require that all
labels in the type of the matched expression 𝑒 are covered in the pattern matching
cases;

2. correspondingly extend the case for Match(...) of the function typer (in the file
Typechecker.fs), reporting an error if any pattern matching case is missing; and

3. as usual, include tests showcasing your extension to Hygge and hyggec — includ-
ing the example program above.

Note: If you choose this Project Idea, you might need to revise some existing hyggec
tests, that might not type-check anymore because they include a non-exhaustive pattern
matching expression.

10.4.2 Project Idea: Implement Code Generation for Union Type
Constructors and Pattern Matching

The code generation for discriminated union types constructors and pattern matching
is not implemented. The goal of this Project Idea is to implement it, and cover (at least)
code generation for all well-typed tests that are supported by the hyggec interpreter,
adding more tests if necessary.

Note: If a pattern matching expression is applied to a union instance 𝑙 {𝑣}, but the label
𝑙 is not covered in any of the pattern matching cases, then generated code should cause
a run-time failure (similar to an assertion violation). To avoid this situation, you might
consider to also choose the Project Idea on exhaustive pattern matching.

Hint:

10.4. Project Ideas 245



02247 Compiler Construction, Spring 2023

• Since union type instances are stored on the heap, you may find some inspira-
tion in the cases Struct and FieldAccess of the function doCodegen (in the file
RISCVCodegen.fs).

• The semantic rules in Definition 42 store a discriminated union instance 𝑙 {𝑣} on
the heap by saving a string ”l” to represent the label 𝑙. This is a handy abstrac-
tion for the interpreter — but it may be quite cumbersome to implement as-is for
code generation, and also inefficient: when performing a pattern matching, to
see whether a label on the heap matches a label in a pattern matching case, the
generated code would need to compare two strings, character by character.

A simpler and more efficient approach is to:

1. use a distinct integer value to represent each union label 𝑙 appearing in a
Hygge program;

2. save that integer value on the heap (when union instances are created) to
represent the label 𝑙; and

3. when performing pattern matching against a label 𝑙, check whether the in-
teger value found on the heap is equal to the integer value that represents a
label 𝑙.

To achieve this, the function genSymbolId (in the file Util.fs) may be useful…

10.4.3 Project Idea: Implement Recursive Subtyping

The goal of this project idea is to update the function isSubtypeOf (in the file
Typechecker.fs) to implement the new subtyping judgement inDefinition 50, using sub-
typing assumptions.

If you choose this project idea, you should explain how you designed and implemented
the revised isSubtypeOf function, and include some tests to showcase your extension
(in particular, you should be able to type-check the program in Example 62 when the
type ascription on line 23 is changed to List).

Note: If you choose this project idea, together with better type inference for pattern
matching and recursive functions, you should be able to type-check the complex Hygge
example shown at the very beginning of this course, in A Taste of Hygge.

246 Module 10: Discriminated Unions and Recursive Types



02247 Compiler Construction, Spring 2023

10.4.4 Project Idea: Better Inference of Pattern Matching Result
Type

The current implementation of type checking for pattern matching expressions follows
Definition 48 in a rather restrictive way. For example, consider the following Hygge
program:

1 // An optional integer value.
2 type OptionalInt = union {
3 Some: int;
4 None: unit
5 };
6

7 fun maybeIncrement(o: OptionalInt): OptionalInt =
8 match o with {
9 Some{x} -> Some{x + 1};

10 None{_} -> None{()}
11 };
12

13 let x: OptionalInt = maybeIncrement(Some{41});
14

15 assert(match x with {
16 Some{y} -> y = 42;
17 None{_} -> false
18 })

The program can be interpreted correctly, but type checking fails with the following
error:

(10:20-10:27): pattern match result type mismatch: expected union {Some: int},␣
↪found union {None: unit}

This is because the type 𝑇 of the continuation expression of the first pattern matching
case is used as result type for the whole pattern matching expression — and if some other
case has a type 𝑇 ′ that is not a subtype of 𝑇 , then type checking fails. Therefore, in the
example above:

• the continuation expression of the fist pattern matching case (line 9) has type
𝑇 = union {Some ∶ int};

• the continuation expression of the second pattern matching case (line 10) has type
𝑇 ′ = union {None ∶ unit};

• 𝑇 ′ is not subtype of 𝑇 , hence the type checking error.

A better approach would be to:

• compute the types 𝑇1, … , 𝑇𝑛 of all continuation expression of all patternmatching
cases;

• compute (if possible) a type 𝑇 that is the “most precise’’ supertype of all types
𝑇1, … , 𝑇𝑛; and

10.4. Project Ideas 247



02247 Compiler Construction, Spring 2023

• use 𝑇 as result type of the whole pattern matching expression.

Such a common supertype 𝑇 is called the least upper bound (LUB) of 𝑇1, … , 𝑇𝑛.

To compute the LUB of two types 𝑇 and 𝑇 ′, you can define a recursive function that
works as follows:

• if 𝑇 is subtype of 𝑇 ′, their LUB is 𝑇 ′;

• if 𝑇 ′ is subtype of 𝑇 , their LUB is 𝑇 ;

• if 𝑇 and 𝑇 ′ are both union types, their LUB is a union type 𝑇 ″ that contains:

– all the case labels that appear in 𝑇 or 𝑇 ′; moreover,

– if a case label 𝑙 appears in both 𝑇 (as “𝑙 ∶ 𝑇1”) and 𝑇 ′ (as “𝑙 ∶ 𝑇2”), then the
label 𝑙 must also appear in 𝑇 ″ — and its type should be the LUB between 𝑇1
and 𝑇2;

• if 𝑇 and 𝑇 ′ are both structure types, then… (What is their LUB? What conditions
should 𝑇 and 𝑇 ′ satisfy for their LUB to exist?)

To compute the LUB of three or more types 𝑇1, 𝑇2, 𝑇3, …, you can simply compute
lub(𝑇1, lub(𝑇2, lub(𝑇3, …))).
If the LUB of two types cannot be computed (e.g. the LUB of int and string does not
exist), then the compiler should report an error.

If you choose this project idea, you should explain how you designed and implemented
the LUB function, and include some tests to showcase your extension (including the
example above, and ideally also covering structure types).

Note: The same LUB-based improvement can be applied to the inference of the result
type of “if” expressions. You could even consider starting with “if” expressions (which
are simpler) and then extending your improvement to pattern matching.

Note: If you choose this project idea, together with implementing recursive subtyping
and recursive functions, you should be able to type-check the complex Hygge example
shown at the very beginning of this course, in A Taste of Hygge.

248 Module 10: Discriminated Unions and Recursive Types



11
Module 11: Intermediate Representations and

Register Allocation

In this module we discuss the concept of intermediate representation in a compiler,
focusing on a specific example called Administrative Normal Form (ANF). We then ex-
plore its application in the hyggec compiler, with the objective of using ANF to improve
the code generation and register allocation strategy of hyggec.

11.1 Overall Objective

Our goal is to compile and run Hygge programs like the one shown in Example 64 below.

Example 64 (A Hygge Program Using (Too) Many Registers)

Consider the following Hygge program:

1 let res: int = 1 + (2 + (3 + (4 + (5 + (6 + (7 + (8
2 + (9 + (10 + (11 + (12 + (13 + (14
3 + (15 + (16 + (17 + (18 + 19)))))))))))))))));
4 assert(res = 190)

If we try to compile this program using ./hyggec compile ..., the compiler crashes
with the following error:

Unhandled exception. System.Exception: BUG: invalid generic register number 18
at RISCV.Reg.r(UInt32 n) in .../src/RISCV.fs:line 88

Note: The program shown in Example 64 above is a solution to Exercise ⁇.

The reason for the crash shown in Example 64 above is that, when generating assembly
for a Hygge expression 𝑒, the Code Generation Strategy of hyggec tends to use a new

249



02247 Compiler Construction, Spring 2023

register for each sub-expression of 𝑒 (by incrementing the current env.Target register):
this is done to hold intermediate results that are needed to compute the final result of 𝑒.
Depending on how such sub-expressions are arranged, hyggec may need more registers
than the ones that are available.

More specifically, the API Reg.r(n) in the file RISCV.fs gives access to a generic integer
register n selected between t0..t6 and s1..s11—which means that nmust be a number
between 0 and 17. However, the code generation for Example 64 tries to use:

• register Reg.r(0) to hold the result of the sub-expression 1;

• register Reg.r(1) to hold the result of the sub-expression 2;

• …

• register Reg.r(17) to hold the result of the sub-expression 18;

• register Reg.r(18) to hold the result of the sub-expression 19 — and this causes
the crash.

Solving this issue is not straightforward:

• we need to evaluate the 18 sub-expressions above exactly in that order, to respect
the Formal Semantics of Hygge0. Therefore, in Example 64 we necessarily have
to produce 18 intermediate results before we can compute their final sum and
initialise the variable res;

• even if we find an ad-hoc solution for this example, we can find many other ex-
amples of Hygge expressions that need more registers than those available.

Therefore, to improve the hyggec code generation we need a general register allocation
solution that can use (and re-use) a limited number of registers in a more sophisticated
way. This task is quite challenging: the program in Example 64 does not give many hints
on how we could do that. Therefore, we address the challenge by taking an intermedi-
ate step: before attempting code generation and register allocation, we translate Hygge
programs into an equivalent intermediate representation that is closer to the generated
assembly code, and makes register allocation simpler to handle.

11.2 What is an Intermediate Representation (IR)?

Generally speaking, an intermediate representation (IR) is any internal data structure
used by a compiler to represent the code being compiled. Under this very broad defini-
tion, hyggec already uses three intermediate representations of the input source code:

• the UntypedAST data structure produced after parsing (defined AST.fs and pro-
duced by Parser.fsy);

• the TypedAST data structure produced after type checking (defined and produced
in Typechecker.fs);

• the Asm data structure produced by code generation (defined in RISCV.fs and pro-
duced in RISCVCodegen.fs).

250 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

Intermediate representations are designed as stepping stones towards specific purposes
in the compilation process: for example, in the case of hyggec, the construction of Asm
instances (via code generation) is made possible by the type information available in
TypedAST instances (which in turn are produced by type checking). Our purpose in this
Module is to improve the register allocation strategy of hyggec — and unfortunately,
the intermediate representation TypedAST seems too high-level to help us: we need an
intermediate representation that is closer to the output language.

11.3 Administrative Normal Form (ANF)

Introducing an IR in a compiler requires significant effort, and poses a problem: since
generating the IR requires a translation from some other IR, how do we know that the
translation is correct? Or more accurately: how can we show that the behaviour of the
IR coincides with the behaviour of the parsed program? To spot possible mistakes in the
translation, we should:

• formalise the syntax and semantics of the IR,

• write an interpreter for the IR, and

• given a Hygge expression 𝑒, check whether interpreting 𝑒 and interpreting its
IR translation yield the same result. This would require writing many new tests
specifically for the IR.

In this module we explore a form of intermediate representation called Administrative
Normal Form (or A-Normal Form, or ANF). ANF has two features that make it very
appealing for hyggec:

1. it is close enough to RISC-V assembly to simplify the problem of register alloca-
tion; and

2. unlike other alternative IRs in compiler literature, ANF does not require us to
introduce a new language, nor new data structures in the hyggec compiler. In fact,
a Hygge expression translated in ANF is still a Hygge expression, that respects the
Hygge syntax plus some additional constraints (described in Definition 51 below).
Therefore:

• a Hygge expression in ANF can be represented as an UntypedAST or TypedAST
in the hyggec compiler, and

• we can test the correctness of the ANF translation by simply taking the exist-
ing tests for the hyggec interpreter, translating them into ANF, and running
the ANF version with the existing interpreter, without any change. If some
test fails after its ANF translation, then the ANF translation is buggy and
needs to be fixed.

Definition 51 (Administrative Normal Form (ANF))

We say that a Hygge expression 𝑒 is in Administrative Normal Form (ANF) when:

11.3. Administrative Normal Form (ANF) 251



02247 Compiler Construction, Spring 2023

1. 𝑒 follows the so-called Barendregt convention, i.e. all the variables bound in 𝑒
must have a unique name;

2. moreover, 𝑒 must be either:

• a variable, or

• a “let” expression “let x ∶ 𝑡 = 𝑒𝑖; 𝑒𝑠” or “let mutable 𝑥 ∶ 𝑡 = 𝑒𝑖; 𝑒𝑠” where:

– the initialisation expression 𝑒𝑖 is either:

* a variable 𝑦;
* a value 𝑣 that is not a lambda term;

* a readInt() or readFloat() expression;

* a lambda term “fun (𝑥1 ∶ 𝑡1, … , 𝑥𝑛 ∶ 𝑡𝑛) → 𝑒𝑏” where the body 𝑒𝑏
is in ANF;

* an arithmetic expression “𝑦 + 𝑧” or “𝑦 ∗ 𝑧” where the left-hand-side
and right-hand-side are both variables;

* a logical expression “𝑦 or 𝑧” or “𝑦 and 𝑧” where the left-hand-side
and right-hand-side are both variables;

* a relational expression “𝑦 = 𝑧” or “𝑦 < 𝑧” where the left-hand-side
and right-hand-side are both variables;

* a logical negation “not 𝑦” where the argument is a variable;

* an assertion assert(𝑦) where the argument is a variable;

* a type ascription “𝑦 ∶ 𝑡” where the type-annotated expression is a
variable;

* a type declaration “type 𝑦 = 𝑡; 𝑒𝑠” where the scope expression 𝑒𝑠
is in ANF;

* a structure constructor “struct {𝑓1 = 𝑦1; … ; 𝑓𝑛 ∶ 𝑦𝑛}” where all
field initialisation expressions are all variables 𝑦1, … , 𝑦𝑛;

* a union constructor “𝑙 {𝑦}” where the initialisation expression is a
variable 𝑦;

* a conditional expression “if 𝑦 then 𝑒𝑡 else 𝑒𝑓” where:

- the condition expression is a variable 𝑦;
- the “then” branch expression 𝑒𝑡 is in ANF;

- the “else” branch expression 𝑒𝑓 is in ANF;

* a loop “while 𝑒𝑐 do 𝑒𝑏” where:

- the loop condition 𝑒𝑐 is in ANF;

- the loop body 𝑒𝑏 is in ANF;

* a patternmatching “match 𝑦 with {𝑙1{𝑧1} → 𝑒1; … ; 𝑙𝑛{𝑧𝑛} → 𝑒𝑛}”
where:

252 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

- the matched expression is a variable 𝑦;
- each continuation expression 𝑒1, … , 𝑒𝑛 is in ANF;

– the scope expression 𝑒𝑠 is in ANF.

