
Statistical Models of Appearance

for Computer Vision 1

T.F. Cootes and C.J.Taylor
Imaging Science and Biomedical Engineering,

University of Manchester,
Manchester M13 9PT, U.K.
email: t.cootes@man.ac.uk
http://www.isbe.man.ac.uk

March 8, 2004

1This is an ongoing draft of a report describing our work on Active Shape Models and Active Appear-
ance Models. Hopefully it will be expanded to become more comprehensive, when I get the time. My
apologies for the missing and incomplete sections and the inconsistancies in notation. TFC

Contents

1 Overview 5

2 Introduction 6

3 Background 9

4 Statistical Shape Models 12

4.1 Suitable Landmarks . 13

4.2 Aligning the Training Set . 13

4.3 Modelling Shape Variation . 15

4.4 Choice of Number of Modes . 16

4.5 Examples of Shape Models . 17

4.6 Generating Plausible Shapes . 19

4.6.1 Non-Linear Models for PDF . 20

4.7 Finding the Nearest Plausible Shape . 21

4.8 Fitting a Model to New Points . 22

4.9 Testing How Well the Model Generalises . 23

4.10 Estimating p(shape) . 24

4.11 Relaxing Shape Models . 24

4.11.1 Finite Element Models . 25

4.11.2 Combining Statistical and FEM Modes 25

4.11.3 Combining Examples . 27

4.11.4 Examples . 27

4.11.5 Relaxing Models with a Prior on Covariance 28

5 Statistical Models of Appearance 29

5.1 Statistical Models of Texture . 29

5.2 Combined Appearance Models . 31

5.2.1 Choice of Shape Parameter Weights . 32

5.3 Example: Facial Appearance Model . 32

5.4 Approximating a New Example . 32

1

CONTENTS 2

6 Image Interpretation with Models 34
6.1 Overview . 34
6.2 Choice of Fit Function . 34
6.3 Optimising the Model Fit . 35

7 Active Shape Models 37
7.1 Introduction . 37
7.2 Modelling Local Structure . 38
7.3 Multi-Resolution Active Shape Models . 39
7.4 Examples of Search . 41

8 Active Appearance Models 44
8.1 Introduction . 44
8.2 Overview of AAM Search . 44
8.3 Learning to Correct Model Parameters . 45

8.3.1 Results For The Face Model . 46
8.3.2 Perturbing The Face Model . 47

8.4 Iterative Model Refinement . 48
8.4.1 Examples of Active Appearance Model Search 49

8.5 Experimental Results . 50
8.5.1 Examples of Failure . 52

8.6 Related Work . 52

9 Constrained AAM Search 55
9.1 Introduction . 55
9.2 Model Matching . 55

9.2.1 Basic AAM Formulation . 56
9.2.2 MAP Formulation . 56
9.2.3 Including Priors on Point Positions . 57
9.2.4 Isotropic Point Errors . 58

9.3 Experiments . 58
9.3.1 Point Constraints . 58
9.3.2 Including Priors on the Parameters . 59
9.3.3 Varying Number of Points . 60

9.4 Summary . 61

10 Variations on the Basic AAM 64
10.1 Sub-sampling During Search . 64
10.2 Search Using Shape Parameters . 65
10.3 Results of Experiments . 65
10.4 Discussion . 68

11 Alternatives and Extensions to AAMs 69
11.1 Direct Appearance Models . 69
11.2 Inverse Compositional AAMs . 70

CONTENTS 3

12 Comparison between ASMs and AAMs 73

12.1 Experiments . 74

12.2 Texture Matching . 75

12.3 Discussion . 77

13 Automatic Landmark Placement 79

13.1 Automatic landmarking in 2D . 79

13.2 Automatic landmarking in 3D . 81

14 View-Based Appearance Models 83

14.1 Training Data . 84

14.2 Predicting Pose . 85

14.3 Tracking through wide angles . 86

14.4 Synthesizing Rotation . 88

14.5 Coupled-View Appearance Models . 89

14.5.1 Predicting New Views . 89

14.6 Coupled Model Matching . 90

14.7 Discussion . 92

14.8 Related Work . 92

15 Applications and Extensions 94

15.1 Medical Applications . 94

15.2 Tracking . 96

15.3 Extensions . 96

16 Discussion 98

A Applying a PCA when there are fewer samples than dimensions 101

B Aligning Two 2D Shapes 102

B.1 Similarity Case . 102

B.2 Affine Case . 103

C Aligning Shapes (II) 105

C.1 Translation (2D) . 105

C.2 Translation and Scaling (2D) . 106

C.3 Similarity (2D) . 106

C.4 Affine (2D) . 107

D Representing 2D Pose 108

D.1 Similarity Transformation Case . 108

E Representing Texture Transformations 109

CONTENTS 4

F Image Warping 110
F.1 Piece-wise Affine . 110
F.2 Thin Plate Splines . 111
F.3 One Dimension . 112
F.4 Many Dimensions . 113

G Density Estimation 114
G.1 The Adaptive Kernel Method . 114
G.2 Approximating the PDF from a Kernel Estimate 115
G.3 The Modified EM Algorithm . 115

H Implementation 116

Chapter 1

Overview

The ultimate goal of machine vision is image understanding - the ability not only to recover image
structure but also to know what it represents. By definition, this involves the use of models
which describe and label the expected structure of the world. Over the past decade, model-
based vision has been applied successfully to images of man-made objects. It has proved much
more difficult to develop model-based approaches to the interpretation of images of complex
and variable structures such as faces or the internal organs of the human body (as visualised in
medical images). In such cases it has even been problematic to recover image structure reliably,
without a model to organise the often noisy and incomplete image evidence. The key problem
is that of variability. To be useful, a model needs to be specific - that is, to be capable of
representing only ’legal’ examples of the modelled object(s). It has proved difficult to achieve
this whilst allowing for natural variability. Recent developments have overcome this problem;
it has been shown that specific patterns of variability inshape and grey-level appearance can be
captured by statistical models that can be used directly in image interpretation.

This document describes methods of building models of shape and appearance, and how
such models can be used to interpret images.

5

Chapter 2

Introduction

The majority of tasks to which machine vision might usefully be applied are ’hard’. The examples
we use in this work are from medical image interpretation and face recognition, though the same
considerations apply to many other domains. The most obvious reason for the degree of difficulty
is that most non-trivial applications involve the need for an automated system to ’understand’
the images with which it is presented - that is, to recover image structure and know what
it means. This necessarily involves the use of models which describe and label the expected
structure of the world. Real applications are also typically characterised by the need to deal
with complex and variable structure - faces are a good example - and with images that provide
noisy and possibly incomplete evidence - medical images are a good example, where it is often
impossible to interpret a given image without prior knowledge of anatomy.

Model-based methods offer potential solutions to all these difficulties. Prior knowledge of
the problem can, in principle, be used to resolve the potential confusion caused by structural
complexity, provide tolerance to noisy or missing data, and provide a means of labelling the
recovered structures. We would like to apply knowledge of the expected shapes of structures,
their spatial relationships, and their grey-level appearance to restrict our automated system
to ’plausible’ interpretations. Of particular interest are generative models - that is, models
sufficiently complete that they are able to generate realistic images of target objects. An example
would be a face model capable of generating convincing images of any individual, changing their
expression and so on. Using such a model, image interpretation can be formulated as a matching
problem: given an image to interpret, structures can be located and labelled by adjusting the
model’s parameters in such a way that it generates an ’imagined image’ which is as similar as
possible to the real thing.

Because real applications often involve dealing with classes of objects which are not identical -
for example faces - we need to deal with variability. This leads naturally to the idea of deformable
models - models which maintain the essential characteristics of the class of objects they represent,
but which can deform to fit a range of examples. There are two main characteristics we would
like such models to possess. First, they should be general - that is, they should be capable of
generating any plausible example of the class they represent. Second, and crucially, they should
be specific - that is, they should only be capable of generating ’legal’ examples - because, as we
noted earlier, the whole point of using a model-based approach is to limit the attention of our

6

7

system to plausible interpretations. In order to obtain specific models of variable objects, we
need to acquire knowledge of how they vary.

Model-based methods make use of a prior model of what is expected in the image, and
typically attempt to find the best match of the model to the data in a new image. Having
matched the model, one can then make measurements or test whether the target is actually
present.

This approach is a ‘top-down’ strategy, and differs significantly from ‘bottom-up’ or ‘data-
driven’ methods. In the latter the image data is examined at a low level, looking for local
structures such as edges or regions, which are assembled into groups in an attempt to identify
objects of interest. Without a global model of what to expect, this approach is difficult and
prone to failure.

A wide variety of model based approaches have been explored (see the review below). This
work will concentrate on a statistical approach, in which a model is built from analysing the
appearance of a set of labelled examples. Where structures vary in shape or texture, it is possible
to learn what are plausible variations and what are not. A new image can be interpretted by
finding the best plausible match of the model to the image data. The advantages of such a
method are that

• It is widely applicable. The same algorithm can be applied to many different problems,
merely by presenting different training examples.

• Expert knowledge can be captured in the system in the annotation of the training examples.

• The models give a compact representation of allowable variation, but are specific enough
not to allow arbitrary variation different from that seen in the training set.

• The system need make few prior assumptions about the nature of the objects being mod-
elled, other than what it learns from the training set. (For instance, there are no boundary
smoothness parameters to be set.)

The models described below require a user to be able to mark ‘landmark’ points on each of
a set of training images in such a way that each landmark represents a distinguishable point
present on every example image. For instance, when building a model of the appearance of an
eye in a face image, good landmarks would be the corners of the eye, as these would be easy to
identify and mark in each image. This constrains the sorts of applications to which the method
can be applied - it requires that the topology of the object cannot change and that the object is
not so amorphous that no distinct landmarks can be applied. Unfortunately this rules out such
things as cells or simple organisms which exhibit large changes in shape.

This report is in two main parts. The first describes building statistical models of shape
and appearance. The second describes how these models can be used to interpret new images.
This involves minimising a cost function defining how well a particular instance of a model
describes the evidence in the image. Two approaches are described. The first, Active Shape
Models, manipulates a shape model to describe the location of structures in a target image. The
second, Active Appearance Models (AAMs), manipulate a model cabable of synthesising new
images of the object of interest. The AAM algorithm seeks to find the model parameters which

8

generate a synthetic image as close as possible to the target image. In each case the parameters
of the best fitting model instance can be used for further processing, such as for measurement
or classification.

Chapter 3

Background

There is now a considerable literature on using deformable models to interpret images. Below I
mention only a few of the relevant works. (One day I may get the time to extend this review to
be more comprehensive).

The simplest model of an object is to use a typical example as a ‘golden image’. A correlation
method can be used to match (or register) the golden image to a new image. If structures in
the golden image have been labelled, this match then gives the approximate position of the
structures in the new image. For instance, one can determine the approximate locations of
many structures in an MR image of a brain by registering a standard image, where the standard
image has been suitably annotated by human experts. However, the variability of both shape
and texture of most targets limits the precision of this method.

One approach to representing the variations observed in an image is to ‘hand-craft’ a model
to solve the particular problem currently addressed. For instance Yuille et al [129] build up a
model of a human eye using combinations of parameterised circles and arcs. Though this can
be effective it is complicated, and a completely new solution is required for every application.

Staib and Duncan [111] represent the shapes of objects in medical images using fourier
descriptors of closed curves. The choice of coefficients affects the curve complexity. Placing limits
on each coefficient constrains the shape somewhat but not in a systematic way. It can be shown
that such fourier models can be made directly equivalent to the statistical models described
below, but are not as general. For instance, they cannot easily represent open boundaries.

Kass et al [65] introduced Active Contour Models (or ‘snakes’) which are energy minimising
curves. In the original formulation the energy has an internal term which aims to impose
smoothness on the curve, and an external term which encourages movement toward image
features. They are particularly useful for locating the outline of general amorphous objects.
However, since no model (other than smoothness) is imposed, they are not optimal for locating
objects which have a known shape.

Alternative statistical approaches are described by Grenander et al [46] and Mardia et al
[78]. These are, however, difficult to use in automated image interpretation. Goodall [44]
and Bookstein [8] use statistical techniques for morphometric analysis, but do not address the
problem of automated interpretation. Kirby and Sirovich [67] describe statistical modelling of
grey-level appearance (particularly for face images) but do not address shape variability.

9

10

A more comprehensive survey of deformable models used in medical image analysis is given
in [81].

Various approaches to modelling variability have been described. The most common is to
allow a prototype to vary according to some physical model. Bajcsy and Kovacic [1] describe
a volume model (of the brain) that deforms elastically to generate new examples. Christensen
et. al.[19, 18] describe a viscous flow model of deformation which they also apply to the brain,
but is very computationally expensive. Park et. al.[91] and Pentland and Sclaroff [93] both
represent the outlines or surfaces of prototype objects using finite element methods and describe
variability in terms of vibrational modes though there is no guarantee that this is appropriate.
Turk and Pentland [116] use principal component analysis to describe the intensity patterns in
face images in terms of a set of basis functions, or ‘eigenfaces’. Though valid modes of variation
are learnt from a training set, and are more likely to be more appropriate than a ‘physical’
model, the representation is not robust to shape changes, and does not deal well with variability
in pose and expression. Eigenfaces can, however, be matched to images easily using correlation
based methods.

Poggio and co-workers [39] [62] synthesize new views of an object from a set of example
views. They fit the model to an unseen view by a stochastic optimization procedure. This
is slow, but can be robust because of the quality of the synthesized images. Cootes et al [24]
describe a 3D model of the grey-level surface, allowing full synthesis of shape and appearance.
However, they do not suggest a plausible search algorithm to match the model to a new image.
Nastar et. al.[89] describe a related model of the 3D grey-level surface, combining physical and
statistical modes of variation. Though they describe a search algorithm, it requires a very good
initialization. Lades et. al.[73] model shape and some grey level information using an elastic
mesh and Gabor jets. However, they do not impose strong shape constraints and cannot easily
synthesize a new instance.

In the field of medical image interpretation there is considerable interest in non-linear image
registration. Typically this involves finding a dense flow field which maps one image onto another
so as to optimize a suitable measure of difference (eg sum of squares error or mutual information).
This can be treated as interpretation through synthesis, where the synthesized image is simply
a deformed version of one of the first image. Examples of such algorithms are reviewed in [77],
and include the work of Christensen [19, 18], Collins et. al.[21], Thirion [114] and Lester et.
al.[75] amongst others.

In developing our new approach we have benefited from insights provided by two earlier
papers. Covell [26] demonstrated that the parameters of an eigen-feature model can be used to
drive shape model points to the correct place. The AAM described here is an extension of this
idea. Black and Yacoob [7] use local, hand-crafted models of image flow to track facial features,
but do not attempt to model the whole face. The AAM can be thought of as a generalization of
this, in which the image difference patterns corresponding to changes in each model parameter
are learnt and used to modify a model estimate.

In a parallel development Sclaroff and Isidoro have demonstrated ‘Active Blobs’ for tracking
[101]. The approach is broadly similar in that they use image differences to drive tracking,
learning the relationship between image error and parameter offset in an off-line processing
stage. The main difference is that Active Blobs are derived from a single example, whereas
Active Appearance Models use a training set of examples. The former use a single example as the

11

original model template, allowing deformations consistent with low energy mesh deformations
(derived using a Finite Element method). A simply polynomial model is used to allow changes
in intensity across the object. AAMs learn what are valid shape and intensity variations from
their training set.

Chapter 4

Statistical Shape Models

Here we describe the statistical models of shape which will be used to represent objects in
images. The shape of an object is represented by a set of n points, which may be in any
dimension. Commonly the points are in two or three dimensions. Shape is usually defined as
that quality of a configuration of points which is invariant under some transformation. In two
or three dimensions we usually consider the Similarity transformation (translation, rotation and
scaling). The shape of an object is not changed when it is moved, rotated or scaled.

Recent advances in the statistics of shape allow formal statistical techniques to be applied
to sets of shapes, making possible analysis of shape differences and changes [32].

Our aim is to derive models which allow us to both analyse new shapes, and to synthesise
shapes similar to those in a training set. The training set typically comes from hand annotation
of a set of training images, though automatic landmarking systems are being developed (see
below). By analysing the variations in shape over the training set, a model is built which can
mimic this variation.