Example 65 (A Hygge Expression and Its ANF Equivalent)

Consider this simple Hygge program:

let x: int = 2 + 3;
assert(x = 5)

This program is not in ANF according to Definition 51, because:

• the initialisation expression of the “let x…” is not in ANF: it is an addition whose
two operands are not variables; and

• the expression in the scope of the “let…” is not in ANF: it is an assertion whose
argument is not a variable.

However, the following Hygge program is in ANF, and is also equivalent to the program
above — in the sense that it performs the computations, in the same order:

let y1: int = 2;
let y2: int = 3;
let x: int = y1 + y2;
let y3: int = 5;
let y4: bool = x = y3;
let y5: unit = assert(y4)
y5

Observe that in the ANF program in Example 65, each sub-expression (i.e. the operands
of the addition, the argument of the assertion) is first assigned to a dedicated variable,
and then used to compute other expressions. In other words, each intermediate result
needed to compute other results is explicitly stored in a variable. This pattern makes the
ANF program very reminiscent of assembly code, as shown in Example 66 below.

Example 66 (From Hygge to ANF to Assembly)

Consider this Hygge program:

let x: int = 1 + 2 + 3;
x

The following program in ANF is equivalent to the one above, in the sense that it per-
forms the same computations and in the same order. The comments show a correspond-
ing assembly version of the ANF program, where we use registers instead of variables.

11.3. Administrative Normal Form (ANF) 253



02247 Compiler Construction, Spring 2023

let y0: int = 1; // li t0, 1
let y1: int = 2; // li t1, 2
let y2: int = y0 + y1; // add t2, t0, t1
let y3: int = 3; // li t3, 3
let x: int = y2 + y3; // add t4, t2, t3
x

11.4 Transformation of a Hygge Expression into ANF

To transform a Hygge expression 𝑒 into an equivalent ANF expression 𝑒′, according to
Definition 51, we can follow a procedure based on two functions:

• toANFDefs(…)
• toANF(…, …)

The function toANFDefs(…):
• takes one argument 𝑒, which is a Hygge expression, and

• returns a pair consisting of a variable 𝑦 and a list of ANF definitions 𝐿, where:

– the variable 𝑦 (which is unique and may be autogenerated) represents the
result of the expression 𝑒 after its ANF transformation, and

– the list 𝐿 contains a sequence of triplets (𝑧, 𝑚, 𝑒𝑧), each one representing an
ANF definition:

* 𝑧 is a unique variable name (which may be autogenerated);

* 𝑚𝑧 is a boolean saying whether the variable 𝑧 is mutable or not; and

* 𝑒𝑧 is the expression (in ANF) that initialises 𝑧.
The last element of 𝐿 must be a triplet (𝑦, 𝑚, 𝑒𝑦) — i.e. 𝐿 must end with
the name of the variable 𝑦 returned by toANFDefs(𝑒), and its initialisation
expression 𝑒𝑦 (in ANF).

The idea is that when toANFDefs(𝑒) returns the pair (𝑦, 𝐿), then 𝑦 can be used to get
the same result of the original expression 𝑒 — provided that all the variables in 𝐿 are
initialised beforehand, in the order in which they appear in 𝐿 and using their corre-
sponding initialisation expressions (which are in ANF). For more details, see Converting
a Hygge Expression into a List of ANF Definitions.

Note: From now on, for brevity, when writing ANF definition triplets (𝑧, 𝑚𝑧, 𝑒𝑧) we
will often omit the element 𝑚𝑧 when its value is false — which means that the triplet
describes the definition of an immutable variable 𝑧.

Instead, the function toANF(…, …):

254 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

• takes a pair of arguments: a variable 𝑦 and a list of ANF definitions 𝐿 ending with
the initialisation of 𝑦 (as returned by toANFDefs(…) above), and

• returns an expression in ANF — which is a sequence of “let” binders that perform
the variable definitions and initialisations described in 𝐿, and terminate with the
variable 𝑦.

The idea is that toANF(𝑦, 𝐿) constructs a Hygge expression in ANF that performs the
initialisations and computations in 𝐿 (which initialise 𝑦), and then returns the value of
𝑦. For more details, see Converting a List of ANF Definitions into a Hygge Expression in
ANF .

Using the two functions above, we can transform aHygge expression 𝑒 in ANF by simply
executing:

toANF( toANFDefs(𝑒) )

11.4.1 Converting a Hygge Expression into a List of ANF Defini-
tions

When toANFDefs(𝑒) is invoked, it proceeds as follows:

1. it chooses a (possibly autogenerated) variable 𝑦 to represent the result of 𝑒;
2. it recursively calls itself on each sub-expression of 𝑒, getting corresponding vari-

ables and lists of ANF definitions;

3. it assembles such variables and lists of ANF definitions according to the semantics
of 𝑒 (which establishes the evaluation order) and the requirements of Definition 51
(which establishes what 𝑒 should look like in ANF); and

4. returns the variable 𝑦 together with the corresponding list of ANF definitions,
ending with the triplet (𝑦, 𝑚𝑦, 𝑒𝑦) (where 𝑒𝑦 is the ANF expression based on 𝑒
that initialises 𝑦).

More in detail, toANFDefs(𝑒) processes 𝑒 as follows.

• If 𝑒 is just a variable 𝑦, then toANFDefs(𝑦) just returns 𝑦 and an empty list of ANF
definitions.

• If 𝑒 is just a value 𝑣 that is not a lambda term, then toANFDefs(𝑣) returns the
following pair:

– an autogenerated variable 𝑦 (representing the value 𝑣, and)
– a list of ANF definitions with just one element (𝑦, false, 𝑣), meaning that 𝑦 is

initialised by the value 𝑣.

Example 67 (From Integer Value to List of ANF Definitions)

Consider the following Hygge expression:

42

11.4. Transformation of a Hygge Expression into ANF 255



02247 Compiler Construction, Spring 2023

The result of toANFDefs(42) is the following pair containing a unique variable 𝑦0
capturing the value, and a list of ANF definitions that just initialises 𝑦0 (which is
immutable) with 42:

(𝑦0, [(𝑦0, false, 42)])

• If 𝑒 is an addition “𝑒1 + 𝑒2”, then toANFDefs(𝑒1 + 𝑒2) must:

– generate a unique variable 𝑦 representing the result of the addition;

– perform a recursive call on 𝑒1 — thus getting the unique variable 𝑧1 and its
list of ANF definitions 𝐿1;

– perform a recursive call on 𝑒2 — thus getting the unique variable 𝑧2 and its
list of ANF definitions 𝐿2;

– return the following pair:

* the autogenerated variable 𝑦 with the result of the addition, and

* a list of ANF definitions consisting of 𝐿1, followed by 𝐿2, followed by
the pair (𝑦, 𝑧1 + 𝑧2). This means that the variable 𝑦 is initialised by the
addition 𝑧1 +𝑧2 —which requires that all the variables in 𝐿1 and 𝐿2 are
initialised first.

Example 68 (From Addition to List of ANF Definitions)

Consider the following Hygge expression:

1 + 2

The result of toANFDefs(1 + 2) is the following pair containing a unique variable
capturing the result of the addition, and a list of ANF definitions introducing other
(immutable) variables for the sub-expressions 1 and 2:

⎛⎜
⎝

𝑦2, ⎡⎢
⎣

(𝑦0, false, 1),
(𝑦1, false, 2),
(𝑦2, false, 𝑦0 + 𝑦1)

⎤⎥
⎦

⎞⎟
⎠

• If 𝑒 is a “let” binding “let y ∶ 𝑡 = 𝑒𝑖; 𝑒𝑠” or “let mutable 𝑦 ∶ 𝑡 = 𝑒𝑖; 𝑒𝑠”, then
toANFDefs(𝑒) must:

– compute a unique variable 𝑦′;

– substitute 𝑦 with 𝑦′ in both 𝑒𝑖 and 𝑒𝑠, getting the new initialisation expres-
sion 𝑒′

𝑖 and the new scope expression 𝑒′
𝑠. This is necessary to ensure that all

bound variables are unique, as required by Definition 51;

– perform a recursive call on the initialisation expression 𝑒′
𝑖 — thus getting the

unique variable 𝑧𝑖 and its list of ANF definitions 𝐿𝑖;

256 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

– perform a recursive call on the scope expression 𝑒′
𝑠 — thus getting the unique

variable 𝑧𝑠 and its list of ANF definitions 𝐿𝑠;

– return the following pair:

* the unique variable 𝑧𝑠 corresponding to the result of the “let” scope, and

* a list of ANF definitions constructed by concatenating:

- 𝐿𝑖, i.e. the ANF definitions yielded by the initialisation expression;

- the triplet (𝑦′, 𝑚𝑦′, 𝑧𝑖), which initialises 𝑦′ (used in the “let” scope)
with 𝑧𝑖 (the result of the initialisation expression in ANF) — and
where 𝑚𝑦′ is:

extbullet true if 𝑒 is a “let mutable…” binding, or

extbullet false otherwise;

- 𝐿𝑠, i.e. the ANF definitions yielded by the scope expression (which
ends by initialising the returned variable 𝑧𝑠).

Example 69 (From “Let…” Expression to List of ANF Definitions)

Consider the following Hygge expression:

let x ∶ 𝑡 = 1 + 2;
𝑥 + 3

The result of toANFDefs(…) for the expression above is the following pair con-
taining a unique variable capturing the result of the “let” expression, and a list
of ANF definitions: (for brevity, here we omit the second element of each ANF
definition triplet, since it is always false because each variable is immutable)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦5,

⎡
⎢
⎢
⎢
⎢
⎣

(𝑦0, 1),
(𝑦1, 2),
(𝑦3, 𝑦0 + 𝑦1),
(𝑥, 𝑦3),
(𝑦4, 3),
(𝑦5, 𝑥 + 𝑦4)

⎤
⎥
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

• If 𝑒 is a if-then-else expression “if 𝑒𝑐 then 𝑒𝑡 else 𝑒𝑓 , then toANFDefs(𝑒) must
ensure that only one of the ANF transformations of 𝑒𝑡 and 𝑒𝑓 is executed, depend-
ing on whether the ANF transformation of 𝑒𝑐 returns true or false. Therefore,
toANFDefs(𝑒) must:

– generate a unique variable 𝑦 representing the result of the if-then-else ex-
pression;

– perform a recursive call on the condition expression 𝑒𝑐 — thus getting the
unique variable 𝑧𝑐 and its list of ANF definitions 𝐿𝑐;

– perform a recursive call on the “then” branch expression 𝑒𝑡 — thus getting
the unique variable 𝑧𝑡 and its list of ANF definitions 𝐿𝑡;

11.4. Transformation of a Hygge Expression into ANF 257



02247 Compiler Construction, Spring 2023

– perform a recursive call on the “else” branch expression 𝑒𝑓 — thus getting
the unique variable 𝑧𝑓 and its list of ANF definitions 𝐿𝑓 ;

– turn the lists of ANF definitions 𝐿𝑡 and 𝐿𝑓 into corresponding Hygge expres-
sions 𝑒′

𝑡 and 𝑒′
𝑓 (both in ANF) by invoking toANF(𝑧𝑡, 𝐿𝑡) and toANF(𝑧𝑓 , 𝐿𝑓)

(described in the section below);

– return the following pair:

* the autogenerated variable 𝑦 with the result of the if-then-else expres-
sion, and

* a list of ANF definitions constructed by concatenating:

- 𝐿𝑐, i.e. the ANF definitions yielded by the condition expression 𝑒𝑐;
and

- the pair (𝑦, if 𝑧𝑐 then 𝑒′
𝑡 else 𝑒′

𝑓), which initialises 𝑦 with the result
of the if-then-else expression in ANF.

Example 70 (From “If-Then-Else” Expression to List of ANF Definitions)

Consider the following Hygge expression:

if 2 < 3 then 1 + 2 else 3 ∗ 4
The results of toANFDefs(1 + 2) and toANFDefs(3 ∗ 4) (for the “then” and “else”
branches) give, respectively, the following pairs containing a unique variable cap-
turing the result of the expression, and a list of ANF definitions (where all defined
variables are immutable):

⎛⎜
⎝

𝑦3, ⎡⎢
⎣

(𝑦0, 1),
(𝑦1, 2),
(𝑦2, 𝑦0 + 𝑦1)

⎤⎥
⎦

⎞⎟
⎠

⎛⎜
⎝

𝑧2, ⎡⎢
⎣

(𝑧0, 3),
(𝑧1, 4),
(𝑧2, 𝑧0 ∗ 𝑧1)

⎤⎥
⎦

⎞⎟
⎠

If we invoke toANF(…, …) (described in the section below) on the two pairs above,
we get the corresponding Hygge expressions in ANF:

let y0 ∶ 𝑡 = 1;
let y1 ∶ 𝑡 = 2;

let y2 ∶ 𝑡 = 𝑦0 + 𝑦1;
𝑦2

let z0 ∶ 𝑡 = 3;
let z1 ∶ 𝑡 = 4;

let z2 ∶ 𝑡 = 𝑧0 ∗ 𝑧1;
𝑧2

The result of toANFDefs(…) for the expression above is the following pair con-
taining a unique variable capturing the result of the “if-then-else” expression, and
a list of ANF definitions:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑤3,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑤0, 2),
(𝑤1, 3),
(𝑤2, 𝑤0 < 𝑤1)

⎛⎜⎜⎜⎜
⎝

𝑤3, if 𝑤2 then
⎛⎜⎜⎜⎜
⎝

let y0 ∶ 𝑡 = 1;
let y1 ∶ 𝑡 = 2;

let y2 ∶ 𝑡 = 𝑦0 + 𝑦1;
𝑦2

⎞⎟⎟⎟⎟
⎠

else
⎛⎜⎜⎜⎜
⎝

let z0 ∶ 𝑡 = 3;
let z1 ∶ 𝑡 = 4;

let z2 ∶ 𝑡 = 𝑧0 ∗ 𝑧1;
𝑧2

⎞⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

258 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

Important: The function toANFDefs(𝑒) contains one case for each possible Hygge ex-
pression 𝑒. The complete implementation of the function is available in the hyggec Git
repository, in the file ANF.fs. For more details, see also Implementation: ANF Transfor-
mation and Register Allocation in hyggec.

11.4.2 Converting a List of ANF Definitions into a Hygge Expres-
sion in ANF

The purpose of the function toANF(𝑥, 𝐿) is to take a list of ANF definitions (ending with
the definition of variable 𝑥) and produce a corresponding Hygge expression in ANF,
consisting of a series of nested “let…” expressions that exactly match the definitions in
𝐿. The idea is that, for each ANF definition triplet (𝑦, 𝑚𝑦, 𝑒𝑦) in the list 𝐿:

• if 𝑚𝑦 is false (i.e. 𝑦 is immutable), we produce a binder “let y ∶ 𝑡 = 𝑒𝑦; …”;

• otherwise, when𝑚𝑦 is true (i.e. 𝑦 is mutable), we produce a binder “let mutable 𝑦 ∶
𝑡 = 𝑒𝑦; …”.

You can find a hint of this behaviour in Example 70 above (for the “then” and “else”
branches of the if-then-else); let us now see a few more examples.

Example 71 (From List of ANF Definitions to Expression in ANF (1))

Consider the pair of variable and ANF definitions in Example 67 , obtained from the
expression 42 by executing toANFDefs(42):

(𝑦0, 𝐿) where 𝐿 = [(𝑦0, false, 42)]
By executing toANF(𝑦0, 𝐿), we get the expression:

let y0 ∶ 𝑡 = 42;
𝑦0

which is the ANF translation of the original expression 42.

Example 72 (From List of ANF Definitions to Expression in ANF (2))

Consider the pair of variable and ANF definitions in Example 68, obtained from the ex-
pression 1 + 2 by executing toANFDefs(1 + 2):

(𝑦2, 𝐿) where 𝐿 = ⎡⎢
⎣

(𝑦0, 1),
(𝑦1, 2),
(𝑦2, 𝑦0 + 𝑦1)

⎤⎥
⎦

By executing toANF(𝑦0, 𝐿), we get the expression:
let y0 ∶ 𝑡 = 1;
let y1 ∶ 𝑡 = 2;
let y2 ∶ 𝑡 = 𝑦0 + 𝑦1;
𝑦2

11.4. Transformation of a Hygge Expression into ANF 259



02247 Compiler Construction, Spring 2023

which is the ANF translation of the original expression 1 + 2.

Example 73 (From List of ANF Definitions to Expression in ANF (3))

Consider the pair of variable name 𝑦5 and ANF definitions 𝐿 obtained in Example 69
from a “let…” expression. If we execute toANF(𝑦5, 𝐿), we get the following expression:

let y0 ∶ 𝑡 = 1;
let y1 ∶ 𝑡 = 2;
let y3 ∶ 𝑡 = 𝑦0 + 𝑦1;
let x ∶ 𝑡 = 𝑦3;
let y4 ∶ 𝑡 = 3;
let y5 ∶ 𝑡 = 𝑥 + 𝑦4;
𝑦5

which is the ANF translation of the “let…” expression in Example 69 .

Important: The implementation of the function toANF(𝑥, 𝐿) is available in the hyggec
Git repository, in the file ANF.fs. For more details, see also Implementation: ANF Trans-
formation and Register Allocation in hyggec.

Exercise 38

Convert the following Hygge expressions into ANF, according to Definition 51. Ideally,
you should proceed in two phases, as described above:

• first, generate the list of ANF definitions;

• then, generate the corresponding ANF expression.

You can use hyggec to check your answers or simply experiment with ANF transforma-
tions.

• 2 ∗ 3
• 1 + 2 ∗ 3
• let x ∶ 𝑡 = 1; 2
• let x ∶ 𝑡 = 1 ∗ 2 ∗ 3; 𝑥

260 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

11.5 ANF-Based Linear Register Allocation

We now address the opening problem for this module: how to compile arbitrarily-
complex Hygge expressions (requiring any number of intermediate results) by only us-
ing a limited number of registers. We explore the following topics:

• Recognising and Discarding Unused Intermediate Results

• Why Discarding Unused Variables is Not Enough

• ANF-Based Code Generation with Register Allocation

11.5.1 Recognising and Discarding Unused Intermediate Results

When a Hygge expression is converted to ANF, each one of its sub-expressions and
intermediate computations becomes associated to a dedicated variable. Therefore:

• we need to maintain the results of a computation available in a register only as
long as the corresponding variable 𝑧 is referenced somewhere in the program;

• to understand whether a variable 𝑧 (and the value it holds) is referenced some-
where in the program, we simply check whether 𝑧 appears as a free variable in
the scope of a “let” binder.

The idea is illustrated in Example 74 below.

Example 74 (A Hygge Program and its Intermediate Computations)

Consider the following Hygge program:

1 let res: int = ((1 + 2) + 3) + 4;
2 assert(res = 10)

When translated into ANF, the program becomes:

1 let y0: int = 1;
2 let y1: int = 2;
3 let y2: int = y0 + y1; // y0 and y1 are now unused
4 let y3: int = 3;
5 let y4: int = y2 + y3; // y2 and y3 are now unused
6 let y5: int = 4;
7 let y6: int = y4 + y5; // y4 and y5 are now unused
8 let res: int = y6; // y6 is now unused
9 let y7: int = 10;

10 let y8: bool = res = y7; // y7 is now unused
11 let y9: unit = assert(y8); // y8 is now unused
12 y9

The comments in the program above mark the points where variables become unused
(i.e. are not in the free variables of the code that follows), and therefore, their associated
register could be reused to hold some other variable. For example:

11.5. ANF-Based Linear Register Allocation 261



02247 Compiler Construction, Spring 2023

• y3 can reuse the register of y0;

• y4 can reuse the register of y1;

• y5 can reuse the register of y2;

• …

By discarding variables as soon as they become unused, and reusing their registers, the
program above can be compiled to just use 3 registers.

11.5.2 Why Discarding Unused Variables is Not Enough

The approach illustrated in the previous section is very helpful to reduce the number of
registers in use; however, it is not enough to address the opening example of this module.
To see why, let us examine a simplified scenario where we only have 3 registers available,
and consider the Hygge programs in Example 75 below.

Example 75 (A Hygge Program using (Too) Many Registers (Simplified))

Consider the following Hygge program:

1 let res: int = 1 + (2 + (3 + 4));
2 assert(res = 10)

When translated into ANF, the program becomes:

1 let y0: int = 1;
2 let y1: int = 2;
3 let y2: int = 3;
4 let y3: int = 4;
5 let y4: int = y2 + y3; // y2 and y3 are now unused
6 let y5: int = y1 + y4; // y1 and y4 are now unused
7 let y6: int = y0 + y5; // y0 and y5 are now unused
8 let res: int = y6; // y6 is now unused
9 let y7: int = 10;

10 let y8: bool = res = y7; // y7 is now unused
11 let y9: unit = assert(y8); // y8 is now unused
12 y9

Observe that the ANF program above needs to maintain the 4 variables y0…y3 available
at the same time (whereas the ANF program in Example 74 can discard y0 and y1 and
y3).

Now, suppose that our target architecture only has 3 available registers (numbered from
0 to 2). In this situation, if we try to compile this ANF program using ./hyggec compile
..., the compiler would crash with the following error:

Unhandled exception. System.Exception: BUG: invalid generic register number 4
at RISCV.Reg.r(UInt32 n) in .../src/RISCV.fs:line 88

262 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

The reason for the crash is that the Code Generation Strategy of hyggec tends to use a
new register for each sub-expression; therefore, when compiling the program above, it
tries to use:

• register Reg.r(0) to hold variable y0 (i.e. the result of the sub-expression 1);

• register Reg.r(1) to hold variable y1 (i.e. the result of the sub-expression 2);

• register Reg.r(2) to hold variable y2 (i.e. the result of the sub-expression 3);

• register Reg.r(3) to hold variable y3 (i.e. the result of the sub-expression 4) — and
this causes the crash.

11.5.3 ANF-Based Code Generation with Register Allocation

To compile Hygge expressions that use more intermediate results (and ANF variables)
than available registers, we need a more sophisticate approach:

• we leverage the fact that expressions are in ANF, and

• we reuse registers even when their value is still needed by the Hygge expression,
by generating assembly code to:

– spill variables, i.e. copy the value of a variable onto the stack, to reuse its
register for another variable; and

– load variabless, i.e. assign a register to a previously-spilled variable (possibly
after spilling another variable) and restore its value from the stack.

To achieve this, we need a code generation environment with the following informa-
tion:

• a target variable name 𝑧 that will contain the result of the expression being com-
piled.

• the known variables 𝑥1, … , 𝑥𝑛;

• each known variable might have up to two storage locations:

– a stack location (as an offset from the frame pointer register fp) that never
changes during the lifetime of a variable;

– if possible, a register that may change during the lifetime of the variable;

• a subset of needed variables that should never be discarded (even if they may
seem unused); and

Now, suppose that we are compiling a Hygge expression 𝑒, using the code generation
environment outlined above. We proceed as described in the following subsections.

11.5. ANF-Based Linear Register Allocation 263



02247 Compiler Construction, Spring 2023

Generating Code for a “Let” Binder or Variable in ANF

According to Definition 51, when we start compiling a Hygge program in ANF we can
expect to find either a “let” binder, or a variable.

When we generate code for a “let” binder “let x ∶ 𝑡 = 𝑒𝑖; 𝑒𝑠” or “let mutable 𝑥 ∶ 𝑡 =
𝑒𝑖; 𝑒𝑠”:

1. we discard all known variables that are not “needed” in the code generation envi-
ronment, nor free (i.e. not used) in 𝑒𝑖 nor 𝑒𝑠 (as described in the previous section).
This helps freeing up registers and stack locations (if possible);

2. we assign both a register and a stack location to the newly-bound variable 𝑥
• if all registers are being used, we generate code to spill one of the other
known variables 𝑥1, … , 𝑥𝑛 onto its assigned stack location, and assign its
register to 𝑥;

• if no stack locations are available, we allocate a new stack location by de-
creasing the stack pointer register sp (recall that the RISC-V stack grows
downwards);

3. we compile the initialisation expression 𝑒𝑖, by targeting the variable 𝑥. Since 𝑒𝑖 is
in ANF, according toDefinition 51, it can only have a few specific shapes (discussed
below);

4. we discard all known variables that are not “needed” in the code generation envi-
ronment, nor free (i.e. not used) in 𝑒𝑠;

5. we generate code for the scope expression 𝑒𝑠.

When we generate code for a variable 𝑥, we proceed as follows:

1. if 𝑥 does not have a register assigned to it (because it has been spilled onto the
stack before), we generate code to load 𝑥 onto a register;

• if all registers are being used, we generate code to spill one of the other
known variables 𝑥1, … , 𝑥𝑛 onto its assigned stack location, and assign its
register to 𝑥;

2. we check where the target variable 𝑧 is stored:

• if 𝑧 has a register assigned to it, we copy the value of 𝑥 onto that register;

• otherwise, 𝑧 has been spilled onto the stack, so we just copy the value of 𝑥
onto the stack location assigned to 𝑧.

264 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

Generating Code for the Initialisation Expression of a “Let” Binder in ANF

According to Definition 51, when we generate code for the initialisation expression of
a “let” binder in ANF, we can only find specific shapes of expressions. We discuss two
cases: addition and if-then-else.

Generating Code for Additions

By Definition 51, an addition in ANF (which may only appear in the initialisation expres-
sion of a “let” binder) can only have the form “𝑥1 + 𝑥2”, i.e. its operands can only be
variables. Therefore, we proceed as follows:

1. we make sure that the addition operands 𝑥1 and 𝑥2 and the target variable 𝑧 are
currently stored on a register;

• to this end, we may need to generate code to spill up to three other variables
onto the stack, and assign their registers to 𝑧, 𝑥1, and 𝑥2;

2. we generate code for the RISC-V instruction add using the registers of 𝑥1, 𝑥2, and
𝑧.