Much of the following will describe building models of shape in an arbitrary d-dimensional
space, under a similarity transform Tθ (where θ are the parameters of the transformation). Most
examples will be given for two dimensional shapes under the Similarity transformation (with
parameters of translation, scaling and orientation), as these are the easiest to represent on the
page, and probably the most widely studied.

Note however that the dimensions need not always be in space, they can equally be time or
intensity in an image. For instance

3D Shapes can either be composed of points in 3D space, or could be points in 2D with a time
dimension (for instance in an image sequence)

2D Shapes can either be composed of points in 2D space, or one space and one time dimension

1D Shapes can either be composed of points along a line, or, as is used below, intensity values
sampled at particular positions in an image.

There an numerous other possibilities. In each case a suitable transformation must be defined
(eg Similarity for 2D or global scaling and offset for 1D).

12

4.1. SUITABLE LANDMARKS 13

4.1 Suitable Landmarks

Good choices for landmarks are points which can be consistently located from one image to
another. The simplest method for generating a training set is for a human expert to annotate
each of a series of images with a set of corresponding points. In practice this can be very
time consuming, and automatic and semi- automatic methods are being developed to aid this
annotation.

In two dimensions points could be placed at clear corners of object boundaries, ‘T’ junctions
between boundaries or easily located biological landmarks. However, there are rarely enough
of such points to give more than a sparse desription of the shape of the target object. This
list would be augmented with points along boundaries which are arranged to be equally spaced
between well defined landmark points (Figure 4.1).

Object Boundary

High Curvature

‘T’ Junction

Equally spaced
intermediate points

Figure 4.1: Good landmarks are points of high curvature or junctions. Intermediate points can
be used to define boundary more precisely.

If a shape is described n points in d dimensions we represent the shape by a nd element
vector formed by concatenating the elements of the individual point position vectors.

For instance, in a 2-D image we can represent the n landmark points, {(xi, yi)}, for a single
example as the 2n element vector, x, where

x = (x1, . . . , xn, y1, . . . , yn)
T (4.1)

Given s training examples, we generate s such vectors xj . Before we can perform statistical
analysis on these vectors it is important that the shapes represented are in the same co-ordinate
frame. We wish to remove variation which could be attributable to the allowed global transfor-
mation, T .

4.2 Aligning the Training Set

There is considerable literature on methods of aligning shapes into a common co-ordinate frame,
the most popular approach being Procrustes Analysis [44]. This aligns each shape so that the
sum of distances of each shape to the mean (D =

∑ |xi− x̄|2) is minimised. It is poorly defined
unless constraints are placed on the alignment of the mean (for instance, ensuring it is centred on
the origin, has unit scale and some fixed but arbitrary orientation). Though analytic solutions
exist to the alignment of a set, a simple iterative approach is as follows:

4.2. ALIGNING THE TRAINING SET 14

1. Translate each example so that its centre of gravity is at the origin.

2. Choose one example as an initial estimate of the mean shape and scale so that |x̄| = 1.

3. Record the first estimate as x̄0 to define the default reference frame.

4. Align all the shapes with the current estimate of the mean shape.

5. Re-estimate mean from aligned shapes.

6. Apply constraints on the current estimate of the mean by aligning it with x̄0 and scaling
so that |x̄| = 1.

7. If not converged, return to 4.

(Convergence is declared if the estimate of the mean does not change significantly after an
iteration)

The operations allowed during the alignment will affect the shape of the final distribution.
For two and three dimensional shapes a common approach is to centre each shape on the origin,
scale each so that |x| = 1 and then choose the orientation for each which minimises D. The
scaling constraint means that the aligned shapes x lie on a hypersphere, which can introduce
significant non-linearities if large shape changes occur. For instance, Figure 4.2(a) shows the
corners of a set of rectangles with varying aspect ratio (a linear change), aligned in this fashion.
The scale constraint ensures all the corners lie on a circle about the origin. A linear change in
the aspect ratio introduces a non-linear variation in the point positions. If we can arrange that
the points lie closer to a straight line, it simplifies the description of the distribution used later
in the analysis.

An alternative approach is to allow both scaling and orientation to vary when minimising
D. Suppose Ts,θ(x) scales the shape, x, by s and rotates it by θ.

To align two 2D shapes, x1 and x2, each centred on the origin (x1.1 = x2.1 = 0), we choose
a scale, s, and rotation, θ, so as to minimise |Ts,θ(x1)−x2|2, the sum of square distances between
points on shape x2 and those on the scaled and rotated version of shape x1. Appendix B gives
the optimal solution.

If this approach is used to align the set of rectangles, Figure 4.2(b), their corners lie on circles
offset from the origin. This introduces even greater non-linearity than the first approach.

A third approach is to transform each shape into the tangent space to the mean so as to
minimise D. The tangent space to xt is the hyperplane of vectors normal to xt, passing through
xt. ie All the vectors x such that (xt − x).xt = 0, or x.xt = 1 if |xt| = 1. Figure 4.2(c)
demonstrates that for the rectangles this leads to the corners varying along a straight lines,
orthogonal to the lines from the origin to the corners of the mean shape (a square). This
preserves the linear nature of the shape variation. The simplest way to achieve this is to align
the shapes with the mean, allowing scaling and rotation, then project into the tangent space by
scaling x by 1/(x.x̄).

Different approaches to alignment can produce different distributions of the aligned shapes.
We wish to keep the distribution compact and keep any non-linearities to a minimum, so use
the tangent space approach in the following.

4.3. MODELLING SHAPE VARIATION 15

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
a) All unit scale
b) Mean unit scale
c) Tangent space

Figure 4.2: Aligning rectangles with varying aspect ration. a) All shapes set to unit scale, b)
Scale and angle free, c) Align into tangent space

4.3 Modelling Shape Variation

Suppose now we have s sets of points xi which are aligned into a common co-ordinate frame.
These vectors form a distribution in the nd dimensional space in which they live. If we can
model this distribution, we can generate new examples, similar to those in the original training
set, and we can examine new shapes to decide whether they are plausible examples.

In particular we seek a parameterised model of the form x = M(b), where bis a vector of
parameters of the model. Such a model can be used to generate new vectors, x. If we can model
the distribution of parameters, p(b we can limit them so that the generated x’s are similar to
those in the training set. Similarly it should be possible to estimate p(x) using the model.

To simplify the problem, we first wish to reduce the dimensionality of the data from nd to
something more manageable. An effective approach is to apply Principal Component Analysis
(PCA) to the data. The data form a cloud of points in the nd-D space. PCA computes the
main axes of this cloud, allowing one to approximate any of the original points using a model
with fewer than nd parameters. The approach is as follows.

1. Compute the mean of the data,

x̄ =
1

s

s
∑

i=1

xi (4.2)

2. Compute the covariance of the data,

S =
1

s− 1

s
∑

i=1

(xi − x̄)(xi − x̄)T (4.3)

3. Compute the eigenvectors, φi and corresponding eigenvalues λi of S (sorted so that λi ≥
λi+1). When there are fewer samples than dimensions in the vectors, there are quick
methods of computing these eigenvectors - see Appendix A.

4.4. CHOICE OF NUMBER OF MODES 16

If Φ contains the t eigenvectors corresponding to the largest eigenvalues, then we can then
approximate any of the training set, x using

x ≈ x̄+Φb (4.4)

where Φ = (φ1|φ2| . . . |φt) and b is a t dimensional vector given by

b = ΦT (x− x̄) (4.5)

The vector b defines a set of parameters of a deformable model. By varying the elements of
b we can vary the shape, xusing Equation 4.4. The variance of the ith parameter, bi, across the
training set is given by λi. By applying limits of ±3

√
λi to the parameter bi we ensure that the

shape generated is similar to those in the original training set.
The number of eigenvectors to retain, t, can be chosen so that the model represents some

proportion (eg 98%) of the total variance of the data, or so that the residual terms can be
considered noise. See section 4.4 below.

For instance, Figure 4.3 shows the principal axes of a 2D distribution of vectors. In this
case any of the points can be approximated by the nearest point on the principal axis through
the mean. x ≈ x′ = x̄+ bp where b is the distance along the axis from the mean of the closest
approach to x. Thus the two dimensional data is approximated using a model with a single
parameter, b. Similarly shape models controlling many hundreds of model points may need only
a few parameters to approximate the examples in the original training set.

x

p

b

x

p

x

x’

Figure 4.3: Applying a PCA to a set of 2D vectors. p is the principal axis. Any point xcan be
approximated by the nearest point on the line, x′ (see text).

4.4 Choice of Number of Modes

The number of modes to retain, t, can be chosen in several ways. Probably the simplest is to
choose t so as to explain a given proportion (eg 98%) of the variance exhibited in the training
set.

Let λi be the eigenvalues of the covariance matrix of the training data. Each eigenvalue gives
the variance of the data about the mean in the direction of the corresponding eigenvector. The
total variance in the training data is the sum of all the eigenvalues, VT =

∑

λi.

4.5. EXAMPLES OF SHAPE MODELS 17

We can then choose the t largest eigenvalues such that

t
∑

i=1

λi ≥ fvVT (4.6)

where fv defines the proportion of the total variation one wishes to explain (for instance,
0.98 for 98%).

If the noise on the measurements of the (aligned) point positions has a variance of σ2
n, then

we could choose the largest t such that λt > σ2
n, assuming that the eigenvalues are sorted into

descending order.
An alternative approach is to choose enough modes that the model can approximate any

training example to within a given accuracy. For instance, we may wish that the best approxi-
mation to an example has every point within one pixel of the corresponding example points.

To achieve this we build models with increasing numbers of modes, testing the ability of
each to represent the training set. We choose the first model which passes our desired criteria.

Additional confidence can be obtained by performing this test in a miss-one-out manner. We
choose the smallest t for the full model such that models built with t modes from all but any
one example can approximate the missing example sufficiently well.

4.5 Examples of Shape Models

Figure 4.4 shows the outlines of a hand used to train a shape model. They were obtained from
a set of images of the authors hand. Each is represented by 72 landmark points. The ends and
junctions of the fingers are true landmarks, other points were equally spaced along the boundary
between.

Figure 4.4: Example shapes from training set of hand outlines

Building a shape model from 18 such examples leads to a model of hand shape variation
whose modes are demonstrated in figure 4.5.

4.5. EXAMPLES OF SHAPE MODELS 18

Mode 1

Mode 2

Mode 3

Figure 4.5: Effect of varying each of first three hand model shape parameters in turn between
±3 s.d.

Images of the face can demonstrate a wide degree of variation in both shape and texture.
Appearance variations are caused by differences between individuals, the deformation of an indi-
vidual face due to changes in expression and speaking, and variations in the lighting. Typically
one would like to locate the features of a face in order to perform further processing (see Fig-
ure 4.6). The ultimate aim varies from determining the identity or expression of the person to
deciding in which direction they are looking [74].

Figure 4.6: Example face image annotated with landmarks

Figure 4.7 shows example shapes from a training set of 300 labelled faces (see Figure 4.6
for an example image showing the landmarks). Each image is annotated with 133 landmarks.
The shape model has 36 modes, which explain 98% of the variance in the landmark positions
in the training set. Figure 4.8 shows the effect of varying the first three shape parameters in

4.6. GENERATING PLAUSIBLE SHAPES 19

turn between ±3 standard deviations from the mean value, leaving all other parameters at zero.
These modes explain global variation due to 3D pose changes, which cause movement of all
the landmark points relative to one another. Less significant modes cause smaller, more local
changes. The modes obtained are often similar to those a human would choose if designing a
parameterised model. However, they are derived directly from the statistics of a training set
and will not always separate shape variation in an obvious manner.

Figure 4.7: Example shapes from training set of faces

Mode 1

Mode 2

Mode 3

Figure 4.8: Effect of varying each of first three face model shape parameters in turn between
±3 s.d.

4.6 Generating Plausible Shapes

If we wish to use the model x = x̄ + Φb to generate examples similar to the training set, we
must choose the parameters, b, from a distribution learnt from the training set. Thus we must
estimate this distribution, p(b), from the training set. We will define a set of parameters as
‘plausible’ if p(b) ≥ pt, where pt is some suitable threshold on the p.d.f.. pt is usually chosen so
that some proportion (eg 98%) of the training set passes the threshold.

If we assume that bi are independent and gaussian, then

4.6. GENERATING PLAUSIBLE SHAPES 20

log p(b) = −0.5
t
∑

i=1

b2i
λi

+ const (4.7)

To constrain b to plausible values we can either apply hard limits to each element, bi, (for
instance |bi| ≤ 3

√
λi), or we can constrain b to be in a hyperellipsoid,

(

t
∑

i=1

b2i
λi

)

≤Mt (4.8)

Where the threshold, Mt, is chosen using the χ2 distribution.

4.6.1 Non-Linear Models for PDF

Approximating the distribution as a gaussian (or as uniform in a hyper-box) works well for a
wide variety of examples, but cannot adequately represent non-linear shape variations, such as
those generated when parts of the object rotate, or there are changes in viewing position of a
3D object. There have been several non-linear extensions to the PDM, either using polynomial
modes [109], using a multi-layer perceptron to perform non-linear PCA [108] or using polar
co-ordinates for rotating sub-parts of the model [51].

However, all these approaches assume that varying the parameters b within given limits will
always generate plausible shapes, and that all plausible shapes can be so generated. This is not
always the case. For instance, if a sub-part of the shape can appear in one of two positions, but
not in-between, then the distribution has two separate peaks, with an illegal space in between.
Without imposing more complex constraints on the parameters b, models of the form x = f(b)
are likely to generate illegal shapes.

For instance, consider the set of synthetic training examples shown in Figure 4.9. Here 28
points are used to represent a triangle rotating inside a square (there are 3 points along each
line segment). If we apply PCA to the data, we find there are two significant components.
Projecting the 100 original shapes x into the 2-D space of b (using (4.5)) gives the distribution
shown in Figure 4.10. This is clearly not gaussian. To generate new examples using the model
which are similar to the training set we must constrain the parameters b to be near the edge of
the circle. Points at the mean (b = 0) should actually be illegal.

One approach would be to use an alternative parameterisation of the shapes. Heap and Hogg
[51] use polar coordinates for some of the model points, relative to other points. A more general
approach is to use non-linear models of the probability density function, p(b). This allows the
modelling of distinct classes of shape as well as non-linear shape variation, and does not require
any labelling of the class of each training example.

A useful approach is to model p(b) using a mixture of gaussians approximation to a kernel
density estimate of the distribution.

pmix(x) =
m
∑

j=1

wjG(x : µj ,Sj) (4.9)

See Appendix G for details.

4.7. FINDING THE NEAREST PLAUSIBLE SHAPE 21

Figure 4.9: Examples from train-
ing set of synthetic shapes

b1

b2 −2.0 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2.0

−2.0

−1.5

−1.0

−0.5

0

0.5

1.0

1.5

2.0

Figure 4.10: Distribution of bfor
100 synthetic shapes

Example of the PDF for a Set of Shapes

Figure 4.11 shows the p.d.f. estimated for b for the rotating triangle set described above. The
adaptive kernel method was used, with the initial h estimated using cross-validation. The desired
number of components can be obtained by specifying an acceptable approximation error. Figure
4.12 shows the estimate of the p.d.f. obtained by fitting a mixture of 12 gaussians to the data.

Figure 4.11: Plot of pdf esti-
mated using the adaptive kernel
method

Figure 4.12: Plot of pdf approxi-
mation using mixture of 12 gaus-
sians

4.7 Finding the Nearest Plausible Shape

When fitting a model to a new set of points, we have the problem of finding the nearest plausible
shape, x to a target shape, x’. The first estimate is to project into the parameter space, giving
b′ = ΦT (x′ − x̄).

We define a set of parameters as plausible if p(b) ≥ pt. If p(b) < pt we wish to move x to
the nearest point at which it is considered plausible.

4.8. FITTING A MODEL TO NEW POINTS 22

If our model of p(b) is as a single gaussian, we can simply truncate the elements bi such that
|bi| ≤ 3

√
λi. Alternatively we can scale b until

(

t
∑

i=1

b2i
λi

)

≤Mt (4.10)

Where the threshold, Mt, is chosen using the χ2 distribution.