Generating Code for If-Then-Else Expressions

By Definition 51, an if-then-else expression in ANF (which may only appear in the ini-
tialisation expression of a “let” binder) can only have the form “if 𝑦 then 𝑒𝑡 else 𝑒𝑓
i.e. its condition expression can only be a variable; moreover, both 𝑒𝑡 and 𝑒𝑓 must be in
ANF.

To compile the condition 𝑦, we need to make sure that 𝑦 is stored into a register (and
to this end, we may need to generate code to spill some other variable and assign its
register to 𝑦).
The compilation of 𝑒𝑡 and 𝑒𝑓 proceeds recursively — but there is a catch:

• the code generated for 𝑒𝑡 and 𝑒𝑓 may contain code to spill and load variables;

• therefore, the register allocation at the end of 𝑒𝑡 may be different from 𝑒𝑓 .

This situation is illustrated in Example 76 below.

Example 76 (Why We Must Synchronise Register Allocation Across “If-Then-Else”
Branches)

Consider the following Hygge program:

1 let z: bool = true; // Change to 'false' to experiment
2 let x1: int = 1;
3 let x2: int = 2;
4 let x3: int = if z then x1 else 1 + (2 + (3 + 4));
5 assert(x1 = 1);

(continues on next page)

11.5. ANF-Based Linear Register Allocation 265



02247 Compiler Construction, Spring 2023

(continued from previous page)
6 assert(x2 = 2);
7 assert(if z then x3 = x1 else x3 = 10)

Suppose we only have 4 registers available. The following happens:

• variable z is assigned to register Reg.r(0);

• variable x1 is assigned to register Reg.r(1);

• variable x2 is assigned to register Reg.r(2);

• variable x3 is assigned to register Reg.r(3);

• when compiling the “if-then-else” expression:

– the “then” branch does not need to use any additional register;

– the “else” branch needs 4 registers for the intermediate results of the expres-
sion 1 + (2 + (3 + 4)). Therefore, it will need to spill the values z, x1, x2,
and x3 onto the stack;

• therefore, what is the register allocation when the program reaches line 5? Are the
variables on the stack, or on some register? That depends on whether the ‘true’
or ‘false’ branch of the ‘if-then-else’ was taken earlier…

The solution to this issue is to add “synchronisation” assembly code to spill/load variables
ensuring that, no matter which branch of the “if-then-else” is taken, the known variables
have a known register allocation. For example, we can add at the end of the assembly
code of the 𝑒𝑡 branch some assembly code that spills/loads the known variables until
their register allocation exactly matches the allocation at the end of the 𝑒𝑓 branch. We
reprise this idea when discussing its implementation in hyggec, in Example 78 below.

11.6 Implementation: ANF Transformation and Regis-
ter Allocation in hyggec

Tip: The conversion of Hygge programs into ANF (described in this section) is already
implemented in the hyggec Git repository, in a file called ANF.fs. To see what changed
since the last module, you can inspect the differences between the tags union-rec-types
and anf. For more details, see also Implementation: ANF Transformation and Register
Allocation in hyggec.

The following subsections outline the implementation of ANF and register allocation
available on the hyggec Git repository.

The version of hyggec released with this Module adds two option, available in some
compiler phases:

266 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

• the newoption -a or --anf that can be used to activate and inspect ANF conversion
and ANF-based code generation with register allocation; and

• the new option -r or --registers can be used to limit the number of registers
being used for code generation (useful for experiments and debugging).

Therefore, we can now invoke hyggec as follows:

• ./hyggec parse -a file.hyg parses the file, converts it into ANF, and prints the
result.

• ./hyggec interpret -a file.hyg parses the file, converts it into ANF, and inter-
prets the result.

• ./hyggec compile -a -r N file.hyg parses the file, type-checks it, converts the
result into ANF, compiles it using the ANF-Based Code Generation with Register
Allocation with N available registers (dafault: 18), and displays the resulting RISC-
V assembly code. By reducing the value of N, it is possible to observe how the
generated code has to spill/load variables more often.

• ./hyggec compile -a -r N file.hyg parses the file, type-checks it, converts the
result into ANF, compiles it using the ANF-Based Code Generation with Register
Allocation with N available registers (dafault: 18), and executes the resulting RISC-
V assembly code using RARS. By reducing the value of N, the generated code will
spill/load variables more often.

The new version of the compiler also has two new series of tests:

• tests/interpreter-anf/ contains a series of tests that are parsed, converted into
ANF, and then interpreted (these are the same tests of tests/interpreter/);

• tests/codegen-anf/ contains a series of tests that are parsed, type-checked, con-
verted into ANF, compiled using the ANF-based register allocation, and then exe-
cuted in RARS.

Example 77 (A Hygge Program using (Too) Many Registers (Revised))

Consider again the following Hygge program (from Example 75):

1 let res: int = 1 + (2 + (3 + 4));
2 assert(res = 10)

If we save this file as hygge-many-regs-simpl.hyg, we can see its ANF translation by
running:

./hyggec parse -a hygge-many-regs-simpl.hyg

and the output is:

Let $anf (1:1-2:16)
┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)
┣╾init: IntVal 1 (1:16-1:16)
┗╾scope: Let $anf_0 (1:1-2:16)

(continues on next page)

11.6. Implementation: ANF Transformation and Register Allocation in hyggec267



02247 Compiler Construction, Spring 2023

(continued from previous page)
┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)
┣╾init: IntVal 2 (1:21-1:21)
┗╾scope: Let $anf_1 (1:1-2:16)

┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)
┣╾init: IntVal 3 (1:26-1:26)
┗╾scope: Let $anf_2 (1:1-2:16)

┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)
┣╾init: IntVal 4 (1:30-1:30)
┗╾scope: Let $anf_3 (1:1-2:16)

┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)
┣╾init: Add (1:26-1:30)
┃ ┣╾lhs: Var $anf_1 (1:26-1:26)
┃ ┗╾rhs: Var $anf_2 (1:30-1:30)
┗╾scope: Let $anf_4 (1:1-2:16)

┣╾Ascription: Pretype Id "_"; pos:␣
↪(1:1-2:16)

┣╾init: Add (1:21-1:31)
┃ ┣╾lhs: Var $anf_0 (1:21-1:21)
┃ ┗╾rhs: Var $anf_3 (1:26-1:30)
┗╾scope: Let $anf_5 (1:1-2:16)

┣╾Ascription: Pretype Id "_
↪"; pos: (1:1-2:16)

┣╾init: Add (1:16-1:32)
┃ ┣╾lhs: Var $anf␣

↪(1:16-1:16)
┃ ┗╾rhs: Var $anf_4␣

↪(1:21-1:31)
┗╾scope: Let res (1:1-2:16)

┣╾Ascription:␣
↪Pretype Id "_"; pos: (1:1-2:16)

┣╾init: Var $anf_5␣
↪(1:16-1:32)

┗╾scope: Let $anf_
↪6 (1:1-2:16)

␣
↪┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)

┣╾init:␣
↪IntVal 10 (2:14-2:15)

┗╾scope:␣
↪Let $anf_7 (1:1-2:16)

␣
↪┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)

␣
↪┣╾init: Eq (2:8-2:15)

␣
↪┃ ┣╾lhs: Var res (2:8-2:10)

␣
↪┃ ┗╾rhs: Var $anf_6 (2:14-2:15)

␣
↪┗╾scope: Let $anf_8 (1:1-2:16) (continues on next page)

268 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

(continued from previous page)
␣

↪ ┣╾Ascription: Pretype Id "_"; pos: (1:1-2:16)
␣

↪ ┣╾init: Assertion (2:1-2:16)
␣

↪ ┃ ┗╾arg: Var $anf_7 (2:8-2:15)
␣

↪ ┗╾scope: Var $anf_8 (1:1-2:16)

We can compile the program above using the new ANF-based register allocation, limited
to only 4 registers, by running:

./hyggec compile -a -r 4 hygge-many-regs-simpl.hyg

and the output is:

1 .data:
2

3 .text:
4 mv fp, sp # Initialize frame pointer
5 addi sp, sp, -4 # Extend the stack for variable $anf
6 # Variable $anf allocation: register t0, frame pos. 1
7 li t0, 1
8 addi sp, sp, -4 # Extend the stack for variable $anf_0
9 # Variable $anf_0 allocation: register t1, frame pos. 2

10 li t1, 2
11 addi sp, sp, -4 # Extend the stack for variable $anf_1
12 # Variable $anf_1 allocation: register t2, frame pos. 3
13 li t2, 3
14 addi sp, sp, -4 # Extend the stack for variable $anf_2
15 # Variable $anf_2 allocation: register s1, frame pos. 4
16 li s1, 4
17 sw t0, -4(fp) # Spill variable $anf from register t0 to stack
18 addi sp, sp, -4 # Extend the stack for variable $anf_3
19 # Variable $anf_3 allocation: register t0, frame pos. 5
20 add t0, t2, s1 # $anf_3 <- $anf_1 + $anf_2
21 # Variable $anf_4 allocation: register t2, frame pos. 3
22 add t2, t1, t0 # $anf_4 <- $anf_0 + $anf_3
23 # Variable $anf_5 allocation: register t1, frame pos. 2
24 lw t0, -4(fp) # Load variable $anf onto register t0
25 add t1, t0, t2 # $anf_5 <- $anf + $anf_4
26 # Variable res allocation: register t2, frame pos. 1
27 mv t2, t1 # res <- $anf_5
28 # Variable $anf_6 allocation: register t1, frame pos. 2
29 li t1, 10
30 # Variable $anf_7 allocation: register t0, frame pos. 3
31 beq t2, t1, eq_true
32 li t0, 0 # Comparison result is false
33 j eq_end

(continues on next page)

11.6. Implementation: ANF Transformation and Register Allocation in hyggec269



02247 Compiler Construction, Spring 2023

(continued from previous page)
34 eq_true:
35 li t0, 1 # Comparison result is true
36 eq_end:
37 # Variable $anf_8 allocation: register t2, frame pos. 1
38 addi t2, t0, -1
39 beqz t2, assert_true # Jump if assertion OK
40 li a7, 93 # RARS syscall: Exit2
41 li a0, 42 # Assertion violation exit code
42 ecall
43 assert_true:
44 lw t0, 0(fp) # Load variable $result onto register t0
45 mv t0, t2 # $result <- $anf_8
46 li a7, 10 # RARS syscall: Exit
47 ecall # Successful exit with code 0

By following the comments, we can see when the code generation introduces new vari-
ables (by assigning stack space and a register) and spills/loads variables from/to registers.
We can observe, in particular, that:

• variable $anf is spilled onto the stack on line 17, and later reloaded into a register
on line 24; and

• on line 21, variable anf_4 is assigned register t2 and frame position 3, that (ac-
cording to line 12) were previously assigned to $anf_1 (which “disappears” with-
out being spilled onto the stack — hence $anf_1 has become unused and has been
discarded).

11.6.1 ANF Transformation in hyggec

The ANF transformation is implemented in the file ANF.fs, and it follows the proce-
dure described in Transformation of a Hygge Expression into ANF . The main function is
transform, which then invokes toANFDefs and toANF:

/// Transform the given AST node into Administrative Normal Form.
let transform (ast: Node<'E,'T>): Node<'E,'T> =

toANF (toANFDefs ast)

Here are a few remarks about the rest of the file.

• For efficiency, the function toANFDefs builds the list of ANF definitions in reverse
order (i.e. with the latest entries at the head of the list); correspondingly, the
function toANF expects to receive a list of ANF definitions in reverse order;

• The file includes an auxiliary function substVar that is very similar to subst (in
ASTUtil.fs) — except that it specifically substitutes the name of a variable with
another name.

• The unique variable names autogenerated for ANF transformation have a prefix
$anf (often followed by an integer): this guarantees that the autogenerated names

270 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

will not clash with existing variables in the input program, since Parser.fsy does
not accept programs that use $ in variable names.

• When generating “let” binders, the function toANFDefs inserts the pretype "_".
This does not create issues, because:

– if the ANF conversion is applied to an UntypedAST before calling the inter-
preter, the pretypes are not resolved and ignored (because the interpreter
does not use any type information);

– if the ANF conversion is applied to a TypedAST before code generation, the
new pretypes are not resolved and they are ignored (because the code gen-
eration uses the type information available in the AST Nodes).

11.6.2 ANF-Based Code Generation in hyggec

The code generation implemented in the file ANFRISCVCodegen.fs follows the procedure
described in ANF-Based Code Generation with Register Allocation.

Important: TheANF-based code generation in ANFRISCVCodegen.fs is only partial, and
is intended as a demonstration and a basis for Project Ideas. In particular:

• only integer registers are considered, and

• only a few Hygge expressions are implemented (addition, if-then-else, assertions,
…) — just enough to support the examples shown in this Module.

Here is an overview of the main contents of the file.

• The code generation environment has type ANFCodegenEnv and it contains the in-
formation about known and needed variables, allocated registers, etc.:

/// Code generation environment.
type internal ANFCodegenEnv = {

/// Target variable for the result of the assembly code execution.
TargetVar: string
/// Frame position assigned to each known variable.
Frame: Map<string, int>
/// Size of the stack frame.
FrameSize: int
/// List of integer variables stored in registers, with newest ones␣

↪coming
/// first. If a variable does not appear here, then it means that it is
/// allocated on the stack frame.
IntVarsInRegs: List<string * Reg>
/// List of available integer registers.
FreeRegs: List<Reg>
/// Set of variables that are needed in the surrounding scope, and␣

↪should
/// never be discarded to reuse their storage.

(continues on next page)

11.6. Implementation: ANF Transformation and Register Allocation in hyggec271



02247 Compiler Construction, Spring 2023

(continued from previous page)
NeededVars: Set<string>

}

• The main entry point of the ANF-based code generation is the function codegen,
which in turn invokes doCodegen:

/// Generate RISC-V assembly for the given AST (expected to be in ANF),␣
↪using
/// the given number of registers.
let codegen (node: TypedAST) (registers: uint): RISCV.Asm =

/// Name of a special variable used to hold the result of the program
let resultVarName = "$result"
/// Initial codegen environment, with all registers available
/// Note: the definition of 'env' uses list comprehension:
/// https://en.wikibooks.org/wiki/F_Sharp_Programming/Lists#Using_List_

↪Comprehensions
let env = { TargetVar = resultVarName

Frame = Map[(resultVarName, 0)]
FrameSize = 1
IntVarsInRegs = []
FreeRegs = [for i in 0u..(registers - 1u) do yield Reg.r(i)]
NeededVars = Set[resultVarName] }

let result = doCodegen env node
// ...

Notably, the funtion codegen initialises a code generation environment by target-
ing a special variable called $result, which is initially stored in the first avaiable
location on the stack frame, without using any register. It also marks the $result
variable as “needed” (so it can never be discarded during code generation, even if
it is unused), and declares all registers as free.

• Unlike the default Code Generation Strategy of hyggec, the result of doCodegen
(and other functions) in ANFRISCVCodegen.fs is not just an Asm instance. Instead,
doCodegen has the following signature:

/// Code generation function: compile the expression in the given AST node,
/// which is expected to be in ANF.
let rec internal doCodegen (env: ANFCodegenEnv)

(node: TypedAST): ANFCodegenResult = ...

Where the type ANFCodegenResult is defined as:

/// Code generation result.
type internal ANFCodegenResult = {

/// Compiled RISC-V assembly code.
Asm: Asm
/// Updated code generation environment.
Env: ANFCodegenEnv

}

272 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

This is because the function doCodegen may emit assembly code to spill and
load registers — and this changes the register allocation described in the input
environment. For this reason, doCodegen returns an updated code generation en-
vironment, which should be used as input for the subsequent code generation
steps.

• The following auxiliary function generates assembly code to spill a variable
varName onto the stack:

/// Spill the variable with the given name onto its stack position assigned␣
↪in
/// 'env'. Return the assembly code that performs the spill and the updated
/// codegen environment.
let internal spillVar (env: ANFCodegenEnv)

(varName: string): ANFCodegenResult = ...

The function above is used by the following function, that selects which variable
to spill:

/// Spill the integer variable that has been stored in an integer register␣
↪for
/// the longest time, saving it in the stack position assigned in 'env'. ␣

↪Choose
/// a variable that does not belong to the given 'doNotSpill' list. Return␣

↪the
/// assembly code that performs the spilling, and the updated codegen
/// environment.
let internal spillOldestIntVar (env: ANFCodegenEnv)

(doNotSpill: List<string>): ANFCodegenResult␣
↪= ...

This hihglights the strategy used by hyggec for selecting which variable to spill
when all registers are in use: the compiler picks the variable that has been assigned
to a register for the longest time. Other strategies are discussed in the References
and Further Readings.

• The function syncANFCodegenEnvs generates code to synchronise the register al-
location across two branches, according to the idea outlined in Generating Code
for If-Then-Else Expressions.

/// Generate assembly code that spills/loads variables in 'fromEnv'␣
↪achieving
/// the same configuration of 'toEnv'.
let internal syncANFCodegenEnvs (fromEnv: ANFCodegenEnv)

(toEnv: ANFCodegenEnv): Asm = ...

The function works as follows:

– it takes two code generation environments fromEnv and toEnv (e.g. one ob-
tained after compiling the “then” branch of an if-then-else, and the other
obtained after compiling the “else” branch), and

11.6. Implementation: ANF Transformation and Register Allocation in hyggec273



02247 Compiler Construction, Spring 2023

– it returns the assembly code that spills/loads the variables of fromEnv to/from
the stack, and (re-)assigns their registers, until they reach the same configu-
ration of toEnv.

To see syncANFCodegenEnvs in action, you can try Example 78 below.

Example 78 (Synchronising Register Allocation Across “If-Then-Else”
Branches)

Consider again the following Hygge program (from Example 76):

1 let z: bool = true; // Change to 'false' to experiment
2 let x1: int = 1;
3 let x2: int = 2;
4 let x3: int = if z then x1 else 1 + (2 + (3 + 4));
5 assert(x1 = 1);
6 assert(x2 = 2);
7 assert(if z then x3 = x1 else x3 = 10)

If we save the example above in a file called if-then-else-sync-reg-alloc.hyg,
we can see its translation into ANF by running:

./hyggec parse -a if-then-else-sync-reg-alloc.hyg

and we can observe that the “else” branch has manymore ANF variable definitions
(hence, it uses more registers) than the “then” branch.

To generate assembly code from the ANF, by limiting register allocation to 4 reg-
isters only, we can run:

./hyggec compile -a -r 4 if-then-else-sync-reg-alloc.hyg

The generated code is quite long, but let’s focus on the code generated for the
“then” branch of the “if-then-else” expression:

# ...assembly code for the 'false' branch of the 'if'...
j if_end # Jump to skip the 'true' branch of 'if' code

if_true:
mv s1, t1 # $anf_6 <- x1
# Branch synchronization code begins here
sw s1, -16(fp) # Spill variable $anf_6 from register s1 to stack
sw t1, -8(fp) # Spill variable x1 from register t1 to stack
sw t2, -12(fp) # Spill variable x2 from register t2 to stack
sw t0, -4(fp) # Spill variable z from register t0 to stack
lw t2, -16(fp) # Load variable $anf_6 onto register t2
# Branch synchronization code ends here

if_end:
# Rest of the assembly code...

We can see that, after the if_true label, there is the code for the “then” branch of
the “if-then-else”:

274 Module 11: Intermediate Representations and Register Allocation



02247 Compiler Construction, Spring 2023

– first, an mv operation copies variable x1 into $anf_6 (which is the ANF vari-
able holding the result of the if-then-else); and then,

– there is a block of “branch synchronisation code” produced by the function
syncANFCodegenEnvs above. There we can observe, in particular, that the
variable $anf_6 is first spilled from register s1, and then reloaded onto reg-
ister t2, so it gets the same register allocated after the code generation for
the “else” branch. This way, no matter which branch was taken, the rest of
the assembly code can use register t2 to get the value of $anf_6.

11.7 References and Further Readings

ANF was introduced in these seminal papers, with the main purpose of compiling func-
tional languages:

• Amr Sabry and Matthias Felleisen. Reasoning about programs in continuation-
passing style. In Proceedings of the 1992 ACM conference on LISP and functional
programming (LFP ‘92). https://doi.org/10.1145/141471.141563

• Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Proceedings of the ACM SIGPLAN 1993
conference on Programming language design and implementation (PLDI ‘93).
https://doi.org/10.1145/155090.155113

ANF is used, for instance, in the Racket compiler40.

Conceptually, ANF is reminiscent of other intermediate representations used in various
compilers — e.g. Static Single Assignment (SSA) form, and Three-Address Code. To
know more, see for example:

• Keith D. Cooper and Linda Torczon. Engineering a Compiler (Third Edition).
Available on DTU Findit41.

– See, in particular, Chapter 4 - Intermediate Representations

• Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Transactions on Programming Languages and Systems, Oct.
1991. https://doi.org/10.1145/115372.115320

The NFA-based register allocation strategy described in this Module is, broadly speak-
ing, a coarse linear allocation strategy, which traverses the program once and uses the
current set of free variables to find ranges of the programwhere variables are live (i.e. ac-
tually used by the program) or become permanently unused (and thus, can be discarded).
Register allocation is an active research topic, and there are many different strategies,
with trade-offs between complexity, speed of the code generation, and efficiency of the
generated code. To know more, here are two surveys:

40 https://docs.racket-lang.org/rackpropagator/A-Normal_Form.html
41 https://findit.dtu.dk/en/catalog/633248ae8e5bc633f834ced5

11.7. References and Further Readings 275

https://doi.org/10.1145/141471.141563
https://docs.racket-lang.org/rackpropagator/A-Normal_Form.html
https://findit.dtu.dk/en/catalog/633248ae8e5bc633f834ced5
https://doi.org/10.1145/115372.115320


02247 Compiler Construction, Spring 2023

• Fernando Magno Quintão Pereira. A Survey on Register Allocation,
2008. https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/readingMat/
RegisterAllocationSurvey.pdf

• Roberto Castañeda Lozano and Christian Schulte. Survey on Combinatorial Reg-
ister Allocation and Instruction Scheduling. ACM Computing Surveys, May 2020.
Available on DTU Findit42.

11.8 Project Ideas

For this Module, you should implement both the following Project Ideas:

• Project Idea: Implement ANF Translation for (Some of) Your Hygge Extensions

• Project Idea: Implement ANF-Based Code Generation for More Hygge Expressions

11.8.1 Project Idea: Implement ANF Translation for (Some of)
Your Hygge Extensions

The ANF translation in the file ANF.fs does not cover the Hygge expressions you should
have added in previous Project Ideas. Select at least 2 of these expressions, and extend
Definition 51, the file ANF.fs, and the interpreter test suite accordingly:

• you should explain how you extend Definition 51 to support the expressions you
selected;

• you should add new cases to the functions substVars and toANFDefs in ANF.fs;

• you should add new tests under the directory tests/interpreter-anf/. Ideally,
you should reuse the same interpreter tests that you have already developed for
the expressions you selected, by copying them from tests/interpreter/.

11.8.2 Project Idea: Implement ANF-Based Code Generation for
More Hygge Expressions

The ANF-based code generation in the file ANFRISCVCodegen.fs only supports a few
Hygge expressions. For this Project Idea, you should select at least 2 more expressions,
and extend ANFRISCVCodegen.fs to generate code for them:

• for this Project Idea, you could choose the same expressions you chose in Project
Idea: Implement ANF Translation for (Some of) Your Hygge Extensions above — but
it is not mandatory;

• in ANFRISCVCodegen.fs, you should add new cases to the function doCodegen;

• you should add more corresponding test cases under the directory tests/
codegen-anf/.

42 https://findit.dtu.dk/en/catalog/5d24d51dd9001d2d86672c8a

276 Module 11: Intermediate Representations and Register Allocation

https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/readingMat/RegisterAllocationSurvey.pdf
https://homepages.dcc.ufmg.br/~fernando/classes/dcc888/readingMat/RegisterAllocationSurvey.pdf
https://findit.dtu.dk/en/catalog/5d24d51dd9001d2d86672c8a


02247 Compiler Construction, Spring 2023

Hint: If the expression you are adding has some form of branching and conditional jump
(e.g. while loops, short-circuit logical operators, …), then you may need to synchronise
the register allocation of the different branches, similarly to Generating Code for If-Then-
Else Expressions.

11.8. Project Ideas 277



02247 Compiler Construction, Spring 2023

278 Module 11: Intermediate Representations and Register Allocation



12
Module 12: Optimisation

In this Module we discuss how to optimise the code generated by hyggec, with the main
goal of reducing the number of assembly instructions needed to execute a program.

After describing the Overall Objective of this Module, we will explore three families of
optimisations (each one including several variants and specific cases):

• Partial Evaluation

• Copy Propagation and Common Subexpression Elimination (CSE)

• Peephole Optimisation

Then, you will find some References and Further Readings and the Project Ideas for this
Module.

12.1 Overall Objective

There aremany kinds of program optimisations, with different objectives. In thisModule
wewill focus on reducing the number of RISC-V assembly instructions executed by the
compiled program—which usually (but not always!) means that the compiled program
runs faster. To measure the reduction, we can inspect the output of ./hyggec rars -v,
as explained in Example 79 and Example 80 below.

Example 79 (Instructions Count of Compiled RISC-V Programs)

Try to execute:

./hyggec rars -v examples/helloworld.hyg

The output will be similar to the following:

hyggec: debug: Parsed command line options:
{ File = "examples/helloworld.hyg"

LogLevel = warning
(continues on next page)

279



02247 Compiler Construction, Spring 2023

(continued from previous page)
Verbose = true
ANF = false
Registers = 0u }

hyggec: info: Lexing and parsing succeeded.
hyggec: info: Type checking succeeded.
hyggec: debug: Created temporary directory: /tmp/hyggec-132002481
hyggec: debug: Saved assembly code in: /tmp/hyggec-132002481/code.asm
hyggec: info: Launching RARS: java
Hello, World!
hyggec: info: RARS exited with code: 0 (successful termination)
hyggec: debug: RARS output:

Program terminated by calling exit

22

hyggec: debug: Removing temporary directory: /tmp/hyggec-132002481

In this Module we are particularly interested in the number shown after “Program ter-
minated…” : that number (in this example, 22) is the number of RISCV-V assembly in-
structions that were executed by RARS. Our goal is to make that number smaller.

Example 80 (Instructions Count of Compiled RISC-V Programs (2))

Consider again the program in Example 64, and compare the outputs of the following
commands (which use the ANF-based code generation):

1. ./hyggec rars -a -v examples/hygge-many-regs.hyg

2. ./hyggec rars -a -v -r 3 examples/hygge-many-regs.hyg

In the first case, the compiler can use the default number of registers (18) and generates
code that performs minimal spilling/loading of variables to/from the stack.

In the second case, the compiler is forced to using 3 registers only — therefore, it gener-
ates code that frequently spills/loads variables to/from the stack. As a result, the number
of RISC-V assembly instructions executed by RARS is much much higher than the first
case.