If, however, we use a mixture model to represent p(b), and p(b′) < pt, we must find the
nearest b such that p(b) ≥ pt. In practice this is difficult to locate, but an acceptable approxi-
mation can be obtained by gradient ascent - simply move uphill until the threshold is reached.
The gradient of (4.9) is straightforward to compute, and suitable step sizes can be estimated
from the distance to the mean of the nearest mixture component.

For instance, Figure 4.13 shows an example of the synthetic shape used above, with its points
perturbed by noise. Figure 4.14 shows the result of projecting into the space of b and back.
There is significant reduction in noise, but the triangle is unacceptably large compared with
examples in the training set. Figure 4.15 shows the shape obtained by gradient ascent to the
nearest plausible point using the 12 component mixture model estimate of p(b). The triangle is
now similar in scale to those in the training set.

Figure 4.13: Shape with
noise

Figure 4.14: Projection
into b-space

Figure 4.15: Nearby
plausible shape

4.8 Fitting a Model to New Points

An example of a model in an image is described by the shape parameters, b, combined with
a transformation from the model co-ordinate frame to the image co-ordinate frame. Typically
this will be a Similarity transformation defining the position, (Xt, Yt), orientation, θ, and scale,
s, of the model in the image.

The positions of the model points in the image, x, are then given by

x = TXt,Yt,s,θ(x̄+Φb) (4.11)

Where the function TXt,Yt,s,θ performs a rotation by θ, a scaling by s and a translation by
(Xt, Yt). For instance, if applied to a single point (xy),

TXt,Yt,s,θ

(

x
y

)

=

(

Xt

Yt

)

+

(

s cos θ s sin θ
−s sin θ s cos θ

)(

x
y

)

(4.12)

4.9. TESTING HOW WELL THE MODEL GENERALISES 23

Suppose now we wish to find the best pose and shape parameters to match a model instance
xto a new set of image points, Y. Minimising the sum of square distances between corresponding
model and image points is equivalent to minimising the expression

|Y − TXt,Yt,s,θ(x̄+Φb)|2 (4.13)

A simple iterative approach to achieving this is as follows:

1. Initialise the shape parameters, b, to zero

2. Generate the model instance x = x̄+Φb

3. Find the pose parameters (Xt, Yt, s, θ) which best map xto Y (See Appendix B).

4. Invert the pose parameters and use to project Y into the model co-ordinate frame:

y = T−1
Xt,Yt,s,θ

(Y) (4.14)

5. Project y into the tangent plane to x̄ by scaling by 1/(y.x̄).

6. Update the model parameters to match to y

b = ΦT (y − x̄) (4.15)

7. Apply constraints on b(see 4.6,4.7 above).

8. If not converged, return to step 2.

Convergence is declared when applying an iteration produces no significant change in the
pose or shape parameters. This approach usually converges in a few iterations.

4.9 Testing How Well the Model Generalises

The shape models described use linear combinations of the shapes seen in a training set. In
order to be able to match well to a new shape, the training set must exhibit all the variation
expected in the class of shapes being modelled. If it does not, the model will be over-constrained
and will not be able to match to some types of new example. For instance, a model trained only
on squares will not generalise to rectangles.

One approach to estimating how well the model will perform is to use jack-knife or miss-
one-out experiments. Given a training set of s examples, build a model from all but one, then
fit the model to the example missed out and record the error (for instance using (4.13)). Repeat
this, missing out each of the s examples in turn. If the error is unacceptably large for any
example, more training examples are probably required. However, small errors for all examples
only mean that there is more than one example for each type of shape variation, not that all
types are properly covered (though it is an encouraging sign).

Equation (4.13) gives the sum of square errors over all points, and may average out large
errors on one or two individual points. It is often wise to calculate the error for each point and
ensure that the maximum error on any point is sufficiently small.

4.10. ESTIMATING P (SHAPE) 24

4.10 Estimating p(shape)

Given a configuration of points, x, we would like to be able to decide whether x is a plausible
example of the class of shapes described by our training set.

The original training set, once aligned, can be considered a set of samples from a probability
density function, p(x), which we must estimate.

Any shape can be approximated by the nearest point in the sub-space defined by the eigen-
vectors, Φ. A point in this subspace is defined by a vector of shape parameters, b.

Let dx = x− x̄. Then the best (least squares) approximation is given by x′ = x̄+Φb where
b = ΦTdx.

The residual error is then r = dx−Φb.
The square magnitude of this is

|r|2 = rT r
= dxTdx− 2dxTΦb+ bTΦTΦb

|r|2 = |dx|2 − |b|2
(4.16)

Applying a PCA generates two subspaces (defined by Φ and its null-space) which split the
shape vector into two orthogonal components with coefficients described by the elements of band
r, which we assume to be independent.

Thus

p(x) = p(r).p(b) (4.17)

log p(x) = log p(r) + log p(b) (4.18)

If we assume that each element of r is independent and distributed as a gaussian with
variance σ2

r , then

p(r) ∝ exp(−0.5|r|2/σ2
r)

log p(r) = −0.5|r|2/σ2
r + const

(4.19)

The distribution of parameters, p(b), can be estimated as described in previous sections.
Given this, we can estimate the p.d.f.at a new shape, x, using

log p(x) = log p(b)− 0.5(|dx|2 − |b|2)/σ2
r + const (4.20)

The value of σ2
r can be estimated from miss-one-out experiments on the training set.

Non-linear extensions of shape models using kernel based methods have been presented by
Romdani et. al.[99] and Twining and Taylor [117], amongst others.

4.11 Relaxing Shape Models

When only a few examples are available in a training set, the model built from them will be
overly constrained - only variation observed in the training set is represented.

It is possible to artificially add extra variation, allowing more flexibility in the model.

4.11. RELAXING SHAPE MODELS 25

4.11.1 Finite Element Models

Finite Element Methods allow us to take a single shape and treat it as if it were made of an
elastic material. The techniques of Modal Analysis give a set of linear deformations of the shape
equivalent to the resonant modes of vibration of the original shape. Such an approach has been
used by several groups to develop deformable models for computer vision, including Pentland
and Sclaroff [93], Karaolani et. al.[64] and Nastar and Ayache [88]. However, the modes are
somewhat arbitrary and may not be representative of the real variations which occur in a class
of shapes.

A elastic body can be represented as a set of n nodes, a mass matrix M and a stiffness
matrix K. In two dimensions these are both 2n × 2n. Modal Analysis allows calculation of a
set of vibrational modes by solving the generalised eigenproblem

KΦv =MΦvΩ
2 (4.21)

where Φv is a matrix of eigenvectors representing the modes and Ω2 = diag(ω2
1, . . . , ω

2
n) is a

diagonal matrix of eigenvalues. (ωi is the frequency of the ith mode). The energy of deformation
in the ith mode is proportional to ω2

i .
If we assume the structure can be modelled as a set of point unit masses the mass matrix,

M, becomes the identity, and (4.21) simplifies to computing the eigenvectors of the symmetric
matrix K,

KΦv = ΦvΩ
2 (4.22)

Thus if u is a vector of weights on each mode, a new shape can be generated using

x = x̄+Φvu (4.23)

4.11.2 Combining Statistical and FEM Modes

Equation 4.23 is clearly related to the form of the statistical shape models described above. Both
are linear models. This suggests that there is a way to combine the two approaches. If we have
just one example shape, we cannot build a statistical model and our only option is the FEM
approach to generating modes. If, however, we have two examples, we can build a statistical
model, but it would only have a single mode, linearly interpolating between the two shapes. It
would have no way of modelling other distortions.

One approach to combining FEMs and the statistical models is as follows. We calculate the
modes of vibration of both shapes, then use them to generate a large number of new examples
by randomly selecting model parameters u using some suitable distribution. We then train a
statistical model on this new set of examples. The resulting model would then incorporate a
mixture of the modes of vibration and the original statistical mode interpolating between the
original shapes.

Such a strategy would be applicable for any number of shapes. However, we should decrease
the magnitude of the allowed vibration modes as the number of examples increases to avoid
incorporating spurious modes. As we get more training examples, we need rely less on the
artificial modes generated by the FEM.

4.11. RELAXING SHAPE MODELS 26

It would be time consuming and error prone to actually generate large numbers of synthetic
examples from our training set. Fortunately the effect can be achieved with a little matrix
algebra.

For simplicity and efficiency, we assume the modes of vibration of any example can be
approximated by those of the mean.

Let x̄ be the mean of a set of s examples, S be the covariance of the set and Φv be the modes
of vibration of the mean derived by FEM analysis.

Suppose we were to generate a set of examples by selecting the values for u from a distribution
with zero mean and covariance Su. The distribution of Φvu then has a covariance of

ΦvSuΦ
T
v (4.24)

and the distribution of x = xi +Φvu will have a covariance of

Ci = xix
T
i +ΦvSuΦ

T
v (4.25)

about the origin.

If we treat the elements of u as independent and normally distributed about zero with a
variance on ui of αλui, then

Su = αΛu (4.26)

where Λu = diag(λu1 . . .).

The covariance of xi about the origin is then

Ci = xix
T
i + αΦvΛuΦ

T
v (4.27)

If the frequency associated with the jth mode is ωj then we will choose

λuj = ω−2
j (4.28)

This gives a distribution which has large variation in the low frequency, large scale deforma-
tion modes, and low variation in the more local high frequency modes.

One can justify the choice of λuj by considering the strain energy required to deform the
original shape, x̄, into a new example x. The contribution to the total from the jth mode is

Ej =
1

2
u2
jω

2
j (4.29)

The form of Equation 4.29 ensures that the energy tends to be spread equally amonst all
the modes.

The constant α controls the magnitude of the deformations, and is discussed below.

4.11. RELAXING SHAPE MODELS 27

4.11.3 Combining Examples

To calculate the covariance about the origin of a set of examples drawn from distributions about
m original shapes, {xi}, we simply take the mean of the individual covariances

s′ = 1
m

∑m
i=1

(

αΦvΛuΦ
T
v + xix

T
i

)

= αΦvΛuΦ
T
v + 1

m

∑m
i=1 xix

T
i

= αΦvΛuΦ
T
v + Sm + x̄x̄T

(4.30)

where Sm is the covariance of the m original shapes about their mean.

Thus the covariance about the mean x̄ is then

S = S′ − x̄x̄T
= Sm + αΦvΛuΦ

T
v

(4.31)

We can then build a combined model by computing the eigenvectors and eigenvalues of this
matrix to give the modes. When α = 0 (the magnitude of the vibrations is zero) S = Sm and
we get the result we would from a pure statistical model.

When we allow non-zero vibrations of each training example, (α > 0), the eigenvectors of S
will include the effects of the vibrational modes.

As the number of examples increases we wish to rely more on the statistics of the real data
and less on the artificial variation introduced by the modes of vibration. To achieve this we
must reduce α as m increases. We use the relationship

α = α1/m (4.32)

4.11.4 Examples

Two sets of 16 points were generated, one forming a square, the other a rectangle with aspect
ratio 0.5. Figure 4.16 shows the modes corresponding to the four smallest eigenvalues of the
FEM governing equation for the square. Figure 4.17 shows those for a rectangle.

Figure 4.16: First four modes of vi-
bration of a square

Figure 4.17: First four modes of vi-
bration of a rectangle

4.11. RELAXING SHAPE MODELS 28

Figure 4.18 shows the modes of variation generated from the eigenvectors of the combined
covariance matrix (Equation 4.31). This demonstrates that the principal mode is now the mode
which changes the aspect ratio (which would be the only one for a statistical model trained on
the two shapes). Other modes are similar to those generated by the FEM analysis.

Figure 4.18: First modes of variation of a combined model containing a square and a rectangle.
The mode controlling the aspect ratio is the most significant.

4.11.5 Relaxing Models with a Prior on Covariance

Rather than using Finite Element Methods to generate artificial modes, a similar effect can be
achieved simply by adding extra values to elements of the covariance matrix during the PCA.
This is equivalent to specifying a prior on the covariance matrix. The approach is to compute
the covariance matrix of the data, then either add a small amount to the diagonal, or to the
ijth elements which correspond to covariance between ordinates of nearby points. Encouraging
higher covariance between nearby points will generate artificial modes similar to the elastic
modes of vibration. The magnitude of the addition should be inversely proportional to the
number of samples available. For instance, see [25] or work by Wang and Staib [125].

Chapter 5

Statistical Models of Appearance

To synthesise a complete image of an object or structure, we must model both its shape and
its texture (the pattern of intensity or colour across the region of the object). Here we describe
how statistical models can be built to represent both shape variation, texture variation and the
correllations between them. Such models can be used to generate photo-realistic (if necessary)
synthetic images.

The models are generated by combining a model of shape variation with a model of the
texture variations in a shape-normalised frame. By ‘texture’ we mean the pattern of intensities
or colours across an image patch. We require a training set of labelled images, where key
landmark points are marked on each example object. For instance, to build a face model we
require face images marked with points at key positions to outline the main features (Figure
5.1).

Given such a set we can generate a statistical model of shape variation from the points (see
Chapter 4 for details). Given a mean shape, we can warp each training example into the mean
shape, to obtain a ‘shape-free’ patch (Figure 5.1). We then build a statistical model of the
texture variation in this patch (essentially an eigen-face type model [116]).

There will be correlations between the parameters of the shape model and those of the
texture model across the training set. To take account of these we build a combined appearance
model which controls both shape and texture.

The following sections describe these steps in more detail.

5.1 Statistical Models of Texture

To build a statistical model of the texture (intensity or colour over an image patch) we warp
each example image so that its control points match the mean shape (using a triangulation
algorithm - see Appendix F). This removes spurious texture variation due to shape differences
which would occur if we simply performed eigenvector decomposition on the un-normalised face
patches (as in the eigen-face approach [116]). We then sample the intensity information from
the shape-normalised image over the region covered by the mean shape to form a texture vector,
gim. For example, Figure 5.1 shows a labelled face image, the model points and the face patch
normalised into the mean shape. The sampled patch contains little of the texture variation

29

5.1. STATISTICAL MODELS OF TEXTURE 30

Set of Points

Shape Free Patch

Figure 5.1: Each training example in split into a set of points and a ‘shape-free’ image patch

caused by the exaggerated expression - that is mostly taken account of by the shape.

To minimise the effect of global lighting variation, we normalise the example samples by
applying a scaling, α, and offset, β,

g = (gim − β1)/α (5.1)

The values of α and β are chosen to best match the vector to the normalised mean. Let ḡ be
the mean of the normalised data, scaled and offset so that the sum of elements is zero and the
variance of elements is unity. The values of α and β required to normalise gim are then given
by

α = gim.ḡ , β = (gim.1)/n (5.2)

where n is the number of elements in the vectors.

Of course, obtaining the mean of the normalised data is then a recursive process, as the
normalisation is defined in terms of the mean. A stable solution can be found by using one of
the examples as the first estimate of the mean, aligning the others to it (using 5.1 and 5.2),
re-estimating the mean and iterating.

By applying PCA to the normalised data we obtain a linear model:

g = ḡ +Pgbg (5.3)

where ḡ is the mean normalised grey-level vector, Pg is a set of orthogonal modes of variation
and bg is a set of grey-level parameters.

5.2. COMBINED APPEARANCE MODELS 31

The texture in the image frame can be generated from the texture parameters, bg, and the
normalisation parameters α, β. For linearity we represent these in a vector u = (α− 1, β)T (See
Appendix E). In this form the identity transform is represented by the zero vector. The texture
in the image frame is then given by

gim = Tu(ḡ +Pgbg) = (1 + u1)(ḡ +Pgbg) + u21 (5.4)

5.2 Combined Appearance Models

The shape and texture of any example can thus be summarised by the parameter vectors bs
and bg. Since there may be correlations between the shape and texture variations, we apply a
further PCA to the data as follows. For each example we generate the concatenated vector

b =

(

Wsbs
bg

)

=

(

WsP
T
s (x− x̄)

PT
g (g − ḡ)

)

(5.5)

whereWs is a diagonal matrix of weights for each shape parameter, allowing for the difference
in units between the shape and grey models (see below). We apply a PCA on these vectors,
giving a further model

b = Pcc (5.6)

where Pc are the eigenvectors and c is a vector of appearance parameters controlling both
the shape and grey-levels of the model. Since the shape and grey-model parameters have zero
mean, c does too.

Note that the linear nature of the model allows us to express the shape and grey-levels
directly as functions of c

x = x̄+PsW
−1
s Pcsc , g = ḡ +PgPcgc (5.7)

where

Pc =

(

Pcs

Pcg

)

(5.8)

Or more, to summarize, as

x = x̄+Qsc
g = ḡ +Qgc

(5.9)

where
Qs = PsW

−1
s Pcs

Qg = PgPcg
(5.10)

An example image can be synthesised for a given c by generating the shape-free grey-level
image from the vector g and warping it using the control points described by x.

5.3. EXAMPLE: FACIAL APPEARANCE MODEL 32

5.2.1 Choice of Shape Parameter Weights

The elements of bs have units of distance, those of bg have units of intensity, so they cannot
be compared directly. Because Pg has orthogonal columns, varying bg by one unit moves g by
one unit. To make bs and bg commensurate, we must estimate the effect of varying bs on the
sample g. To do this we systematically displace each element of bs from its optimum value on
each training example, and sample the image given the displaced shape. The RMS change in g
per unit change in shape parameter bs gives the weight ws to be applied to that parameter in
equation (5.5).

A simpler alternative is to set Ws = rI where r2 is the ratio of the total intensity variation
to the total shape variation (in the normalised frames). In practise the synthesis and search
algorithms are relatively insensitive to the choice of Ws.

5.3 Example: Facial Appearance Model

We used the method described above to build a model of facial appearance. We used a training
set of 400 images of faces, each labelled with 122 points around the main features (Figure 5.1).
From this we generated a shape model with 23 parameters, a shape-free grey model with 114
parameters and a combined appearance model with only 80 parameters required to explain 98%
of the observed variation. The model uses about 10,000 pixel values to make up the face patch.

Figures 5.2 and 5.3 show the effects of varying the first two shape and grey-level model
parameters through ±3 standard deviations, as determined from the training set. The first
parameter corresponds to the largest eigenvalue of the covariance matrix, which gives its variance
across the training set. Figure 5.4 shows the effect of varying the first four appearance model
parameters, showing changes in identity, pose and expression.

Figure 5.2: First two modes of shape
variation (±3 sd)

Figure 5.3: First two modes of grey-
level variation (±3 sd)

5.4 Approximating a New Example

Given a new image, labelled with a set of landmarks, we can generate an approximation with the
model. We follow the steps in the previous section to obtain b, combining the shape and grey-

5.4. APPROXIMATING A NEW EXAMPLE 33

Figure 5.4: First four modes of appearance variation (±3 sd)

level parameters which match the example. Since Pc is orthogonal, the combined appearance
model parameters, c are given by

c = PT
c b (5.11)

The full reconstruction is then given by applying equations (5.7), inverting the grey-level
normalisation, applying the appropriate pose to the points and projecting the grey-level vector
into the image.

For example, Figure 5.5 shows a previously unseen image alongside the model reconstruction
of the face patch (overlaid on the original image).

Figure 5.5: Example of combined model representation (right) of a previously unseen face image
(left)

Chapter 6

Image Interpretation with Models

6.1 Overview

To interpret an image using a model, we must find the set of parameters which best match the
model to the image. This set of parameters defines the shape, position and possibly appearance
of the target object in an image, and can be used for further processing, such as to make
measurements or to classify the object.

There are several approaches which could be taken to matching a model instance to an image,
but all can be thought of as optimising a cost function. For a set of model parameters, c, we can
generate an instance of the model projected into the image. We can compare this hypothesis
with the target image, to get a fit function F (c). The best set of parameters to interpret the
object in the image is then the set which optimises this measure. For instance, if F (c) is an
error measure, which tends to zero for a perfect match, we would like to choose parameters, c,
which minimise the error measure.

Thus, in theory all we have to do is to choose a suitable fit function, and use a general
purpose optimiser to find the minimum. The minimum is defined only by the choice of function,
the model and the image, and is independent of which optimisation method is used to find it.
However, in practice, care must be taken to choose a function which can be optimised rapidly
and robustly, and an optimisation method to match.

6.2 Choice of Fit Function

Ideally we would like to choose a fit function which represents the probability that the model
parameters describe the target image object, P (c|I) (where I represents the image). We then
choose the parameters which maximise this probability.

In the case of the shape models described above, the parameters we can vary are the shape
parameters, b, and the pose parameters Xt, Yt, s, θ. For the appearance models they are the
appearance model parameters, c and the pose parameters.

The quality of fit of an appearance model can be assessed by measuring the difference between
the target image and a synthetic image generated from the model. This is described in detail in
Chapter 8.

34

6.3. OPTIMISING THE MODEL FIT 35

The form of the fit measure for the shape models alone is harder to determine. If we assume
that the shape model represents boundaries and strong edges of the object, a useful measure is
the distance between a given model point and the nearest strong edge in the image (Figure 6.1).

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

on Normal (X’,Y’)

Model Boundary

Image Object

Nearest Edge

Model Point (X,Y)

Normal to Model
Boundary

Figure 6.1: An error measure can be derived from the distance between model points and
strongest nearby edges.

If the model point positions are given in the vector X, and the nearest edge points to each
model point are X′, then an error measure is

F (b, Xt, Yt, s, θ) = |X′ −X|2 (6.1)

Alternatively, rather than looking for the best nearby edges, one can search for structure
nearby which is most similar to that occuring at the given model point in the training images
(see below).

It should be noted that this fit measure relies upon the target points, X′, begin the correct
points. If some are incorrect, due to clutter or failure of the edge/feature detectors, Equation
(6.1) will not be a true measure of the quality of fit.

An alternative approach is to sample the image around the current model points, and deter-
mine how well the image samples match models derived from the training set. This approach
was taken by Haslam et al [50].

6.3 Optimising the Model Fit

Given no initial knowledge of where the target object lies in an image, finding the parameters
which optimise the fit is a a difficult general optimisation problem. This can be tackled with
general global optimisation techniques, such as Genetic Algorithms or Simulated Annealing [53].

If, however, we have an initial approximation to the correct solution (we know roughly where
the target object is in an image, due to prior processing), we can use local optimisation techniques
such as Powell’s method or Simplex. A good overview of practical numeric optimisation is given
by Press et al [95].

However, we can take advantage of the form of the fit function to locate the optimum rapidly.
We derive two algorithms which amounts to directed search of the parameter space - the Active

6.3. OPTIMISING THE MODEL FIT 36

Shape Model and the Active Appearance Model.
In the following chapters we describe the Active Shape Model (which matches a shape model

to an image) and the Active Appearance Model (which matches a full model of appearance to
an image).

Chapter 7

Active Shape Models

7.1 Introduction

Given a rough starting approximation, an instance of a model can be fit to an image. By
choosing a set of shape parameters, bfor the model we define the shape of the object in an
object-centred co-ordinate frame. We can create an instance X of the model in the image frame
by defining the position, orientation and scale, using Equation 4.11.

An iterative approach to improving the fit of the instance, X, to an image proceeds as follows:

1. Examine a region of the image around each point Xi to find the best nearby match for
the point X′

i

2. Update the parameters (Xt, Yt, s, θ,b) to best fit the new found points X

3. Repeat until convergence.

In practise we look along profiles normal to the model boundary through each model point
(Figure 7.1). If we expect the model boundary to correspond to an edge, we can simply locate
the strongest edge (including orientation if known) along the profile. The position of this gives
the new suggested location for the model point.

In
te

ns
ity

Distance along profile

�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������
���������

Image Structure

Model Point

Profile Normal
to Boundary

Model Boundary

Figure 7.1: At each model point sample along a profile normal to the boundary

37

7.2. MODELLING LOCAL STRUCTURE 38

However, model points are not always placed on the strongest edge in the locality - they
may represent a weaker secondary edge or some other image structure. The best approach is to
learn from the training set what to look for in the target image.

There are two broad approaches to this. The first is to build statistical models of the image
structure around the point and during search simply find the points which best match the
model. (One method of doing this is described below). The second is to treat the problem
as a classification task. Here one can gather examples of features at the correct location, and
examples of features at nearby incorrect locations and build a two class classifier. The classifier
can then be used to find the point which is most likely to be true position and least likely to
be background. This approach has been used by van Ginneken [118] to segment lung fields in
chest radiographs.

In the following we will describe a simple method of modelling the structure which has been
found to be effective in many applications (though is not necessarily optimal). Essentially we
sample along the profiles normal to the boundaries in the training set, and build statistical
models of the grey-level structure.

7.2 Modelling Local Structure

Suppose for a given point we sample along a profile k pixels either side of the model point in
the ith training image. We have 2k + 1 samples which can be put in a vector gi. To reduce the
effects of global intensity changes we sample the derivative along the profile, rather than the
absolute grey-level values. We then normalise the sample by dividing through by the sum of
absolute element values,

gi →
1

∑

j |gij |
gi (7.1)

We repeat this for each training image, to get a set of normalised samples {gi} for the given
model point. We assume that these are distributed as a multivariate gaussian, and estimate
their mean ḡ and covariance Sg. This gives a statistical model for the grey-level profile about
the point. This is repeated for every model point, giving one grey-level model for each point.

The quality of fit of a new sample, gs, to the model is given by

f(gs) = (gs − ḡ)TS−1
g (gs − ḡ) (7.2)

This is the Mahalanobis distance of the sample from the model mean, and is linearly related to
the log of the probability that gs is drawn from the distribution. Minimising f(gs) is equivalent
to maximising the probability that gs comes from the distribution.

During search we sample a profile m pixels either side of the current point (m > k). We
then test the quality of fit of the corresponding grey-level model at each of the 2(m − k) + 1
possible positions along the sample (Figure 7.2) and choose the one which gives the best match
(lowest value of f(gs)).

This is repeated for every model point, giving a suggested new position for each point. We
then apply one iteration of the algorithm given in (4.8) to update the current pose and shape
parameters to best match the model to the new points.

7.3. MULTI-RESOLUTION ACTIVE SHAPE MODELS 39

��
�
��
�
����
���� ��
���
�

	�		�	
	�		�	
	�		�	

�

�

�

�

�

�

������
������
������
������

�

�

�

�

�

�

������
������
������

������
������
������
������

Model

Sampled Profile

Cost of Fit

Figure 7.2: Search along sampled profile to find best fit of grey-level model

7.3 Multi-Resolution Active Shape Models

To improve the efficiency and robustness of the algorithm, it is implement in a multi-resolution
framework. This involves first searching for the object in a coarse image, then refining the
location in a series of finer resolution images. This leads to a faster algorithm, and one which is
less likely to get stuck on the wrong image structure.

For each training and test image, a gaussian image pyramid is built [15]. The base image
(level 0) is the original image. The next image (level 1) is formed by smoothing the original then
subsampling to obtain an image with half the number of pixels in each dimension. Subsequent
levels are formed by further smoothing and sub-sampling (Figure 7.3).

���

���
���������������������������������������
���������������������������������������

��������������������
Level 1

Level 2

Level 0

Figure 7.3: A gaussian image pyramid is formed by repeated smoothing and sub-sampling

During training we build statistical models of the grey-levels along normal profiles through
each point, at each level of the gaussian pyramid. We usually use the same number of pixels in
each profile model, regardless of level. Since the pixels at level L are 2L times the size of those
of the original image, the models at the coarser levels represent more of the image (Figure 7.4).
Similarly, during search we need only search a few pixels, (ns), either side of the current point
position at each level. At coarse levels this will allow quite large movements, and the model
should converge to a good solution. At the finer resolution we need only modify this solution

7.3. MULTI-RESOLUTION ACTIVE SHAPE MODELS 40

by small amounts.

Level 0

Level 1

Level 2

Figure 7.4: Statistical models of grey-level profiles represent the same number of pixels at each
level

When searching at a given resolution level, we need a method of determining when to change
to a finer resolution, or to stop the search. This is done by recording the number of times that
the best found pixel along a search profile is within the central 50% of the profile (ie the best
point is within ns/2 pixels of the current point). When a sufficient number (eg ≥ 90%) of the
points are so found, the algorithm is declared to have converged at that resolution. The current
model is projected into the next image and run to convergence again. When convergence is
reached on the finest resolution, the search is stopped.

To summarise, the full MRASM search algorithm is as follows:

1. Set L = Lmax

2. While L ≥ 0

(a) Compute model point positions in image at level L.

(b) Search at ns points on profile either side each current point

(c) Update pose and shape parameters to fit model to new points

(d) Return to (2a) unless more than pclose of the points are found close to the current
position, or Nmax iterations have been applied at this resolution.

(e) If L > 0 then L→ (L− 1)

3. Final result is given by the parameters after convergence at level 0.

The model building process only requires the choice of three parameters:

Model Parameters

n Number of model points
t Number of modes to use
k Number of pixels either side of point to represent in grey-model

7.4. EXAMPLES OF SEARCH 41

The number of points is dependent on the complexity of the object, and the accuracy with
which one wishes to represent any boundaries. The number of modes should be chosen that a
sufficient amount of object variation can be captured (see 4.9 above). The number of pixels to
model in each pixel will depend on the width of the boundary structure (however, using 3 pixels
either side has given good results for many applications).

The search algorithm has four parameters:

Search Parameters (Suggested default)

Lmax Coarsest level of gaussian pyramid to search
ns Number of sample points either side of current point (2)
Nmax Maximum number of iterations allowed at each level (5)
pclose Proportion of points found within ns/2 of current pos. (0.9)

The levels of the gaussian pyramid to seach will depend on the size of the object in the
image.

7.4 Examples of Search

Figure 7.5 demonstrates using the ASM to locate the features of a face. The model instance is
placed near the centre of the image and a coarse to fine search performed. The search starts at
level 3 (1/8 the resolution in x and y compared to the original image). Large movements are
made in the first few iterations, getting the position and scale roughly correct. As the search
progresses to finer resolutions more subtle adjustments are made. The final convergence (after a
total of 18 iterations) gives a good match to the target image. In this case at most 5 iterations
were allowed at each resolution, and the algorithm converges in much less than a second (on a
200MHz PC).

Figure 7.6 demonstrates how the ASM can fail if the starting position is too far from the
target. Since it is only searching along profiles around the current position, it cannot correct
for large displacements from the correct position. It will either diverge to infinity, or converge
to an incorrect solution, doing its best to match the local image data. In the case shown it has
been able to locate half the face, but the other side is too far away.

Figure 7.7 demonstrates using the ASM of the cartilage to locate the structure in a new
image. In this case the search starts at level 2, samples at 2 points either side of the current
point and allows at most 5 iterations per level. A detailed description of the application of such
a model is given by Solloway et. al. in [107].

7.4. EXAMPLES OF SEARCH 42

Initial After 2 iterations

After 6 iterations After 18 iterations

Figure 7.5: Search using Active Shape Model of a face

Initial After 2 iterations After 20 Iterations

Figure 7.6: Search using Active Shape Model of a face, given a poor starting point. The ASM is
a local method, and may fail to locate an acceptable result if initialised too far from the target

7.4. EXAMPLES OF SEARCH 43

Initial After 1 iteration

After 6 iterations After 14 iterations

Figure 7.7: Search using ASM of cartilage on an MR image of the knee

Chapter 8

Active Appearance Models

8.1 Introduction

The Active Shape Model search algorithm allowed us to locate points on a new image, making
use of constraints of the shape models. One disadvantage is that it only uses shape constraints
(together with some information about the image structure near the landmarks), and does not
take advantage of all the available information - the texture across the target object. This can
be modelled using an Appearance Model 5. In this chapter we describe an algorithm which
allows us to find the parameters of such a model which generates a synthetic image as close as
possible to a particular target image, assuming a reasonable starting approximation.

8.2 Overview of AAM Search

We wish to treat interpretation as an optimisation problem in which we minimise the difference
between a new image and one synthesised by the appearance model. A difference vector δI can
be defined:

δI = Ii − Im (8.1)

where Ii is the vector of grey-level values in the image, and Im, is the vector of grey-level
values for the current model parameters.

To locate the best match between model and image, we wish to minimise the magnitude of the
difference vector, ∆ = |δI|2, by varying the model parameters, c. Since the appearance models
can have many parameters, this appears at first to be a difficult high-dimensional optimisation
problem. We note, however, that each attempt to match the model to a new image is actually
a similar optimisation problem. We propose to learn something about how to solve this class of
problems in advance. By providing a-priori knowledge of how to adjust the model parameters
during during image search, we arrive at an efficient run-time algorithm. In particular, the
spatial pattern in δI, encodes information about how the model parameters should be changed
in order to achieve a better fit. In adopting this approach there are two parts to the problem:
learning the relationship between δI and the error in the model parameters, δc and using this
knowledge in an iterative algorithm for minimising ∆.