280 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

12.2 Partial Evaluation

The idea behind partial evaluation optimisations is to perform at compile-time some
computations (a.k.a. evaluations) that would be normally performed at run-time. Con-
sider, for example:

let x: int = readInt();
let y: int = x + 2 * 3 * 4;
println(y)

Notice that the result of 2 * 3 * 4 will not vary between program executions, so we
could compute it before generating the program code. If we do it, the program above
would have the same observable behaviour of the following program — which executes
less assembly instructions:

let x: int = readInt();
let y: int = x + 24;
println(y)

Partial evaluation is a rather sophisticated compiler optimisation that, when fully im-
plemented, provides a powerful combination of several well-known optimisation tech-
niques in compiler literature, that we briefly discuss below:

• Constant Folding

• Constant Propagation

• Dead Code Elimination

• Function Inlining

12.2.1 Constant Folding

This optimisation technique consists in recognising and computing constant results at
compile-time. For example, given the following program:

let x: int = 10 * 4;
let y: int = 1 * 2;
println(x + y)

We can apply constant folding to obtain the following program, which performs less
computations at run-time:

let x: int = 40;
let y: int = 2;
println(x + y)

12.2. Partial Evaluation 281



02247 Compiler Construction, Spring 2023

12.2.2 Constant Propagation

This optimisation technique replaces variables having a constant value with the value
itself. For example, consider again the programwe obtained above after constant folding:

let x: int = 40;
let y: int = 2;
println(x + y)

We can apply constant propagation to obtain the following program:

let x: int = 40;
let y: int = 2;
println(40 + 2)

…and if we apply constant folding again, the program becomes:

let x: int = 40;
let y: int = 2;
println(42)

12.2.3 Dead Code Elimination

This optimisation technique removes parts of a program that are “dead” in the sense that
they are either:

• unreachable and never executed when a program runs, or

• redundant, because their result is not used by the program.

For example, consider the program we reached above after constant folding and propa-
gation:

let x: int = 40;
let y: int = 2;
println(42)

The definitions of x and y are now redundant (because the two variables are never used,
and their initialisation is only needed to compute unused values). Therefore, the program
above can be optimised as:

println(42)

As another example, consider:

let b: bool = 2 < 3;
if b then println("2 < 3")

else println("2 >= 3!")

If we apply constant folding, the program becomes:

282 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

let b: bool = true;
if b then println("2 < 3!")

else println("2 >= 3!")

And if we apply constant propagation, we get:

let b: bool = true;
if true then println("2 < 3!")

else println("2 >= 3!")

Now, the definition of variable b is redundant, and the else branch of the “if-then-else” is
never executed (i.e. it is unreachable code). Therefore, by applying dead code elimination
we can optimise the program as:

println("2 < 3!")

12.2.4 Function Inlining

This optimisation technique expands the body of a function in the call site, in order to re-
move the operations needed for the function call itself — i.e. copying the call arguments
on registers a0–a7 or on the heap, jumping to the call address, setting up the return a
value, jumping back to the caller.

Consider the following program:

fun add(x: int, y: int): int = x + y;

let a: int = 20;
let b: int = 2;
let res: int = add(a * 2, b);
println(res)

To apply function inlining, we expand the function body in the call site, by substitut-
ing the call arguments. In the case of the program above, we could first apply a first
optimisation via function

We could apply function inlining in different ways, depending on how we combine it
with other techniques. For example, we could first optimise the program above using
constant propagation, thus getting:

fun add(x: int, y: int): int = x + y;

let a: int = 20;
let b: int = 2;
let res: int = add(20 * 2, 2);
println(res)

Now, if we apply constant folding, we get:

12.2. Partial Evaluation 283



02247 Compiler Construction, Spring 2023

fun add(x: int, y: int): int = x + y;

let a: int = 20;
let b: int = 2;
let res: int = add(40, 2);
println(res)

We can now apply function inlining, by:

1. taking the body of the function add (i.e., x + y);

2. substituting the call arguments, thus getting the expression 40 + 2; and

3. replacing the call to add with the expression 40 + 2.

The result is:

fun add(x: int, y: int): int = x + y;

let a: int = 20;
let b: int = 2;
let res: int = 40 + 2;
println(res)

Now, by applying constant folding again, we get:

fun add(x: int, y: int): int = x + y;

let a: int = 20;
let b: int = 2;
let res: int = 42;
println(res)

By applying constant propagation again, we get:

fun add(x: int, y: int): int = x + y;

let a: int = 20;
let b: int = 2;
let res: int = 42;
println(42)

By applying dead code elimination, we finally get the optimised program:

println(42)

284 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

12.2.5 Implementing Partial Evaluation by Leveraging the hyggec
Interpreter

Implementing partial evaluation optimisations typically requires a substantial amount
of work. Luckily, hyggec has an ace up its sleeve: if you observe the optimisation exam-
ples in the previous sections, you may notice that they look very similar to the trans-
formations that the program code undergoes while being reduced by the hyggec built-in
interpreter. Indeed, we can obtain the code optimisations above by suitably invoking the
hyggec interpreter after type-checking, and before code generation.

Reducing Expressions and Their Subexpressions

The idea is that, after type-checking an expression 𝑒, we can try to optimise 𝑒 by reducing
it, and (if that is not possible) by reducing the subexpressions of 𝑒 More in detail:

1. we try to reduce 𝑒 into 𝑒′, using the function reduce in Interpreter.fs;

2. we check the result of the attempted reduction:

• if 𝑒 reduces into 𝑒′, then we take 𝑒′ and we try to reduce it again, going back
to point 1 above;

• if 𝑒 cannot reduce, then:

– if 𝑒 is a “simple” value (i.e. not a lambda term), then we are done;

– if 𝑒 is not a “simple” value (i.e. it is a stuck expression, or a lambda
term), then we take each subexpression of 𝑒 and we try to rewrite it by
reducing it recursively, according to item 1 above.

By iterating this process, we get a new, optimised expression 𝑒′ that cannot be reduced
— and moreover, the subexpressions of 𝑒′ cannot be reduced, either. We then proceed
by generating code for 𝑒′.

Avoiding “Excessive” Reductions

When attempting to reduce an expression 𝑒 into an optimised expression 𝑒′ (as described
above), we want to reduce 𝑒 “as much as possible”, but not “too much” — i.e. we need to
be careful about two important aspects.

1. We must not reduce expressions that perform inputs or outputs: we want to
preserve such expressions and generate code for them, so the compiled program
will perform the corresponding inputs and outputs. To ensure this, we can pass to
Interpreter.reduce a RuntimeEnv where the fields Reader and Printer are None.
If we do this, an expression like print("Hello") will not reduce, and we will be
able to generate code for it. This idea is shown in Example 81 below.

2. We must ensure that the AST of the reduced expression 𝑒′ does not contain any
Pointer instance, because such Pointer instances cannot be compiled (they are
only used by the interpreter). To ensure this, we must start the reductions of 𝑒

12.2. Partial Evaluation 285



02247 Compiler Construction, Spring 2023

using a runtime environment env (of type RuntimeEnv) where env.Heap is empty.
Then, we have two options.

• Simple option: after each reduction step 𝑒 of 𝑒, we check the updated run-
time environment. If its Heap is not empty, it means that the expression 𝑒′

after the reduction may contain a Pointer instance (e.g. generated by struc-
ture constructors or union constructors) — therefore, we generate code for the
expression before the last reduction.

• More sophisticated option: we reduce 𝑒 and its subexpressions as much as
possible (as described above), and then we inspect each subexpression of the
final expression 𝑒′:

– if 𝑒′ does not contain any Pointer subexpression, we can proceed and
generate code for 𝑒′;

– otherwise, if we find some instance of Pointer inside 𝑒′, we backtrack
to the last reductions of 𝑒 that did not contain any Pointer. To perform
this backtracking, we can keep the “last good reduction” of 𝑒 that does
not have any Pointer subexpression, and backtrack to it if necessary.

These options are illustrated in Example 82 below.

Example 81 (Avoiding the Reduction of Input/Output Expressions)

Consider the following Hygge expression:

let x: int = 40;
println(x);
println(x + 2)

Take a runtime environment env (of type RuntimeEnv in Interpreter.fs) where:

• both Reader and Printer are None, and

• both Heap and PtrInfo are empty maps.

Using this runtime environment, we can perform one reduction step of the program
above by calling Interpreter.reduce, which by substitutes the “let” initialisation value
(by rule [R-Let-Subst] in Definition 4) and yields and unchanged runtime environment
env, and the more optimised expression:

println(40);
println(40 + 2)

(Observe that the effect of the reduction above yields a combination of constant prop-
agation and dead code elimination optimisations: the constant initialisation value of x
has been propagated in the program, and the now-redundant let x... definition has
been discarded.)

Now, we do not want to reduce the println(40) expression above, because we want
to generate an assembly program that actually performs that output. This risk is pre-
vented by the runtime environment env above: if we try to use it to reduce println(40),

286 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

then Interpreter.reduce returns None (because the field env.Printer is None), and this
avoids the risk of accidentally reducing print statements.

However, there is opportunity for optimising the expression println(40 + 2) by per-
forming constant folding on the subexpression 40 + 2. To do this, we can leave the
top-evel println(40) expression unchanged, and attempt a reduction step on the subex-
pression println(40 + 2): in this case, Interpreter.reduce yields the expression
println(42). After this, the program becomes:

println(40);
println(42)

There is nothing more we can reduce in this expression using env. Therefore, we can
proceed and generate code for it.

Example 82 (Avoiding Code Generation of Pointer SubExpressions)

Consider the following Hygge expression:

let x: struct {f: int} = struct {f = 40}
println(x.f);
println(x.f + 2)

Take a runtime environment env (of type RuntimeEnv in Interpreter.fs) where:

• both Reader and Printer are None, and

• both Heap and PtrInfo are empty maps.

If we reduce the expression above using env, then Interpreter.reduce yields a program
like the following, where the struct construction has returned a pointer 0x0001, and a
runtime environment env' where env'.Heap contains the new pointer:

let x: struct {f: int} = 0x001
println(x.f);
println(x.f + 2)

We cannot compile this program, because there is no code generation for the pointer
0x0001; to avoid this risk, according to the “simple option” described above, it is enough
to check the runtime environment env' returned by Interpreter.reduce: since env'.
Heap is not empty any more, we reject this reduction and generate code for the initial
expression (i.e. the last expression where env.Heap was empty).

As an alternative, we could also attempt the “more sophisticated option” described
above: even if the last reduction produced an expression with a pointer, we keep reduc-
ing the expression, updating the runtime environment (according to what is returned by
Interpreter.reduce), and hoping to reach a more optimised expression that does not
contain any pointer.

In this example, if we keep reducing the expression above, we get:

12.2. Partial Evaluation 287



02247 Compiler Construction, Spring 2023

println(0x0001.f);
println(0x0001.f + 2)

which still contains pointers, so cannot be compiled. If we try another reduction step,
we get the following expression: (since env'.Heap[0x0001] contains the value 40)

println(40);
println(0x0001.f + 2)

Now, if we try to reduce this expression using env', then Interpreter.reduce re-
turns None (because env'.Printer is None). However, we can leave the top-evel
println(42) expression unchanged, and attempt a reduction step on the subexpres-
sion println(0x0001.f + 2): in this case, Interpreter.reduce yields the expression
println(40 + 2), hence the program becomes:

println(40);
println(40 + 2)

This program does not contain pointers, so it can be compiled. But we can optimise it a
bit more: in fact, if we try to further reduce the second subexpression println(40 + 2),
we get:

println(40);
println(42)

Observe that this expression does not contain any Pointer instance; moreover, there is
nothing more we can reduce using env'. Therefore, we can proceed and generate code
for it.

Also observe that, thanks to the reductions above, we have obtained a combination of
constant folding, constant propagation, and dead code elimination optimisations.

12.3 Copy Propagation and Common Subexpression
Elimination (CSE)

The optimisations we discussed as variants of Partial Evaluation have a common lim-
itation: they depend on the availability of constant values and expressions known at
compile-time. However, this optimisation approach alone is not always effective, as
shown in Example 83 below.

Example 83 (A Hygge Program that Cannot Be Optimised with Partial Evaluation)

Consider the following Hygge expression:

let a: int = readInt();
let b: int = readInt();

(continues on next page)

288 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

(continued from previous page)
let c: int = a;
let d: int = b;
let res: int = (a + b) * (a + b) * (c + d);
println(res)

We cannot apply partial evaluation on this expression, because:

• we cannot reduce the top-level readInt() expressions with a runtime environ-
ment having Reader = None (as required when Avoiding “Excessive” Reductions);
moreover,

• none of the subexpressions can be reduced, either.

Still, the program in Example 83 shows some potential for optimisation:

• the addition a + b is computed twice, and

• the addition c + d has the same value of a + b, so that could also be optimised.

To develop these optimisations, it is very convenient to operate on the ANF transfor-
mation of the expression above — in particular, to operate on the list of ANF definitions
provided by the function toANFDefs(…) — that, for the program in Example 83, is shown
in Example 84 below.