44

8.3. LEARNING TO CORRECT MODEL PARAMETERS 45

8.3 Learning to Correct Model Parameters

The appearance model has parameters, c, controlling the shape and texture (in the model frame)
according to

x = x̄+Qsc
g = ḡ +Qgc

(8.2)

where x̄ is the mean shape, ḡ the mean texture in a mean shaped patch and Qs,Qg are matrices
describing the modes of variation derived from the training set.

A shape in the image frame, X, can be generated by applying a suitable transformation
to the points, x : X = St(x). Typically St will be a similarity transformation described by
a scaling, s, an in-plane rotation, θ, and a translation (tx, ty). For linearity we represent the
scaling and rotation as (sx, sy) where sx = (s cos θ− 1), sy = s sin θ. The pose parameter vector
t = (sx, sy, tx, ty)

T is then zero for the identity transformation and St+δt(x) ≈ St(Sδt(x)) (see
Appendix D).

The texture in the image frame is generated by applying a scaling and offset to the intensities,
gim = Tu(g) = (u1 + 1)gim + u21, where u is the vector of transformation parameters, defined
so that u = 0 is the identity transformation and Tu+δu(g) ≈ Tu(Tδu(g)) (see Appendix E).

The appearance model parameters, c, and shape transformation parameters, t, define the
position of the model points in the image frame, X, which gives the shape of the image patch to
be represented by the model. During matching we sample the pixels in this region of the image,
gim, and project into the texture model frame, gs = T−1(gim). The current model texture is
given by gm = ḡ + Qgc. The current difference between model and image (measured in the
normalized texture frame) is thus

r(p) = gs − gm (8.3)

where p are the parameters of the model, pT = (cT |tT |uT).
A simple scalar measure of difference is the sum of squares of elements of r, E(p) = rT r.

A first order Taylor expansion of (8.3) gives

r(p+ δp) = r(p) +
∂r

∂p
δp (8.4)

Where the ijth element of matrix ∂r
∂p is dri

dpj
.

Suppose during matching our current residual is r. We wish to choose δp so as to minimize
|r(p+ δp)|2. By equating (8.4) to zero we obtain the RMS solution,

δp = −Rr(p) where R = (∂r
∂p

T ∂r
∂p)

−1 ∂r
∂p

T
(8.5)

In a standard optimization scheme it would be necessary to recalculate ∂r
∂p at every step, an

expensive operation. However, we assume that since it is being computed in a normalized
reference frame, it can be considered approximately fixed. We can thus estimate it once from
our training set. We estimate ∂r

∂p by numeric differentiation, systematically displacing each
parameter from the known optimal value on typical images and computing an average over the
training set. Residuals at displacements of differing magnitudes are measured (typically up to

8.3. LEARNING TO CORRECT MODEL PARAMETERS 46

0.5 standard deviations of each parameter) and combined with a Gaussian kernel to smooth
them.

dri
dpj

=
∑

k

w(δcjk)(ri(p+ δcjk)− ri(p)) (8.6)

where w(x) is a suitably normalized gaussian weighting function.

We then precompute R and use it in all subsequent searches with the model.

Images used in the calculation of ∂r
∂p can either be examples from the training set or synthetic

images generated using the appearance model itself. Where synthetic images are used, one can
either use a suitable (e.g. random) background, or can detect the areas of the model which
overlap the background and remove those samples from the model building process. This latter
makes the final relationship more independent of the background. Where the background is
predictable (e.g. medical images), this is not necessary.

The best range of values of δc, δt and δu to use during training is determined experimentally.
Ideally we seek to model a relationship that holds over as large a range errors, δg, as possible.
However, the real relationship is found to be linear only over a limited range of values. Our
experiments on the face model suggest that the optimum perturbation was around 0.5 standard
deviations (over the training set) for each model parameter, about 10% in scale, the equivalent
of 3 pixels translation and about 10% in texture scaling.

8.3.1 Results For The Face Model

We applied the above algorithm to the face model described in section 5.3.

We can visualise the effects of the perturbation as follows. If ai is the i
th row of the matrix

R, the predicted change in the ith parameter, δci is given by

δci = ai.δg (8.7)

and ai gives the weight attached to different areas of the sampled patch when estimating the
displacement. Figure 8.1 shows the weights corresponding to changes in the pose parameters,
(sx, sy, tx, ty). Bright areas are positive weights, dark areas negative. As one would expect,
the x and y displacement weights are similar to x and y derivative images. Similar results are
obtained for weights corresponding to the appearance model parameters

Figure 8.2 and 8.3 show the first and third modes and corresponding displacement weights.
The areas which exhibit the largest variations for the mode are assigned the largest weights by
the training process.

Figure 8.1: Weights corresponding to changes in the pose parameters, (sx, sy, tx, ty)

8.3. LEARNING TO CORRECT MODEL PARAMETERS 47

Figure 8.2: First mode and displace-
ment weights

Figure 8.3: Third mode and dis-
placement weights

8.3.2 Perturbing The Face Model

To examine the performance of the prediction, we systematically displaced the face model from
the true position on a set of 10 test images, and used the model to predict the displacement
given the sampled error vector. Figures 8.4 and 8.5 show the predicted translations against the
actual translations. There is a good linear relationship within about 4 pixels of zero. Although
this breaks down with larger displacements, as long as the prediction has the same sign as the
actual error, and does not over-predict too far, an iterative updating scheme should converge.
In this case up to 20 pixel displacements in x and about 10 in y should be correctable.

actual dx (pixels)

pr
ed

ic
te

d
dx

−40 −30 −20 −10 0 10 20 30 40

−8

−6

−4

−2

0

2

4

6

8

Figure 8.4: Predicted dx vs actual
dx. Errorbars are 1 standard error

actual dx (pixels)

pr
ed

ic
te

d
dy

−40 −30 −20 −10 0 10 20 30 40

−8

−6

−4

−2

0

2

4

6

8

Figure 8.5: Predicted dy vs actual
dy. Errorbars are 1 standard error

We can, however, extend this range by building a multi-resolution model of object appear-
ance. We generate Gaussian pyramids for each of our training images, and generate an appear-
ance model for each level of the pyramid. Figure 8.6 shows the predictions of models displaced
in x at three resolutions. L0 is the base model, with about 10,000 pixels. L1 has about 2,500
pixels and L2 about 600 pixels.

The linear region of the curve extends over a larger range at the coarser resolutions, but is
less accurate than at the finest resolution. Similar results are obtained for variations in other
pose parameters and the model parameters.

Figure 8.7 shows the predicted displacements of sx and sy against the actual displacements.
Figure 8.8 shows the predicted displacements of the first two model parameters c1 and c2 (in
units of standard deviations) against the actual. In all cases there is a central linear region,
suggesting an iterative algorithm will converge when close enough to the solution.

8.4. ITERATIVE MODEL REFINEMENT 48

actual dx (pixels)

pr
ed

ic
te

d
dx

−40 −30 −20 −10 0 10 20 30 40

−20

−15

−10

−5

0

5

10

15

20

L0

L1

L2

Figure 8.6: Predicted dx vs actual dx for 3 levels of a Multi-Resolution model. L0: 10000 pixels,
L1: 2500 pixels, L2: 600 pixels. Errorbars are 1 standard error

actual/scale

pr
ed

ic
tio

n/
sc

al
e

−0.4 −0.2 0 0.2 0.4

−0.20

−0.15

−0.10

−0.05

0

0.05

0.10

0.15

0.20

Sx

Sy

Figure 8.7: Predicted sx and sy vs actual

actual dc (sd)
pr

ed
ic

te
d

dc
 (

sd
)

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

C1

C2

Figure 8.8: Predicted c1
and c2 vs actual

8.4 Iterative Model Refinement

Given a method for predicting the correction which needs to made in the model parameters we
can construct an iterative method for solving our optimisation problem.

Given the current estimate of model parameters, c0, and the normalised image sample at
the current estimate, gs, one step of the iterative procedure is as follows:

• Evaluate the error vector δg0 = gs − gm

• Evaluate the current error E0 = |δg0|2

• Compute the predicted displacement, δc = Aδg0

• Set k = 1

• Let c1 = c0 − kδc

• Sample the image at this new prediction, and calculate a new error vector, δg1

• If |δg1|2 < E0 then accept the new estimate, c1,

• Otherwise try at k = 1.5, k = 0.5, k = 0.25 etc.

8.4. ITERATIVE MODEL REFINEMENT 49

This procedure is repeated until no improvement is made to the error, |δg|2, and convergence
is declared.

We use a multi-resolution implementation, in which we iterate to convergence at each level
before projecting the current solution to the next level of the model. This is more efficient and
can converge to the correct solution from further away than search at a single resolution.

8.4.1 Examples of Active Appearance Model Search

We used the face AAM to search for faces in previously unseen images. Figure 8.9 shows the
best fit of the model given the image points marked by hand for three faces. Figure 8.10 shows
frames from a AAM search for each face, each starting with the mean model displaced from the
true face centre.

Figure 8.9: Reconstruction (left) and original (right) given original landmark points

Initial 2 its 8 its 14 its 20 its converged

Figure 8.10: Multi-Resolution search from displaced position

As an example of applying the method to medical images, we built an Appearance Model
of part of the knee as seen in a slice through an MR image. The model was trained on 30

8.5. EXPERIMENTAL RESULTS 50

examples, each labelled with 42 landmark points. Figure 8.11 shows the effect of varying the
first two appearance model parameters. Figure 8.12 shows the best fit of the model to a new
image, given hand marked landmark points. Figure 8.13 shows frames from an AAM search
from a displaced position.

Figure 8.11: First two modes
of appearance variation of
knee model

Figure 8.12: Best fit of knee model to new
image given landmarks

Initial 2 its Converged (11 its)

Figure 8.13: Multi-Resolution search for knee

8.5 Experimental Results

To obtain a quantitative evaluation of the performance of the algorithm we trained a model on
88 hand labelled face images, and tested it on a different set of 100 labelled images. Each face
was about 200 pixels wide.

On each test image we systematically displaced the model from the true position by ±15
pixels in x and y, and changed its scale by ±10%. We then ran the multi-resolution search,
starting with the mean appearance model. 2700 searches were run in total, each taking an
average of 4.1 seconds on a Sun Ultra. Of those 2700, 519 (19%) failed to converge to a
satisfactory result (the mean point position error was greater than 7.5 pixels per point). Of
those that did converge, the RMS error between the model centre and the target centre was
(0.8, 1.8) pixels. The s.d. of the model scale error was 6%. The mean magnitude of the final
image error vector in the normalised frame relative to that of the best model fit given the marked
points, was 0.88 (sd: 0.1), suggesting that the algorithm is locating a better result than that
provided by the marked points. Because it is explicitly minimising the error vector, it will
compromise the shape if that leads to an overall improvement of the grey-level fit.

8.5. EXPERIMENTAL RESULTS 51

Figure 8.14 shows the mean intensity error per pixel (for an image using 256 grey-levels)
against the number of iterations, averaged over a set of searches at a single resolution. In
each case the model was initially displaced by up to 15 pixels. The dotted line gives the mean
reconstruction error using the hand marked landmark points, suggesting a good result is obtained
by the search.

Figure 8.15 shows the proportion of 100 multi-resolution searches which converged correctly
given starting positions displaced from the true position by up to 50 pixels in x and y. The
model displays good results with up to 20 pixels (10% of the face width) displacement.

Number of Iterations

M
ea

n
in

te
ns

ity
 e

rr
or

/p
ix

el

0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0

2

4

6

8

10

12

14

Figure 8.14: Mean intensity error as search progresses. Dotted line is the mean error of the best
fit to the landmarks.

Displacement (pixels)

%
 c

on
ve

rg
ed

 c
or

re
ct

ly

−50 −40 −30 −20 −10 0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100

dX

dY

Figure 8.15: Proportion of searches which converged from different initial displacements

8.6. RELATED WORK 52

8.5.1 Examples of Failure

Figure 8.16 shows two examples where an AAM of structures in an MR brain slice has failed to
locate boundaries correctly on unseen images. In both cases the examples show more extreme
shape variation from the mean, and it is the outer boundaries that the model cannot locate.
This is because the model only samples the image under its current location. There is not always
enough information to drive the model outward to the correct outer boundary. One solution
is to model the whole of the visible structure (see below). Alternatively it may be possible to
include explicit searching outside the current patch, for instance by searching along normals
to current boundaries as is done in the Active Shape Model. In practice, where time permits,
one can use multiple starting points and then select the best result (the one with the smallest
texture error).

Figure 8.16: Detail of examples of search failure. The AAM does not always find the correct
outer boundaries of the ventricles (see text).

8.6 Related Work

In recent years many model-based approaches to the interpretation of images of deformable
objects have been described. One motivation is to achieve robust performance by using the
model to constrain solutions to be valid examples of the object modelled. A model also provides
the basis for a broad range of applications by ‘explaining’ the appearance of a given image
in terms of a compact set of model parameters. These parameters are useful for higher level
interpretation of the scene. For instance, when analysing face images they may be used to
characterise the identity, pose or expression of a face. In order to interpret a new image, an
efficient method of finding the best match between image and model is required.

Various approaches to modelling variability have been described. The most common general
approach is to allow a prototype to vary according to some physical model. Bajcsy and Kovacic
[1] describe a volume model (of the brain) that also deforms elastically to generate new examples.
Christensen et al [19] describe a viscous flow model of deformation which they also apply to the
brain, but is very computationally expensive. Park et al [91] and Pentland and Sclaroff [93] both
represent the outline or surfaces of prototype objects using finite element methods and describe
variability in terms of vibrational modes. Such modes are not always the most appropriate

8.6. RELATED WORK 53

description of deformation. Turk and Pentland [116] use principal component analysis to describe
face images in terms of a set of basis functions, or ‘eigenfaces’. Though valid modes of variation
are learnt from a training set, and are more likely to be more appropriate than a ‘physical’
model, the eigenface is not robust to shape changes, and does not deal well with variability in
pose and expression. However, the model can be matched to an image easily using correlation
based methods.

Poggio and co-workers [39] [61] synthesise new views of an object from a set of example views.
They fit the model to an unseen view by a stochastic optimisation procedure. This is slow, but
can be robust because of the quality of the synthesised images. Cootes et al [24] describe a 3D
model of the grey-level surface, allowing full synthesis of shape and appearance. However, they
do not suggest a plausible search algorithm to match the model to a new image. Nastar at al [89]
describe a related model of the 3D grey-level surface, combining physical and statistical modes
of variation. Though they describe a search algorithm, it requires a very good initialisation.
Lades at al [73] model shape and some grey level information using Gabor jets. However, they
do not impose strong shape constraints and cannot easily synthesise a new instance.

In developing our new approach we have benefited from insights provided by two earlier
papers. Covell [26] demonstrated that the parameters of an eigen-feature model can be used to
drive shape model points to the correct place. The AAM described here is an extension of this
idea. Black and Yacoob [7] use local, hand crafted models of image flow to track facial features,
but do not attempt to model the whole face. The AAM can be thought of as a generalisation of
this, in which the image difference patterns corresponding to changes in each model parameter
are learnt and used to modify a model estimate.

Fast model matching algorithms have been developed in the tracking community. Gleicher
[43] describes a method of tracking objects by allowing a single template to deform under a
variety of transformations (affine, projective etc). He chooses the parameters to minimize a sum
of squares measure and essentially precomputes derivatives of the difference vector with respect
to the parameters of the transformation. Hager and Belhumeur [47] describe a similar approach,
but include robust kernels and models of illumination variation.

In a parallel development Sclaroff and Isidoro have demonstrated ‘Active Blobs’ for tracking
[101]. The approach is broadly similar in that they use image differences to drive tracking,
learning the relationship between image error and parameter offset in an off-line processing
stage. The main difference is that Active Blobs are derived from a single example, whereas
Active Appearance Models use a training set of examples. The former use a single example as the
original model template, allowing deformations consistent with low energy mesh deformations
(derived using a Finite Element method). A simply polynomial model is used to allow changes
in intensity across the object. AAMs learn what are valid shape and intensity variations from
their training set.