Example 84 (ANF Definitions)

Consider the program in Example 83. The result of the function toANFDefs(…) applied
to that program is:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦5,

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑎, readInt())
(𝑏, readInt())
(𝑐, 𝑎)
(𝑑, 𝑏)
(𝑦1, 𝑎 + 𝑏)
(𝑦2, 𝑎 + 𝑏)
(𝑦3, 𝑦1 ∗ 𝑦2)
(𝑦4, 𝑐 + 𝑑)
(res, 𝑦3 ∗ 𝑦4)
(𝑦5, println(res))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

By scanning the list of ANF optimisations, we can apply two optimisations:

• Copy Propagation

• Common Subexpression Elimination (CSE)

12.3. Copy Propagation and Common Subexpression Elimination (CSE) 289



02247 Compiler Construction, Spring 2023

12.3.1 Copy Propagation

This optimisation technique simplifies a list of ANF definitions as follows:

1. traverse a list of ANF definitions, starting from the top (i.e. the “oldest” definition);

2. whenever a definition introduces a variable 𝑥 initialised as a copy of another vari-
able 𝑦, then:

• check if 𝑥 is the target of an assignment “𝑥 ← …” in the rest of the ANF
definitions:

– if 𝑥 is the target of some assignment, leave it unchanged;

– otherwise, if 𝑥 is never the target of any assignment:

* remove the definition of 𝑥 from the list, and

* replace each occurrence of 𝑦 with 𝑥.

Note: If a variable is defined as immutable (like all variables the list of ANF definitions
above), then we know it will never be the target of an assignment, without need to
inspect the list of ANF definitions.

Example 85 (Copy Propagation in Action)

Consider the list of ANF definitions in Example 84. We have that:

• 𝑐 is defined as a copy of 𝑎. Therefore, we remove the definition (𝑐, 𝑎) and replace
𝑐 with 𝑎 in the remaining definitions;

• 𝑑 is defined as a copy of 𝑏. Therefore, we remove the definition (𝑑, 𝑏) and replace
𝑐 with 𝑎 in the remaining definitions.

After these changes, the resulting list of ANF definitions is:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑎, readInt())
(𝑏, readInt())
(𝑦1, 𝑎 + 𝑏)
(𝑦2, 𝑎 + 𝑏)
(𝑦3, 𝑦1 ∗ 𝑦2)
(𝑦4, 𝑎 + 𝑏)
(res, 𝑦3 ∗ 𝑦4)
(𝑦5, println(res))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

290 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

12.3.2 Common Subexpression Elimination (CSE)

This optimisation technique simplifies a list of ANF definitions by avoiding the re-
computation of pure expressions, i.e. expressions that have no side effects, such as
simple additions, multiplications, boolean operations, numerical comparisons.

Therefore, CFE proceeds as follows:

1. traverse a list of ANF definitions, starting from the top (i.e. the “oldest” definition);

2. whenever a definition introduces a variable 𝑥 initialised with a pure expression 𝑒,
then:

• check whether the same expression 𝑒 is used to initialise some other variable
𝑦 defined after 𝑥, but before 𝑥 is used as target for an assignment “𝑥 ← …”;

• replace the initialisation of 𝑦 with 𝑥 (instead of 𝑒).

Note: If a variable is defined as immutable (like all variables the list of ANF defini-
tions above), then we know it will never be the target of an assignment: therefore, if
an immutable 𝑥 is initialised with expression 𝑒, we can simply replace all subsequent
occurrences of expression 𝑒 with 𝑥.

Example 86 (Common Subexpression Elimination in Action)

Consider the list of ANF definitions in Example 85. We have that:

• 𝑎 and 𝑏 are initialised with expressions that are not pure arithmetic expressions,
so leave them as they are;

• 𝑦1 is initialised with a pure arithmetic expression 𝑎 + 𝑏, and the same expression
is later used to initialise 𝑦2 and 𝑦4: therefore, we replace the initialisations of 𝑦2
and 𝑦4 with 𝑦1.

After these changes, the resulting list of ANF definitions is:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(𝑎, readInt())
(𝑏, readInt())
(𝑦1, 𝑎 + 𝑏)
(𝑦2, 𝑦1)
(𝑦3, 𝑦1 ∗ 𝑦2)
(𝑦4, 𝑦1)
(res, 𝑦3 ∗ 𝑦4)
(𝑦5, println(res))

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

And if we apply Copy Propagation to the list of ANF definitions above, we can replace

12.3. Copy Propagation and Common Subexpression Elimination (CSE) 291



02247 Compiler Construction, Spring 2023

the uses of 𝑦2 and 𝑦4 with 𝑦1, thus getting the following list of ANF definitions:

𝐿 =

⎡
⎢
⎢
⎢
⎢
⎣

(𝑎, readInt())
(𝑏, readInt())
(𝑦1, 𝑎 + 𝑏)
(𝑦3, 𝑦1 ∗ 𝑦1)
(res, 𝑦3 ∗ 𝑦1)
(𝑦5, println(res))

⎤
⎥
⎥
⎥
⎥
⎦

And if we apply toANF(𝑦5, 𝐿), we get the optimised Hygge program, which computes
the same results of the program in Example 83 without performing duplicated computa-
tions:

let a: int = readInt();
let b: int = readInt();
let y1: int = a + b;
let y3: int = y1 * y1;
let res: int = y3 * y1;
let y5: unit = println(res);
y5

12.4 Peephole Optimisation

This optimisation technique operates close to the target language of the compiler, with
the objective of removing redundant or inefficient operations that are often introduced
by code generation. In the case of hyggec, peephole optimisations could operate either
on the list ANF definitions of the input program, on the list of RISC-V instructions con-
tained in an Asm data structure (defined in RISCV.fs). In this section, we focus on the
second scenario (but the principles can be easily adapted to the first scenario).

In essence, peephole optimisation works by pattern matching over the list of assembly
instructions, by looking at a limited number of instructions each time — with a “peep-
hole” or “window” that moves along the list of instructions. When inefficient patterns
are identified, they are replaced with more performant sequences of instructions.

The effectiveness of peephole optimisation depends on the input code that it is given to
the code generator, and on the assembly code generation strategy:

• on the one hand, if the code being compiled is already optimised (e.g. after Partial
Evaluation and/orCopy Propagation and Common Subexpression Elimination (CSE))
and the code generation is not too simplistic, peephole optimisation may not have
many chances to further optimise the final target code;

• on the other hand, peephole optimisation is a simple technique that may improve
the target code in cases that would be more cumbersome to handle by improving
earlier phases of the compiler.

We now discuss some examples of peephole optimisations.

292 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

12.4.1 Strength Reduction

This optimisation technique replaces some assembly operations with more efficient vari-
ants that require less CPU clock cycles. As a consequence, the total number of executed
assembly instructions may not change, but the execution speed will improve.

Consider a sequence of assembly instruction like the following (where r0, r1, … represent
some registers), that multiplies the content of register r1 by 2:

li r0, 2
mul r2, r1, r0

The same result could be computed in less clock cycles by the following code, that adds
the content of a register to itself:

li r0, 2 # Register r0 is not needed by 'add' below, but may be used later
add r2, r1, r1

A even more efficient alternative to both examples above is to perform a logical left-shift
operation by 1 bit:

li r0, 2 # Register r0 is not needed by 'slli' below, but may be used later
slli r2, r1, 1

Example 87 (A Hygge Program Optimisable with Strength Reduction)

Consider the following simple Hygge program:

42 * 2

If we compile it, we get a RISC-V assembly program with the following instructions in
the text segment:

mv fp, sp # Initialize frame pointer
li t0, 42
li t1, 2
mul t0, t0, t1
# ...more instructions follow...

We can see that the 3rd and 4th line show amultiplication patternwhich can be improved
by strength reduction, producing the optimised assembly code:

mv fp, sp # Initialize frame pointer
li t0, 42
li t1, 2
slli t0, t0, 1
# ...more instructions follow...

Similar strength reduction optimisations can be achieved for multiplications to other
powers of 2: for example, an integer multiplication by 32 can be replaced by a logical

12.4. Peephole Optimisation 293



02247 Compiler Construction, Spring 2023

left-shift of 5 bits.

Similarly, an integer division by 8 can be replaced by an arithmetic right-shift of 3 bits
(with the RISC-V instruction srai, which preserves the sign of the number being shifted).

Other optimisable operations are multiplications and additions involving the constant
value 0.

12.4.2 Removal of Redundant Assignments

Some assignment patterns can be simplified. For example, consider:

mv r0, r1
mv r1, r0

It can be simplified as:

mv r0, r1

Similarly, an assignment of a value to a register that is immediately overwritten by an-
other assignment can be removed. For example:

mv r0, r1
li r0, 42

can be optimised by omitting the first mv operation. Similarly,

mv r0, r1
mv r0, r2

can be optimised by omitting the first mv operation.

Example 88 (A Hygge Program Optimisable by Removing Redundant Assignments)

Consider the following simple Hygge program:

let mutable a: int = 1;
let mutable b: int = 2;
a <- b;
b <- a

If we compile it, we get a RISC-V assembly program with the following instructions in
the text segment:

mv fp, sp # Initialize frame pointer
li t0, 1
li t1, 2
mv t2, t1 # Load variable 'b'
mv t0, t2 # Assignment to variable a
mv t2, t0 # Load variable 'a'

(continues on next page)

294 Module 12: Optimisation



02247 Compiler Construction, Spring 2023

(continued from previous page)
mv t1, t2 # Assignment to variable b
mv t1, t2 # Move 'let' scope result to 'let' target register
mv t0, t1 # Move 'let' scope result to 'let' target register
# ...more instructions follow...

We can see that:

• on the 5th and 6th line, there is an assignment of t2 to t0, followed by a redundant
assignment of t0 to t2;

• on the 7th and 8th line, there is an assignment of t2 to t1, followed by a redundant
assignment of t2 to t1;

If we remove the redundant assignments, we get the optimised RISC-V assembly:

mv fp, sp # Initialize frame pointer
li t0, 1
li t1, 2
mv t2, t1 # Load variable 'b'
mv t0, t2 # Assignment to variable a
mv t1, t2 # Assignment to variable b
mv t0, t1 # Move 'let' scope result to 'let' target register
# ...more instructions follow...

12.5 References and Further Readings

The literature and research on compiler optimisations is very broad, and the techniques
illustrated in this Module are only a representative sample of common techniques that
can be implemented in hyggec with a limited effort.

For instance, many compilers implement loop optimisation techniques. Part of such
optimisations can be obtained in hyggec via Partial Evaluation (by reducing the steps of
a “while” loop) — but for a broader overview (also including more strength reduction
techniques) you can see e.g.:

• João M.P. Cardoso, José Gabriel F. Coutinho, and Pedro C. Diniz. Embedded Com-
puting for High Performance. Morgan Kaufmann, 2017. Available on DTU Findit43.
See, in particular:

– Chapter 5 - Source code transformations and optimizations

The general notion of partial evaluation is discussed in this book (while the presentation
in this Module is narrowed down to closely fit the hyggec compiler and interpreter):

• Neil D. Jones, Carsten Gomard, Peter Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993. Available on Peter Sestoft’s website44.

43 https://doi-org.proxy.findit.cvt.dk/10.1016/C2015-0-00283-0
44 https://www.itu.dk/people/sestoft/pebook/

12.5. References and Further Readings 295

https://doi-org.proxy.findit.cvt.dk/10.1016/C2015-0-00283-0
https://www.itu.dk/people/sestoft/pebook/


02247 Compiler Construction, Spring 2023

The term “peephole optimisation” was introduced in this brief, but very influential arti-
cle.

• William Marshall McKeeman. Peephole optimization. Communications of the
ACM, July 1965. https://doi.org/10.1145%2F364995.365000

12.6 Project Ideas

For this Module, you should implement two of the following Project Ideas:

• Implement Optimisations Based on Partial Evaluation

• Implement Copy Propagation and/or Common Subexpression Elimination

• Implement Some Peephole Optimisations

Note: You do not need to implement an extensive test suite for these project ideas:
it is enough to provide e.g. some examples where the number of executed RISC-V in-
structions is decreased when running the optimised RISC-V assembly (by inspecting the
output of ./hyggec rars -v ..., as shown in Example 79). In the case of Strength Re-
duction, it is enough to show some examples where inefficient assembly instructions are
replaced with more efficient ones (even if the instructions count does not decrease).

Tip: To implement these project ideas, you should first pull the latest changes from the
upstream hyggec Git repository: they add some useful extensions that simplify the work.
To see what changed since the last module, you can inspect the differences between the
tags anf and optimization.

12.6.1 Implement Optimisations Based on Partial Evaluation

The goal of this project idea is to implement partial evaluation by suitably invoking
the hyggec interpreter after type-checking and before generating code, as described in
Implementing Partial Evaluation by Leveraging the hyggec Interpreter .

Important: Partial evaluation optimisations should not be enabled by default: the
reason is that, if partial evaluation is always enabled, then the hyggec code generation
tests might be optimised away into very simple expressions — and as a consequence, the
code generation tests would not be covering all aspects of code generation!

To control when optimisations are enabled, the latest version of hyggec includes a new
option -O or --optimize, that takes an unsigned integer argument, and can be used as
follows:

• ./hyggec compile -O 1 file.hyg

• ./hyggec rars -O 42 file.hyg

296 Module 12: Optimisation

https://doi.org/10.1145%2F364995.365000


02247 Compiler Construction, Spring 2023

You can decide how to interpret the argument — as long as 0 (the default) means that
partial evaluation is not performed. For example, you may decide that -O 1 enables all
optimisations, including partial evaluation. To see how to access the option’s integer
argument, see Program.fs and look for opt.Optimize (which is used to enable peephole
optimisation in the Project Idea below).

Hint:

• You could implement a function that performs partial evaluation as part of an
existing hyggec file, or in a separate file. If you create a new file, you will need to
add it to hyggec.fsproj45.

• For better results, you may want to iterate partial evaluation multiple times, until
the expression returned by the optimisation is equal to the expression given as
input (which means that there is nothing more to optimise). However, if you do
this, you may want to be careful if the input program contains infinite loops…

• For this optimisation to work, it is very important that, when the interpreter re-
duces an AST node containing an expression 𝑒, the reduced AST node maintains
the same type of the original AST node. If the type of an AST node changes during
reductions, the code generation for the reduced AST node may be incorrect.