Sclaroff and Isidoro suggest applying a robust kernel to the image differences, an idea we
will use in later work. Also, since annotating the training set is the most time consuming part
of building an AAM, the Active Blob approach may be useful for ‘bootstrapping’ from the first
example.

La Cascia et. al.[71] describe a related approach to head tracking. They project the face
onto a cylinder (or more complex 3D face shape) and use the residual differences between the
sampled data and the model texture (generated from the first frame of a sequence) to drive a

8.6. RELATED WORK 54

tracking algorithm, with encouraging results.
When the AAM converges it will usually be close to the optimal result, but may not achieve

the exact position. Stegmann and Fisker [40, 80, 112] has shown that applying a general purpose
optimiser can improve the final match.

Chapter 9

Constrained AAM Search

9.1 Introduction

The last chapter introduced a fast method of matching appearance models to images, the AAM.
In many practical applications an AAM alone is insufficient. A suitable initialisation is required
for the matching process and when unconstrained the AAM may not always converge to the
correct solution. The appearance model provides shape and texture information which are
combined to generate a model instance. A natural approach to initialisation and constraint is
to provide prior estimates of the position of some of the shape points, either manually or using
automatic feature detectors. For instance, when matching a face model it is useful to have an
estimate of the positions of the eyes, which could either be provided by a user or located using
a suitable eye detector.

This chapter reformulates the original least squares matching of the AAM search algorithm
into a statistical framework. This allows the introduction of prior probabilities on the model
parameters and the inclusion of prior constraints on point positions. The latter allows one or
more points to be pinned down to particular positions with a given variance. This framework
enables the AAM to be integrated with other feature location tools in a principled manner, as
long as those tools can provide an estimate of the error on their output.

In the following we describe the mathematics in detail, give examples of using point con-
straints to help user guided image markup and give the results of quantitative experiments
studying the effects of constraints on image matching.

9.2 Model Matching

Model matching can be treated as an optimisation process, minimising the difference between
the synthesized model image and the target image. The appearance model parameters, c, and
shape transformation parameters, t, define the position of the model points in the image frame,
X, which gives the shape of the image patch to be represented by the model. To test the quality
of the match with the current parameters, the pixels in the region of the image defined by X
are sampled to obtain a texture vector, gim. These are projected into the texture model frame,
gs = T−1(gim). The current model texture is given by gm = ḡ +Qgc. The current difference

55

9.2. MODEL MATCHING 56

between model and image (measured in the normalized texture frame) is thus

r(p) = gs − gm (9.1)

where p is a vector containing the parameters of the model, pT = (cT |tT |uT).

9.2.1 Basic AAM Formulation

The original formulation of Active Appearance Models aimed to minimise a sum of squares of
residuals measure, E1(p) = r

T r. Suppose that during an iterative matching process the current
residual was r. We wish to choose an update δp so as to minimize E1(p + δp). By applying a
first order Taylor expansion to (8.3) we can show that δp must satisfy

∂r

∂p
δp = −r (9.2)

where the ijth element of matrix ∂r
∂p is dri

dpj
. Thus

δp = −Rr(p) (9.3)

where

R1 = (
∂r

∂p

T ∂r

∂p
)−1 ∂r

∂p

T

(9.4)

In a standard optimization scheme it would be necessary to recalculate ∂r
∂p at every step, an

expensive operation. However, it is assumed that since it is being computed in a normalized
reference frame, it can be considered approximately fixed. It is thus estimated once from the
training set. ∂r

∂p can be estimated by numeric differentiation, systematically displacing each
parameter from the known optimal value on typical images and computing an average over the
training set. Residuals at displacements of differing magnitudes are measured (typically up to
0.5 standard deviations of each parameter) and combined with a Gaussian kernel to smooth
them. R and ∂r

∂p are precomputed and used in all subsequent searches with the model.

9.2.2 MAP Formulation

Rather than simply minimising a sum of squares measure, we can put the model matching in a
probabalistic framework. In a maximum a-posteriori (MAP) formulation we seek to maximise

p(model|data) ∝ p(data|model)p(model) (9.5)

If we assume that the residual errors can be treated as uniform gaussian with variance σ2
r , and

that the model parameters are gaussian with diagonal covariance S2
p, then maximising (9.5) is

equivalent to minimising
E2(p) = σ−2

r r
T r+ pT (S−1

p)p (9.6)

If we form the combined vector

y =

(

σ−1
r r

S−0.5
p p

)

(9.7)

9.2. MODEL MATCHING 57

then E2 = yTy and

y(p+ δp) = y(p) +

(

σ−1
r

∂r
∂p

S−0.5
p

)

δp (9.8)

In this case the optimal update step is the solution to the equation

(

σ−1
r

∂r
∂p

S−1
p

)

δp = −
(

σ−1
r r(p)
S−0.5
p p

)

(9.9)

which can be shown to have the form

δp = −(R2r+K2p) (9.10)

where R2 and K2 can be precomputed during training. In this case the update step consists
just of image sampling and matrix multiplication.

9.2.3 Including Priors on Point Positions

Suppose we have prior estimates of the positions of some points in the image frame, X0, together
with their with covariances SX . Unknown points will give zero values in appropriate positions
in X0 and effectively infinite variance, leading to suitable zero values in the inverse covariance,
S−1
X . Let d(p) = (X−X0) be a vector of the displacements of the current point positions from

those target points. A measure of quality of fit (related to the log-probability) is then

E3(p) = σ−2
r r

T r+ pT (S−1
p)p+ dTS−1

X d (9.11)

Following a similar approach to that above we obtain the update step as a solution to

A1δp = −a1 (9.12)

where
A1 =

(

σ−2
r

∂r
∂p

T ∂r
∂p + S−1

p + ∂d
∂p

T
S−1
X

∂d
∂p

)

a1 =
(

σ−2
r

∂r
∂p

T
r(p) + S−1

p p+ ∂d
∂p

T
S−1
X d

) (9.13)

When computing ∂d
∂p one must take into account the global transformation as well as the shape

changes, the parameters of which have been folded into the vector p in the above to simplify
the notation. The positions of the model points in the image plane are given by

X = St(x̄+Qsc) (9.14)

where St(.) applies a global transformation with parameters t.
Therefore ∂d

∂p = (∂d
∂c |∂d∂t), where

∂d
∂c = ∂St(x)

∂x Qs , ∂d
∂t = ∂St(x)

∂t
(9.15)

These can be substituted into (9.12) and (9.13) to obtain the update steps. Note that in
this case a linear system of equations must be solved at each iteration. As an example, below
we describe the isotropic case.

9.3. EXPERIMENTS 58

9.2.4 Isotropic Point Errors

Consider the special case in which the fixed points are assumed to have positional variance equal
in each direction, thus the covariance, SX is diagonal. Suppose the shape transformation St(x)
is a similarity transformation which scales by s.

Let x0 = S−1
t (X0) and y = s(x− x0). Then d

TS−1
X d = yTS−1

X y.

If assume we all parameters are equally likely, to simplify notation, then (9.11) becomes

E3(p) = σ−2
r r

T r+ yTS−1
X y (9.16)

The update step is the solution to

A3δp = −a3 (9.17)

where

A3 =

(

σ−2
r

∂r
∂p

T ∂r
∂p + ∂y

∂p

T
S−1
X

∂y
∂p

)

a3 =

(

σ−2
r

∂r
∂p

T
r(p) + ∂y

∂p

T
S−1
X y

) (9.18)

and ∂y
∂p = (∂y

∂c |
∂y
∂t),

∂y
∂c = sQs.

∂y

∂t
= −s∂(S

−1
t (X0))

∂t
− (x− x0).(

sx
s
,
sy
s
, 0, 0) (9.19)

9.3 Experiments

To test the effects of applying constraints to the AAM search, we performed a series of exper-
iments on images from the M2VTS face database [84]. We trained an AAM on 100 images
and tested it on another 100 images. 68 points were used to define the face shape, and 5000
grey-scale pixels used to represent the texture across the face patch. The separation between
the eyes is about 100 pixels. The model used 56 appearance parameters.

9.3.1 Point Constraints

To test the effect of constraining points, we assumed that the position of the eye centres was
known to a given variance. We then displaced the model from the correct position by up to
10 pixels (5% of face width) in x and y and ran a constrained search. Nine searches were
performed on each of the 100 unseen test images. Measurements were made of the boundary
error (the RMS separation in pixels between the model points and hand-marked boundaries)
and the RMS texture error in grey level units (the images have grey-values in the range [0,255]).
The eye centres were assumed known to various accuracies, defined in terms of a variance on
their position.

Figure 9.1 shows the effect on the boundary error of varying the variance estimate. Figure
9.2 shows the effect on texture error. The results suggest that there is an optimal value of
error standard deviation of about 7 pixels. Pinning down the eye points too harshly reduces the
ability of the model to match accurately elsewhere.

9.3. EXPERIMENTS 59

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6 7 8

B
ou

nd
ar

y
E

rr
or

 (
pi

xe
ls

)

log10(variance)

Figure 9.1: Effect on boundary error of varying variance on two eye centres

10

10.5

11

11.5

12

0 1 2 3 4 5 6 7 8

T
ex

tu
re

 E
rr

or
 (

gr
ey

-v
al

ue
s)

log10(variance)

Figure 9.2: Effect on texture error of varying variance on two eye centres

To test the effect of errors on the positions of the fixed points, we repeated the above exper-
iment, but randomly perturbed the fixed points with isotropic gaussian noise. This simulates
inaccuracies in the output of feature detectors that might be used to find the points. Figure
9.3 shows the boundary error for different noise variances. The known noise variance was used
as the constraining variance on the points. This shows that for small errors on the fixed points
the search gives better results. However as the positional errors increase the fixed points are
effectively ignored (a large variance gives a small weight), and the boundary error gets no worse.

9.3.2 Including Priors on the Parameters

We repeated the above experiment, but added a term giving a gaussian prior on the model
parameters, c - equation (9.11). Figures 9.4, 9.5 show the results. There is an improvement in
the positional error, but the texture error becomes worse.

Figure 9.6 shows the distribution of boundary errors at search convergence when matching

9.3. EXPERIMENTS 60

2

3

4

5

6

7

0 1 2 3 4 5 6

B
ou

nd
ar

y
E

rr
or

 (
pi

xe
ls

)

log10(variance)

Figure 9.3: Boundary error vs eye centre variance

is performed with/without priors on the parameters and with/without fixing the eye points.
Figure 9.7 shows the equivalent texture errors. Again, the most noticable effect is that including
a prior on the parameters significantly increases the texture error, though there is little change
to the boundary error. Adding the prior biases the match toward the mean. Small changes in
point positions (eg away from edges) can introduce large changes in texture errors, so the image
evidence tends to resist point movement towards the mean. However, there is less of a gradient
for small changes in parameters which affect texture, so they tend to move toward the mean
more readily.

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6 7 8

B
ou

nd
ar

y
E

rr
or

 (
pi

xe
ls

)

log10(variance)

Prior
No Prior

Figure 9.4: Boundary error vs varying eye centre variance, using a prior on the model parameters

9.3.3 Varying Number of Points

The experiment was repeated once more, this time varying the number of point constraints.
Figure 9.8 shows the boundary error as a function of the number constrained points. The eye
centres were fixed first, then the mouth, the chin and the sides of the face. There is a gradual

9.4. SUMMARY 61

13.6

13.8

14

14.2

14.4

14.6

14.8

15

0 1 2 3 4 5 6 7 8

T
ex

tu
re

 E
rr

or
 (

gr
ey

-v
al

ue
s)

log10(variance)

Figure 9.5: Texture error vs varying eye centre variance, using a prior on the model parameters

0

5

10

15

20

25

30

35

0 2 4 6 8 10

F
re

qu
en

cy

Boundary Error (pixels)

Unconstrained
Eyes Fixed

Prior
Eyes Fixed + Prior

Figure 9.6: Distribution of boundary errors given constraints on points and parameters

improvement as more points are added. Figure 9.9 shows the texture error. This improves at
first, as the model is less likely to fail to converge to the correct result with more constraints.
However, when more points are added the texture error begins to increase slightly, as the texture
match becomes compromised in order to satisfy the point constraints.

9.4 Summary

We have reformulated the AAM matching algorithm in a statistical framework, allowing it to
be combined with user input and other tools in a principled manner. This is very useful for real
applications where several different algorithms maybe required to obtain robust initialisation
and matching.

Providing constraints on some points can improve the reliability and accuracy of the model

9.4. SUMMARY 62

0

5

10

15

20

25

0 5 10 15 20 25

F
re

qu
en

cy

RMS Texture Error ([0,255])

Unconstrained
Eyes Fixed

Prior
Eyes Fixed + Prior

Figure 9.7: Distribution of texture errors given constraints on points and parameters

matching. Adding a prior to the model parameters can improve the mean boundary position
error, but at the expense of a significant degradation of the overall texture match.

The ability to pin down points interactively is useful for interactive model matching. The
appearance models require labelled training sets, which are usually generated manually. A
‘bootstrap’ approach can be used in which the current model is used to help mark up new images,
which are then added to the model. The interactive search makes this process significantly
quicker and easier.

We anticipate that this framework will allow the AAMs to be used more effectively in prac-
tical applications.

9.4. SUMMARY 63

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

B
ou

nd
ar

y
E

rr
or

 (
pi

xe
ls

)

Number of Constrained Points

Figure 9.8: Boundary error vs Number of points constrained

10

10.5

11

11.5

12

12.5

13

0 1 2 3 4 5 6 7 8 9

T
ex

tu
re

 E
rr

or
 [0

:2
55

]

Number of Constrained Points

Figure 9.9: Texture errors vs Number of points constrained

Chapter 10

Variations on the Basic AAM

In this chapter we describe modifications to the basic AAM algorithm aimed at improving
the speed and robustness of search. Since some regions of the model may change little when
parameters are varied, we need only sample the image in regions where significant changes are
expected. This should reduce the cost of each iteration.

The original formulation manipulates the combined shape and grey-level parameters directly.
An alternative approach is to use image residuals to drive the shape parameters, computing the
grey-level parameters directly from the image given the current shape. This approach may be
useful when there are few shape modes and many grey-level modes.

10.1 Sub-sampling During Search

In the original formulation, during search we sample all the points in the model to obtain gs,
with which we predict the change to the model parameters. There may be 10000 or more such
pixels, but fewer than 100 parameters. There is thus considerable redundancy, and it may be
possible to obtain good results by sampling at only a sub-set of the modelled pixels. This could
significantly reduce the computational cost of the algorithm.

The change in the ith parameter, δci, is given by

δci = Aiδg (10.1)

Where Ai is the i
th row of A.

The elements of Ai indicate the significance of the corresponding pixel in the calculation
of the change in the parameter. To choose the most useful subset for a given parameter, we
simply sort the elements by absolute value and select the largest. However, the pixels which
best predict changes to one parameter may not be useful for any other parameter.

To select a useful subset for all parameters we compute the best u% of elements for each
parameter, then generate the union of such sets. If u is small enough, the union will be less than
all the elements.

Given such a subset, we perform a new multi-variate regression, to compute the relationship,
A′ between the changes in the subset of samples, δg′, and the changes in parameters

δc = A′δg′ (10.2)

64

10.2. SEARCH USING SHAPE PARAMETERS 65

Search can proceed as described above, but using only a subset of all the pixels.

10.2 Search Using Shape Parameters

The original formulation manipulates the parameters, c. An alternative approach is to use image
residuals to drive the shape parameters, bs, computing the grey-level parameters, bg, and thus
c, directly from the image given the current shape. This approach may be useful when there
are few shape modes and many grey-level modes.

The update equation in this case has the form

δbs = Bδg (10.3)

where in this case δg is given by the difference between the current image sample gs and the
best fit of the grey-level model to it, gm,

δg = gs − gm
= gs − (ḡ +Pgbg)

(10.4)

where bg = P
T
g (gs − ḡ).

During a training phase we use regression to learn the relationship, B, between δbs and
δg (as given in (10.4)). Since any δg is orthogonal to the columns of Pg, the update equation
simplifies to

δbs = B(gs − ḡ)
= Bgs − boffset

(10.5)

Thus one approach to fitting a model to an image is simply to keep track of the pose and
shape parameters, bs. The grey-level parameters can be computed directly from the sample
at the current shape. The constraints of the combined appearance model can be applied by
computing c using (5.5), applying constraints then recomputing the shape parameters. As in
the original formulation, the magnitude of the residual |δg| can be used to test for convergence.