12.6.2 Implement Copy Propagation and/or Common Subexpres-
sion Elimination

Thegoal of this project idea is to implementCopy Propagation and Common Subexpression
Elimination (CSE).The easiest way to obtain this is to edit the file ANF.fs, adding the logic
that optimises the list of ANF definitions returned by the function toANFDefs.

Hint:

• Remember that, for efficiency, the function toANFDefs (in the file ANF.fs) builds
the list of ANF definitions with the most recent at the head of the list.

• For better results, you may want to iterate this optimisation multiple times, until
list of ANF definitions returned by the optimisation is equal to the list given as
input (which means that there is nothing more to optimise).

45 https://fable.io/docs/your-fable-project/project-file.html

12.6. Project Ideas 297

https://fable.io/docs/your-fable-project/project-file.html


02247 Compiler Construction, Spring 2023

12.6.3 Implement Some Peephole Optimisations

The goal of this project idea is to implement some cases of Peephole Optimisation. The
starting point is the new file Peephole.fs, which is only used when hyggec is invoked
with the new option -O.

More specifically, Peephole.fs contains a function optimizeText with a sample case
of peephole optimisation: if it sees a sequence of li and add instructions, performing
an addition using a just-loaded immediate value, then it replaces the two instructions
with a single addi. The side conditions check the registers being used, and whether the
immediate value is small enough to fit in 12 bits (as required by addi).

/// Optimize a list of Text segment statements.
let rec internal optimizeText (text: List<TextStmt>): List<TextStmt> =

match text with
// If a small-enough constant integer is loaded and then added, perform
// a direct `addi` operation instead
| (RV.LI(rd1, value), comment1) ::

(RV.ADD(rd2, rs1, rs2), comment2) ::
rest when rd1 = rs2 && (isImm12 value) ->

(RV.ADDI(rd2, rs1, Imm12(value)), comment1 + " " + comment2) ::
optimizeText rest

| stmt :: rest ->
// If we are here, we did not find any pattern to optimize: we skip the
// first assembly statement and try with the rest
stmt :: (optimizeText rest)

| [] -> []

You should add new cases to optimizeText above, using F# list pattern matching46 (as
in the code snippet above) to match sequences of RISC-V instructions that you want to
optimise.

To see the effect of the sample peephole optimisation above, you can create a file called
e.g. example.hyg containing just the expression 1 + 2 + 3, and then see the difference
between the assembly code generated by:

• ./hyggec compile example.hyg (which does not use peephole optimisation)

• ./hyggec compile -O 1 example.hyg (which does use peephole optimisation)

You can also inspect whether there is a difference in the number of executed assembly
instructions, by launching:

• ./hyggec rars -v example.hyg (which does not use peephole optimisation)

• ./hyggec rars -v -O 1 example.hyg (which does use peephole optimisation)

46 https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching#list-pattern

298 Module 12: Optimisation

https://learn.microsoft.com/en-us/dotnet/fsharp/language-reference/pattern-matching#list-pattern


A
ChangeLog

This is the list of changes applied to these lecture notes, with the most recent at the top.

• 01/05/2023: added more details about the Oral Group Examination.

• 28/04/2023: added examples showing Strength Reduction and Removal of Redun-
dant Assignments.

• 26/04/2023: published Module 12: Optimisation.

• 22/04/2022: fixed typo in “let rec…” substitution in Project Idea: Recursive Func-
tions, and added explanations.

• 19/04/2023: published Module 11: Intermediate Representations and Register Allo-
cation.

• 14/04/2023: fixed some typos in Module 10: Discriminated Unions and Recursive
Types.

• 12/04/2023: published Module 10: Discriminated Unions and Recursive Types.

• 30/03/2023: added more details to Project Idea: Recursive Functions.

• 29/03/2023: published Module 9: Closures; fixed errors in Definition 2 and Defini-
tion 14.

• 20/03/2023: publishedModule 8: Lab Day; fixed typos in Project Idea: ExtendHygge
with Arrays.

• 14/03/2023: published Module 7: Structured Data Types and the Heap.

• 08/03/2023: published Module 6: Functions and the RISC-V Calling Convention.

• 01/03/2023: published Module 5: Mutability and Loops.

• 21/02/2023: published Module 4: Lab Day.

• 17/02/2023: added more hints to the Project Ideas of Module 3: Hands-On with
hyggec.

• 15/02/2023: published Module 3: Hands-On with hyggec.

• 09/02/2023: published Module 2: The Hygge0 Language Specification.

299



02247 Compiler Construction, Spring 2023

• 01/02/2023: published Module 0: Overview of the Course and Assessment and Mod-
ule 1: Introduction to RISC-V .

300 ChangeLog


	Module 0: Overview of the Course and Assessment
	What is a Compiler?
	Course Objectives and Rationale
	A Taste of Hygge
	Tools and Programming Languages Used During the Course
	Software Requirements
	F# Programming Language

	Assessment: Group Project and Oral Group Examination
	Standard Project Route
	Custom Project Route
	Project Report
	Oral Group Examination

	Group Work Organisation: Some Suggestions

	Module 1: Introduction to RISC-V
	What is RISC-V? And Why Is It Relevant?
	Base and Floating-Point Registers
	A Few RISC-V Assembly Instructions
	Load and Store Instructions
	Integer Arithmetic Instructions
	Control Transfer Instructions
	Single-Precision Floating-Point Instructions
	System Instructions

	RISC-V Assembly Program Structure
	RARS — RISC-V Assembler and Runtime Simulator
	Downloading and Running RARS
	RARS System Calls

	References and Further Readings
	Lab Exercises

	Module 2: The Hygge0 Language Specification
	Formal Syntax of Hygge0
	Syntax Trees
	Grammar Ambiguities

	Formal Semantics of Hygge0
	Preliminaries: Inference Rules and Substitutions
	Structural Operational Semantics of Hygge0

	Type-Checking Hygge0 Programs
	Types and the Typing Environment
	Resolving Pretypes into Valid Types
	The Hygge0 Typing System (Part 1)
	Subtyping
	Properties of Well-Typed Hygge0 Programs

	References and Further Readings
	Lab Activities

	Module 3: Hands-On with hyggec
	Quick Start
	The Compiler Phases of hyggec
	Overview of the hyggec Source Tree
	The Abstract Syntax Tree
	Defining the AST: First Attempt
	The AST Definition

	The Lexer and Parser
	The Parser Configuration File Parser.fsy (Simplified)
	The Lexer Configuration File Lexer.fsl
	Example: the Lexer and Parser in Action
	The Real Parser.fsy
	References and Further Readings

	The Built-In Interpreter
	Types and Type Checking
	Type Checking or Type Inference?
	Implementation of src/Typechecker.fs

	Code Generation
	RISC-V Code Generation Utilities
	Code Generation Strategy
	A Tour of doCodegen

	The Test Suite of hyggec
	Example: Extending Hygge0 and hyggec with a Subtraction Operator
	Formal Specification of Subtraction
	Extending the AST
	Extending the Pretty Printer
	Extending the Lexer
	Testing the Lexer

	Extending the Parser
	Testing the Parser

	Extending the Interpreter
	Testing the Interpreter

	Extending the Type Checker
	Testing the Type Checker

	Extending the Code Generation
	Testing the Code Generation


	Project Ideas
	Project Idea: Extend Hygge0 and hyggec with New Arithmetic Operations
	Project Idea: Extend Hygge0 and hyggec with New Relational Operations
	Project Idea: Extend Hygge0 and hyggec with the Logical Operator “Exclusive Or”
	Optional Challenge: “And” and “Or” with Short-Circuit-Semantics


	Module 4: Lab Day
	Module 5: Mutability and Loops
	Overall Objective
	Mutable Variables
	Design Considerations
	Syntax
	Operational Semantics
	Typing Rules
	Implementation
	Lexer, Parser, Interpreter, and Type Checking
	Code Generation


	“While” Loop
	Syntax
	Operational Semantics
	Typing Rules
	Implementation
	Lexer, Parser, Interpreter, and Type Checking
	Code Generation


	Project Ideas
	Project Idea: C-Style Increment/Decrement Operators
	Project Idea: C-Style Compute-Assign Operators
	Project Idea: “Do…While” Loop
	Project Idea: “For” Loop
	Optional Challenge: a Better “Do…While” Loop


	Module 6: Functions and the RISC-V Calling Convention
	Overall Objective
	Syntax
	Operational Semantics
	Typing Rules
	The RISC-V Memory Layout, Stack, and Calling Convention
	The RISC-V Memory Layout
	Implementing Functions in RISC-V
	Calling a Function: a Simple Case
	Calling a Function While Saving Temporary Registers
	A Function That Performs a System Call
	Calling a Function with More Than 8 Arguments
	The RISC-V Calling Convention and Its Code Generation
	Code Generation for a Function Instance
	Code Generation for a Function Call
	Detailed Example: the RISC-V Calling Convention in Action



	Implementation
	Lexer, Parser, Interpreter, and Type Checking
	Code Generation
	Code Generation for Lambda Terms
	Code Generation for Named Functions
	Code Generation for Applications


	Limitations of the Current Specification and Code Generation
	References and Further Readings
	Project Ideas
	Project Idea: Function Subtyping
	Project Idea: Recursive Functions
	Project Idea: Improved Implementation of the RISC-V Calling Convention: Pass and Return Floats via Registers
	Project Idea: Improved Implementation of the RISC-V Calling Convention: Pass more than 8 Integer (or Float) Arguments via The Stack


	Module 7: Structured Data Types and the Heap
	Overall Objective
	Syntax
	Operational Semantics
	Typing Rules
	Implementation
	Lexer, Parser, Interpreter, and Type Checking
	Code Generation
	Code Generation for Structure Constructors
	Code Generation for Field Selection
	Code Generation for Assignments to Structure Fields


	References and Further Readings
	Project Ideas
	Project Idea: Extend Hygge with Reference Cells
	Project Idea: Extend Hygge with Tuples
	Project Idea: Mutable vs. Immutable Structure Fields
	Project Idea: Extend Hygge with Arrays
	Optional Challenge: Extend Hygge with Copying of Structures


	Module 8: Lab Day
	Module 9: Closures
	Overall Objective
	What is a Closure?
	Free Variables
	Captured Variables and Closures

	Closures that Capture Immutable Variables
	Closure Conversion of a Lambda Term
	Applying a Closure-Converted Lambda Term

	Closures that Capture Mutable Variables
	Closures that Capture Top-Level Variables
	Implementation
	Free Variables of an AST Node
	Captured Variables of an AST Node

	References and Further Readings
	Project Ideas
	Project Idea: Code Generation for Top-Level Closures
	Project Idea: Forbid Closures of Local Variables
	Project Idea: Code Generation for Closures of Immutable Variables
	Project Idea: Forbid Closures of Mutable Variables
	Project Idea: Support Closures of Mutable Variables
	Step 1: Updating the Hygge Semantics and the hyggec Interpreter
	Step 2: Updating the hyggec Code Generation



	Module 10: Discriminated Unions and Recursive Types
	Discriminated Union Types and Pattern Matching
	Overall Objective
	Syntax
	Operational Semantics
	Free and Captured Variables
	Typing Rules
	Implementation
	Lexer, Parser, Interpreter, and Type Checking

	Recursive Types
	Overall Objective
	Extending Type Definitions to Support Recursive Types
	Extending Subtyping to Support Recursive Types
	Implementation of Recursive Types and Subtyping

	References and Further Readings
	Project Ideas
	Project Idea: Exhaustive Pattern Matching
	Project Idea: Implement Code Generation for Union Type Constructors and Pattern Matching
	Project Idea: Implement Recursive Subtyping
	Project Idea: Better Inference of Pattern Matching Result Type


	Module 11: Intermediate Representations and Register Allocation
	Overall Objective
	What is an Intermediate Representation (IR)?
	Administrative Normal Form (ANF)
	Transformation of a Hygge Expression into ANF
	Converting a Hygge Expression into a List of ANF Definitions
	Converting a List of ANF Definitions into a Hygge Expression in ANF

	ANF-Based Linear Register Allocation
	Recognising and Discarding Unused Intermediate Results
	Why Discarding Unused Variables is Not Enough
	ANF-Based Code Generation with Register Allocation
	Generating Code for a “Let” Binder or Variable in ANF
	Generating Code for the Initialisation Expression of a “Let” Binder in ANF
	Generating Code for Additions
	Generating Code for If-Then-Else Expressions



	Implementation: ANF Transformation and Register Allocation in hyggec
	ANF Transformation in hyggec
	ANF-Based Code Generation in hyggec

	References and Further Readings
	Project Ideas
	Project Idea: Implement ANF Translation for (Some of) Your Hygge Extensions
	Project Idea: Implement ANF-Based Code Generation for More Hygge Expressions


	Module 12: Optimisation
	Overall Objective
	Partial Evaluation
	Constant Folding
	Constant Propagation
	Dead Code Elimination
	Function Inlining
	Implementing Partial Evaluation by Leveraging the hyggec Interpreter
	Reducing Expressions and Their Subexpressions
	Avoiding “Excessive” Reductions


	Copy Propagation and Common Subexpression Elimination (CSE)
	Copy Propagation
	Common Subexpression Elimination (CSE)

	Peephole Optimisation
	Strength Reduction
	Removal of Redundant Assignments

	References and Further Readings
	Project Ideas
	Implement Optimisations Based on Partial Evaluation
	Implement Copy Propagation and/or Common Subexpression Elimination
	Implement Some Peephole Optimisations


	ChangeLog