In cases where there are significantly fewer modes of shape variation than combined ap-
pearance modes, this approach may be faster. However, since it is only indirectly driving the
parameters controlling the full appearance, c, it may not perform as well as the original formu-
lation.

Note that we could test for convergence by monitoring changes in the shape parameters, or
simply apply a fixed number of iterations at each resolution. In this case we do not need to use
the grey-level model at all during search. We would just do a single match to the grey-levels
sampled from the final shape. This may give a significantly faster algorithm.

10.3 Results of Experiments

To compare the variations on the algorithm described above, an appearance model was trained
on a set of 300 labelled faces. This set contains several images of each of 40 people, with a
variety of different expressions. Each image was hand annotated with 122 landmark points on

10.3. RESULTS OF EXPERIMENTS 66

the key features. From this data was built a shape model with 36 parameters, a grey-level model
of 10000 pixels with 223 parameters and a combined appearance model with 93 parameters.

Three versions of the AAM were trained for these models. One with the original formulation,
a second using a sub-set of 25% of the pixels to drive the parameters c, and a third trained to
drive the shape parameters, bs, alone.

A test set of 100 unseen new images (of the same set of people but with different expressions)
was used to compare the performance of the algorithms. On each image the optimal pose was
found from hand annotated landmarks. The model was displaced by (+15, 0 ,-15) pixels in x
and y, the remaining parameters were set to zero and a multi-resolution search performed (9
tests per image, 900 in all).

Two search regimes were used. In the first a maximum of 5 iterations were allowed at each
resolution level. Each iteration tested the model at c → c − kδc for k = 1.0, 0.51, . . . , 0.54,
accepting the first that gave an improved result or declaring convergence if none did.

The second regime forced the update c → c − δc without testing whether it was better or
not, applying 5 steps at each resolution level.

The quality of fit was recorded in two ways;

• The RMS grey-level error per pixel in the normalised frame,
√

|δv|2/npixels

• The mean distance error per model point

For example, the result of the first search shown in Figure 8.10 above gives an RMS grey
error of 0.46 per pixel and a mean distance error of 3.7 pixels.

Some searches will fail to converge to near the correct result. This is detected by a threshold
on the mean distance error per model point. Those that have a mean error of > 7.5 pixels were
considered to have failed to converge.

Table 10.1 summarises the results. The final errors recorded were averaged over those
searches which converged successfully.. The top row corresponds to the original formulation
of the AAM. It was the slowest, but on average gave the fewest failures and the smallest grey-
level error. Forcing the iterations decreased the quality of the results, but was about 25% faster.

Sub-sampling considerably speeded up the search (taking only 30% of the time for full
sampling) but was much less likely to converge correctly, and gave a poorer overall result.

Driving the shape parameters during search was faster still, but again lead to more failures
than the original AAM. However, it did lead to more accurate location of the target points when
the search converged correctly. This was at the expense of increasing the error in the grey-level
match.

The best fit of the Appearance Model to the images given the labels gave a mean RMS
grey error of 0.37 per pixel over the test set, suggesting the AAM was getting close to the best
possible result most of the time.

Table 10.2 shows the results of a similar experiment in which the models were started from
the best estimate of the correct pose, but with other model parameters initialised to zero. This
shows a much reduced failure rate, but confirms the conclusions drawn from the first experiment.
The search could fail even given the correct initial pose because some of the images contain quite
exaggerated expressions and head movements, a long way from the mean. These were difficult
to match to, even under the best conditions.

10.3. RESULTS OF EXPERIMENTS 67

Driven Sub-sample Iterations Failure Final Errors Mean
Params Max. Forced Rate Point Grey Time

±0.05 ±0.005 (ms)

c 100% 5 1 4.1% 4.2 0.45 3270

c 100% 5 5 4.6% 4.4 0.46 2490

c 25% 5 1 13.9% 4.6 0.60 920

c 25% 5 5 22.9% 4.8 0.63 630

bs 100% 5 1 11.4% 4.0 0.85 560

bs 100% 5 5 11.9% 4.1 0.86 490

Table 10.1: Comparison between AAM algorithms given displaced centres (See Text)

Driven Sub-sample Iterations Failure Final Errors
Params Max. Forced Rate Point Grey

±0.1 ±0.01
c 100% 5 1 3% 4.2 0.46

c 100% 5 5 4% 4.4 0.47

c 25% 5 1 10% 4.6 0.60

c 25% 5 5 10% 4.6 0.60

bs 100% 5 1 6% 4.0 0.84

bs 100% 5 5 6% 4.1 0.87

Table 10.2: Comparison between AAM algorithms, given correct initial pose. (See Text)

10.4. DISCUSSION 68

10.4 Discussion

We have described several modifications that can be made to the Active Appearance Model
algorithm. Sub-sampling and driving the shape parameters during search both lead to faster
convergence, but were more prone to failure. The shape based method was able to locate the
points slightly more accurately than the original formulation. Testing for improvement and
convergence at each iteration slowed the search down, but lead to better final results.

It may be possible to use combinations of these approaches to achieve good results quickly,
for instance using the shape based search in the early stages, then polishing with the original
AAM. Further work will include developing strategies for reducing the numbers of convergence
failures and extending the models to use colour or multispectral images.

Though only demonstrated for face models, the algorithm has wide applicability, for instance
in matching models of structures in MR images [22]. The AAM algorithms, being able to match
10000 pixel, 100 parameter models to new images in a few seconds or less, are powerful new
tools for image interpretation.

Chapter 11

Alternatives and Extensions to
AAMs

There have been several suggested improvements to the basic AAM approach proposed in the
literature. Here we describe some of the more interesting.

11.1 Direct Appearance Models

Hou et. al.[60] claim that the relationship between the texture and the shape components
for faces is many to one, ie that one shape can contain many textures but that no texture is
associated with more than one shape. They claim that one can thus predict the shape directly
from the texture, which leads to a faster and more reliable search algorithm.

One can simply use regression on the training set examples to predict the shape from the
texture,

bs = Rt−sbt (11.1)

The search algorithm then becomes the following (simplified slightly for clarity);

1. Assume an initial pose t and parameters bs, bt, u

2. Sample from image under current model and compute normalised texture g

3. Compute texture parameters btex and normalisation u to best match g

4. Update shape using bs = Rt−sbt

5. Update pose using t = t−Rtδg

One can of course be conservative and only apply the update if it leads to an improvement
in match, as in the original algorithm.

The processing in each iteration is dominated by the image sampling and the computation
of the texture and pose parameter updates - this step will thus be faster than the original AAM,
assuming one uses fewer texture modes than appearance modes.

69

11.2. INVERSE COMPOSITIONAL AAMS 70

Experiments on faces [60] suggest significant improvements in search performance (both in
accuracy and convergence rates) can be achieved using the method.

In general is not true that the texture to shape is many to one. A trivial counter-example
is that of a white rectangle on a black background. The shape can vary but the texture is fixed
- in this case the relationship is one to many, and one can make no estimate of the shape from
the texture. There are various real world medical examples in which the texture variation of the
internal parts of the object is effectively just noise and thus is of no use in predicting the shape.

11.2 Inverse Compositional AAMs

Baker and Matthews [100] show how the AAM algorithm can be considered as one of a set of
image alignment algorithms which can be classified by how updates are made and in what frame
one performs a minimisation during each iteration.

Updates to parameters can be either

Additive b→ b+ δb, or

Compositional b is chosen so that Tb(x)→ Tb(Tδb(x))

(In the AAM formulation in the previous chapter, the update to the pose is effectively
compositional, but that to the appearance parameters is additive).

The compositional approach is more general than the additive approach. In the case of
AAMs, it can be shown that the additive approach can give completely wrong updates in certain
situations (see below for an example).

The issue of in what frame one does the minimisation requires a bit of notation. To simplify
this, in the following x indexes a model template, rather than represents a shape vector, and y
indexes a target image.

Assuming for the moment that we have a fixed model texture template,M(x), and a warping
function x → W(x;p) (parameterised by p). If the target image is I(x), then in the usual
formulation we are attempting to minimise

∑

x

[I(W(x;p))−M(x)]2 (11.2)

Assuming an iterative approach, at each step we have to compute a change in parameters,
δp to improve the match. This involves a minimisation over the parameters of this change to
choose the optimal δp. Baker and Matthews describe four cases as follows

Additive Choose δp to minimise
∑

x[I(W(x;p+ δp))−M(x)]2

Compositional Choose δp to minimise
∑

x[I(W(W(x; δp);p))−M(x)]2

Inverse Additive Choose δp to minimise
∑

y

∣

∣

∣

∂W−1

∂y

∣

∣

∣ [I(y)−M(W−1(y;p+ δp))]2

Inverse Compositional Choose δp to minimise
∑

x[I(W(x;p))−M(W(x; δp))]2

11.2. INVERSE COMPOSITIONAL AAMS 71

The original formulation of the AAMs is additive, but makes the assumption that there is an
approximately constant relationship between the error image and the parameter updates. This
assumption is not always satisfactory.

What Baker and Matthews show is that the Inverse Compositional update scheme leads to
an algorithm which requires only linear updates (so is as efficient as the AAM), but which is a
true gradient descent algorithm. They demonstrate faster convergence to more accurate answers
when using their algorithm when compared to the original AAM formulation.

The update step in the Inverse Compositional case can be shown to be

δp = −
∑

x

H−1
[

∇M∂W

∂p

]T

[I(W(x;p))−M(x)] (11.3)

where

H =
∑

x

[

∇M∂W

∂p

]T [

∇M∂W

∂p

]

(11.4)

and the Jacobian ∂W
∂p is evaluated at (x,0).

Note that in this case the update step is independent of p and is basically a multiplication
with a matrix which can be assumed constant with a clear consience.

Unfortunately, applying the parameter update in the case of a triangulated mesh, as one
might use in an appearance model, is non-trivial, though a reasonable first order approximation
is possible.

What does not seem to be practical is to update the combined appearance model parameters,
c. We have to treat the shape and texture as independent to get the advantages of the inverse
compositional approach.

We proceed as follows.

• Given current parameters p = (bTs , t
T)T sample from image and normalise to obtain g

• Compute update δp = R(g − ḡ)

• Update parameters so that Tp(.)→ Tp(Tδp(.))

• Iterate to taste

Note that we construct R from samples projected into the null space of the texture model
(as for the shape-based AAM in Chapter 10). Of course, we use the compositional approach to
constructing the update matrix.

The simplest update matrix R can be estimated as the pseudo-inverse of a matrix A which
is a projection of the Jacobian into the null space of the texture model. Thus R = AT (ATA)−1

where the ith column of A is estimated as follows

• For each training example find best shape and pose p

• For the current parameter i create several small displacements δpj

• Construct the displaced parameters, p′ such that Tp′(.) = Tp(Tδpj
(.)) (where δpj is zero

except for the ith element, which is δpj

11.2. INVERSE COMPOSITIONAL AAMS 72

• Sample image at this displaced position and normalise to obtain gs

• Project out the component in the texture subspace, δg′j = (gs − ḡ) − Pgpg where bg =

PT
g (gs − ḡ)

• Construct the ith column of the matrixA from a suitably weighted sum of ai =
1

∑

wj

∑

wjδg
′
j/δpj

where wj = exp(−0.5δp2
j/σ

2
i) (σ

2
i is the variance of the displacements of the parameter).

• Set R = AT (ATA)−1

Chapter 12

Comparison between ASMs and
AAMs

Given an appearance model of an object, we can match it to an image using either the Active
Shape Model algorithm, or the Active Appearance Model algorithm. The ASM will find point
locations only. Given these, it is easy to find the texture model parameters which best represent
the texture at these points, and then the best fitting appearance model parameters.

The ASM matches the model points to a new image using an iterative technique which
is a variant on the Expectation Maximisation algorithm. A search is made around the current
position of each point to find a point nearby which best matches a model of the texture expected
at the landmark. The parameters of the shape model controlling the point positions are then
updated to move the model points closer to the points found in the image.

The AAM manipulates a full model of appearance, which represents both shape variation
and the texture of the region covered by the model. This can be used to generate full synthetic
images of modelled objects. The AAM uses the difference between the current synthesised image
and the target image to update its parameters.

There are three key differences between the two algorithms:

1. The ASM only uses models of the image texture in small regions about each landmark
point, whereas the AAM uses a model of the appearance of the whole of the region (usually
inside a convex hull around the points).

2. The ASM searches around the current position, typically along profiles normal to the
boundary, whereas the AAM only samples the image under the current position.

3. The ASM essentially seeks to minimise the distance between model points and the corre-
sponding points found in the image, whereas the AAM seeks to minimise the difference
between the synthesized model image and the target image.

This chapter describes results of experiments testing the performance of both ASMs and
AAMs on two data sets, one of faces, the other of structures in MR brain sections. Measurements
are made of their convergence properties, their accuracy in locating landmark points, their
capture range and the time required to locate a target structure.

73

12.1. EXPERIMENTS 74

12.1 Experiments

Two data sets were used for the comparison:

• 400 face images, each marked with 133 points

• 72 slices of MR images of brains, each marked up with 133 points around sub-cortical
structures

For the faces, models were trained on 200 then tested on the remaining 200. For the brains
leave-one-brain-out experiments were performed.

The Appearance model was built to represent 5000 pixels in both cases. Multi-resolution
search was used, using 3 levels with resolutions of 25%, 50% and 100% of the original image
in each dimension. At most 10 iterations were run at each resolution. The ASM used profile
models 11 pixels long (5 either side of the point) at each resolution, and searched 3 pixels either
side. The performance of the algorithms can depend on the choice of parameters - we have
chosen values which have been found to work well on a variety of applications.

Capture range

The model instance was systematically displaced from the known best position by up to ±100
pixels in x, then a search was performed to attempt to locate the target points. Figure 12.1
shows the RMS error in the position of the centre of gravity given the different starting positions
for both ASMs and AAMs.

0

20

40

60

80

100

-60 -40 -20 0 20 40 60

%
 c

on
ve

rg
ed

Initial Displacement (pixels)

AAM
ASM

0

20

40

60

80

100

-30 -20 -10 0 10 20 30

%
 c

on
ve

rg
ed

Initial Displacement (pixels)

AAM
ASM

Face data Brain data

Figure 12.1: Relative capture range of ASM and AAMs

Thus the AAM has a slightly larger capture range for the face, but the ASM has a much
larger capture range than the AAM for the brain structures. Of course, the results will depend
on the resolutions used, the size of the models used and the search length of the ASM profiles.

Point location accuracy

One each test image we displaced the model instance from the true position by ±10 in x and y
(for the face) and ±5 in x and y (for the brain), 9 displacements in total, then ran the search

12.2. TEXTURE MATCHING 75

starting with the mean shape. On completion the results were compared with hand labelled
points. Figure 12.2 shows frequency histograms for the resulting point-to-boundary errors(the
distance from the found points to the associated boundary on the marked images). The ASM
gives more accurate results than the AAM for the brain data, and comparable results for the
face data.

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7 8

F
re

qu
en

cy
 (

%
)

Pt-Crv Error (pixels)

AAM
ASM

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5 3 3.5 4
F

re
qu

en
cy

 (
%

)
Pt-Crv Error (pixels)

AAM
ASM

Face data Brain data

Figure 12.2: Histograms of point-boundary errors after search from displaced positions

Table 12.1 summarises the RMS point-to-point error, the RMS point-to-boundary error, the
mean time per search and the proportion of convergence failures. Failure was declared when the
RMS Point-Point error is greater than 10 pixels. The searches were performed on a 450MHz
PentiumII PC running Linux.

Data Model Time/search Pt-Pt Error Pt-Crv Error Failures

Face ASM 190ms 4.8 2.2 1.0%
AAM 640ms 4.0 2.1 1.6%

Brain ASM 220ms 2.2 1.1 0%
AAM 320ms 2.3 1.1 0%

Table 12.1: Comparison of performance of ASM and AAM algorithms on face and brain data
(See Text)

Thus the ASM runs significantly faster for both models, and locates the points more accu-
rately than the AAM.

12.2 Texture Matching

The AAM explicitly generates a texture image which it seeks to match to the target image.
After search we can thus measure the resulting RMS texture error. The ASM only locates
points positions. However, given the points found by the ASM we can find the best fit of the
texture model to the image, then record the residual. Figure 12.3 shows frequency histograms
for the resulting RMS texture errors per pixel. The images have a contrast range of about
[0,255]. The AAM produces a significantly better performance than the ASM on the face data,

12.2. TEXTURE MATCHING 76

which is in part to be expected, since it is explicitly attempting to minimise the texture error.
However, the ASM produces a better result on the brain data. This is caused by a combination
of experimental set up and the additional constraints imposed by the appearance model.

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

F
re

qu
en

cy
 (

%
)

Intensity Error

AAM
ASM

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

F
re

qu
en

cy
 (

%
)

Intensity Error

AAM
ASM

Face data Brain data

Figure 12.3: Histograms of RMS texture errors after search from displaced positions

Figure 12.4 compares the distribution of texture errors found after search with those obtained
when the model is fit to the (hand marked) target points in the image (the ‘Best Fit’ line). This
demonstrates that the AAM is able to achieve results much closer to the best fit results than
the ASM (because it is more explicitly minimising texture errors). The difference between the
best fit lines for the ASM and AAM has two causes;

• For the ASM experiments, though a leave-1-out approach was used for training the shape
models and grey profile models, a single texture model trained on all the examples was
used for the texture error evaluation. This could fit more accurately to the data than the
model used by the AAM, trained in a leave-1-out regime.

• The AAM fits an appearance model which couples shape and texture explicitly - the ASM
treats them as independent. For the relatively small training sets used this overconstrained
the model, leading to poorer results.

The latter point is demonstrated in Figure 12.5, which shows the distribution of texture
errors when fitting models to the training data. One line shows the errors when fitting a 50
mode texture model to the image (with shape defined by a 50 mode shape model fit to the
labelled points). The second shows the best fit of a full 50 mode appearance model to the data.
The additional constraints of the latter mean that for a given number of modes it is less able
to fit to the data than independent shape and texture models, because the training set is not
large enough to properly explore the variations. For a sufficiently large training set we would
expect to be able to properly model the correlation between shape and texture, and thus be
able to generate an appearance model which performed almost as well as a independent models,
each with the same number of modes. Of course, if the total number of modes of the shape
and texture model were constrained to that of the appearance model, the latter would perform
much better.

12.3. DISCUSSION 77

0

5

10

15

20

25

0 5 10 15 20 25

F
re

qu
en

cy
 (

%
)

Intensity Error

Search
Best Fit

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25

F
re

qu
en

cy
 (

%
)

Intensity Error

Search
Best Fit

AAM ASM

Figure 12.4: Histograms of RMS texture errors after search from displaced positions

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

F
re

qu
en

cy
 (

%
)

Intensity Error

App.Model
Tex.Model

Figure 12.5: Comparison between texture model best fit and appearance model best fit

12.3 Discussion

Active Shape Models search around the current location, along profiles, so one would expect
them to have a larger capture range than the AAM which only examines the image directly
under its current area. This is clearly demonstrated in the results on the brain data set.

ASMs only use data around the model points, and do not take advantage of all the grey-
level information available across an object as the AAM does. Thus they may be less reliable.
However, the model points tend to be places of interest (boundaries or corners) where there is
the most information. One could train an AAM to only search using information in areas near
strong boundaries - this would require less image sampling during search so a potentially quicker
algorithm. A more formal approach is to learn from the training set which pixels are most useful
for search - this was explored in [23]. The resulting search is faster, but tends to be less reliable.

One advantage of the AAM is that one can build a convincing model with a relatively small
number of landmarks. Any extra shape variation is expressed in additional modes of the texture
model. The ASM needs points around boundaries so as to define suitable directions for search.
Because of the considerable work required to get reliable image labelling, the fewer landmarks
required, the better.

The AAM algorithm relies on finding a linear relationship between model parameter dis-
placements and the induced texture error vector. However, we could augment the error vector
with other measurements to give the algorithm more information. In particular one method
of combining the ASM and AAM would be to search along profiles at each model point and

12.3. DISCUSSION 78

augment the texture error vector with the distance along each profile of the best match. Like
the texture error, this should be driven to zero for a good match. This approach will be the
subject of further investigation.

To conclude, we find that the ASM is faster and achieves more accurate feature point location
than the AAM. However, as it explicitly minimises texture errors the AAM gives a better match
to the image texture.

Chapter 13

Automatic Landmark Placement

The most time consuming and scientifically unsatisfactory part of building shape models is the
labelling of the training images. Manually placing hundreds (in 2D) or thousands (in 3D) of
points on every image is both tedious and error prone. To reduce the burden, semi-automatic
systems have been developed. In these a model is built from the current set of examples (possibly
with extra artificial modes included in the early stages) and used to search the current image.
The user can edit the result where necessary, then add the example to the training set. Though
this can considerably reduce the time and effort required, labelling large sets of images is still
difficult. It is particularly hard to place landmarks in 3D images, because of the difficulties of
visualisation.

Ideally a fully automated system would be developed, in which the computer is presented
with a set of training images and automatically places the landmarks to generate a model which
is in some sense optimal. This is a difficult task, not least because it is not clear how to define
what is optimal.

13.1 Automatic landmarking in 2D

Approaches to automatic landmark placement in 2D have assumed that contours (either pixel-
lated or continuous, usually closed) have already been segmented from the training sets. The
aim is to place points so as to build a model which best cptures the shape variation, but which
has minimal representation error.

Scott and Longuett-Higgins [103] produce an elegant approach to the correspondence prob-
lem. They extract salient features from the images, such as corners and edges and use these
to calculate a proximity matrix. This Gaussian-weighted matrix measures the distance between
each feature. A singular value decomposition (SVD) is performed on the matrix to establish
a correspondence measure for the features. This effectively finds the minimum least-squared
distance between each feature. This approach, however, is unable to cope with rotations of
more than 15 degrees and is generally unstable.

Shapiro and Brady [104] extend Scott?s approach to overcome these shortcomings by con-
sidering intra-image features as well as inter-image features. As this method uses an unordered
pointset, its extension to 3-d is problematic because the points can lose their ordering. Sclaroff

79

13.1. AUTOMATIC LANDMARKING IN 2D 80

and Pentland [102] derive a method for non-rigid correspondence between a pair of closed, pix-
elated boundaries. They use the same method as Shapiro and Brady to build a proximity
matrix. This is used to build a finite element model that describes the vibrational modes of
the two pointsets. Corresponding points are found by comparing the modes of the two shapes.
Although this method works well on certain shapes, Hill and Taylor [57] found that the method
becomes unstable when the two shapes are similar. It is also unable to deal with loops in the
boundary so points are liable to be re-ordered.

Hill et. al.described a method of non-rigid correspondence in 2D between a pair of closed,
pixellated boundaries [56, 57, 58]. The method is based on generating sparse polygonal ap-
proximations for each shape; no curvature estimation for either boundary was required. The
landmarks were further improved by an iterative refinement step. Results were presented which
demonstrate the ability of this algorithm to provide accurate, non-rigid correspondences. This
pair-wise corresponder was used within a framework for automatic landmark generation which
demonstrated that landmarks similar to those identified manually were produced by this ap-
proach.

Baumberg and Hogg [2] describe a system which generates landmarks automatically for
outlines of walking people. The outlines are represented as pixellated boundaries extracted
automatically from a sequence of images using motion analysis. Landmarks are generated on an
individual basis for each boundary by computing the principal axis of the boundary, identifying
a reference pixel on the boundary at which the principal axis intersects the boundary and
generating a number of equally spaced points from the reference point with respect to the path
length of the boundary. While this process is satisfactory for silhouettes of pedestrians, it is
unlikely that it will be generally successful. The authors went on to describe how the position of
the landmarks can be iteratively updated in order to generate improved shape models generated
from the landmarks [3].

Benayoun et. al.[5], Kambhamettu and Goldgof [63] all use curvature information to select
landmark points. It is not, however, clear that corresponding points will always lie on regions
that have the same curvature. Also, since these methods only consider pairwise correspondences,
they may not find the best global solution.

Kotcheff and Taylor [68] used direct optimisation to place landmarks on sets of closed curves.
They define a mathematical expression which measures the compactness and the specificity of a
model. This gives a measure which is a function of the landmark positions on the training set of
curves. A genetic algorithm is used to adjust the point positions so as to optimise this measure.
Their representation is, however, problematic and does not guarantee a diffeomorphic mapping.
They correct the problem when it arises by reordering correspondences, which is workable for
2D shapes but does not extend to 3D. Although some of the results produced by their method
are better than hand-generated models, the algorithm did not always converge.

Bookstein [9] describes an algorithm for landmarking sets of continuous contours represented
as polygons. Points are allowed to slide along contours so as to minimise a bending energy term.

Rangarajan et al [97, 96] describe a method of point matching which simultaneously deter-
mines a set of matches and the similarity transform parameters required to register two contours
defined by dense point sets. The method is robust against point features on one contour that do
not appear on the other. An optimisation method similar to simulated annealing is used to solve
the problem to produce a matrix of correspondences. The construction of the correspondence

13.2. AUTOMATIC LANDMARKING IN 3D 81

matrix cannot guarantee the production of a legal set of correspondences.

Walker et. al.[122, 123] salient features to generate correspondences, either by tracking
though a sequence, or by locating plausible pairwise matches and refining using an EM like
algorithm to find the best global matches across a training set.

Younes [128] describes an algorithm for matching 2D curves.

Davies et. al.[28, 27] describe a method of building shape models so as to minimise an
information measure - the idea being to choose landmarks so as to be able to represent the data
as efficiently as possible.

More recently region based approaches have been developed. For instance, De la Torre [72]
represents a face as a set of fixed shape regions which can move independently. The appearance
of each is represented using an eigenmodel, and an optimisation is performed to locate the
regions on the training sequence so as to minimise a measure related to the total variance of the
model. This tends to match regions rather than points, but is an automatic method of building
a flexible appearance model.

Jones and Poggio [62] describe an alternative model of appearance they term a ‘Morphable
Model’. An optical flow based algorithm is used to match the model onto new images, and can
be used in a ‘boot-strapping’ mode in which the model is matched to new examples which can
then be added to the training set [121].

Belongie et. al.[4] describe an iterative algorithm for matching pairs of point sets. They
define a ‘shape context’ which is a model of the region around each point, and then optimise
an objective function which measures the difference in shape context and relative position of
corresponding points, allowing for shape deformation with a thin plate spline. They show
impressive recognition results on various databases with this technique.

Duta, Jain and Dubuisson-Jolly [90] describe a system for automatically building models by
clustering examples, discarding outliers and registering similar shapes.

13.2 Automatic landmarking in 3D

The work on landmarking in 3D has mainly assumed a training set of closed 3D surfaces has
already been segmented from the training images. As in 2D, the aim is to place landmarks
across the set so as to give an ‘optimal’ model.

Fleute and Lavalée [41] use an framework of initially matching each training example to a
single template, building a mean from these matched examples, and then iteratively matching
each example to the current mean and repeating until convergence. Matching is performed using
the multi-resolution registration method of Szeliski and Lavalée [113]. This method deforms the
volume of space embedding the surface rather than deforming the surface itself. Kelemen et al
[66] parameterise the surfaces of each of their shape examples using the method of Brechbühler
et al [13]. Correspondence may then be established between surfaces but relies upon the choice
of a parametric origin on each surface mapping and registration of the coordinate systems of
these mappings by the computation of a rotation.

Brett et. al.[14] find correspondences on pairs of triangular meshes. A binary tree of corre-
sponded shapes can be generated from a training set. Landmarks placed on the ‘mean’ shape at
the root of the tree can be propogated to the leaves (the original training set). These landmarks

13.2. AUTOMATIC LANDMARKING IN 3D 82

are then used to build 3D shape models.
Caunce and Taylor [17] describe building 3D statistical models of the cortical sulci. Points

are automatically located on the sulcal fissures and corresponded using variants on the Iterative
Closest Point algorithm. The landmarks are progressively improved by adding in more structural
and configural information. The final resulting landmarks are consistent with other anatomical
studies.

Wang et. al.[124] uses curvature information to select landmark points. It is not, however,
clear that corresponding points will always lie on regions that have the same curvature. Also,
since these methods only consider pairwise correspondences, they may not find the best global
solution.

Dickens et. al.[31] describe a method of semi-automatically placing landmarks on objects
with an approximately cylindrical shape. Essentially the top and bottom of the object define
the extent, and a symmetry plane defines the zero point for a cylindrical co-ordinate system.
The method is demonstrated on mango data and on an approximately cylindrical organ in MR
data.

The method gives an approximate correspondence, which is sufficient to build a statistical
but does not attempt to determine a correspondence that is in some sense optimal.

Li and Reinhardt [76] describe a 3D landmarking defined by marking the boundary in each
slice of an image, equally placing landmarks around each and then shuffling the landmarks
around (varying a single parameter defining the starting point) so as to minimise a measure
comparing curvature on the target curve with that on a template. The equal spacing of the
points will lead to potentially poor correspondences on some points of interest.

Meier and Fisher [83] use a harmonic parameterisation of objects and warps and find corre-
spondences by minimising errors in structural correspondence (point-point, line-line type mea-
sures).

Davies et. al.[29, 30] have extended their approach to build models of surfaces by minimising
an information type measure, allowing points to move across the surfaces under the influence of
diffeomorphic transformations.

Chapter 14

View-Based Appearance Models

The appearance of an object in a 2D image can change dramatically as the viewing angle changes.
To deal effectively with real world scenes models must be developed which can represent this
variability. For instance, the majority of work on face tracking and recognition assumes near
fronto-parallel views, and tends to break down when presented with large rotations or profile
views. Three general approaches have been used to deal with this; a) use a full 3D model
[120, 42, 94], b) introduce non-linearities into a 2D model [59, 99, 110] and c) use a set of models
to represent appearance from different view-points [86, 69, 126].

In this chapter we explore the last approach, using statistical models of shape and appearance
to represent the variations in appearance from a particular view-point and the correlations
between models of different view-points.

The appearance models are trained on example images labelled with sets of landmarks to
define the correspondences between images. The face model examples in Chapter 5 show that
a linear model is sufficient to simulate considerable changes in viewpoint, as long as all the
modelled features (the landmarks) remained visible. A model trained on near fronto-parallel
face images can cope with pose variations of up to 45o either side. For much larger angle
displacements, some features become occluded, and the assumptions of the model break down.

We demonstrate that to deal with full 180o rotation (from left profile to right profile), we
need only 5 models, roughly centred on viewpoints at -90o,-45o,0o,45o,90o (where 0o corresponds
to fronto-parallel). The pairs of models at ±90o (full profile) and ±45o(half profile) are simply
reflections of each other, so there are only 3 distinct models. We can use these models for
estimating head pose, for tracking faces through wide changes in orientation and for synthesizing
new views of a subject given a single view.

Each model is trained on labelled images of a variety of people with a range of orientations
chosen so none of the features for that model become occluded. The different models use
different sets of features (see Figure 14.2). Each example view can then be approximated using
the appropriate appearance model with a vector of parameters, c. We assume that as the
orientation changes, the parameters, c, trace out an approximately elliptical path. We can learn
the relationship between c and head orientation, allowing us to both estimate the orientation of
any head and to be able to synthesize a face at any orientation.

By using the Active Appearance Model algorithm we can match any of the individual models

83

14.1. TRAINING DATA 84

to a new image rapidly. If we know in advance the approximate pose, we can easily select the
most suitable model. If we do not know, we can search with each of the five models and
choose the one which achieves the best match. Once a model is selected and matched, we can
estimate the head pose, and thus track the face, switching to a new model if the head pose
varies significantly. There are clearly correlations between the parameters of one view model
and those of a different view model. In order to learn these, we need images taken from two
views simultaneously. For our experiments we achieved this using a judiciously placed mirror,
giving a frontal and a profile view (Figure 14.1).

Figure 14.1: Using a mirror we capture frontal and profile appearance simultaneously

By annotating such images and matching frontal and profile models, we obtain correspond-
ing sets of parameters. These can be analyzed to produce a joint model which controls both
frontal and profile appearance. Such a joint model can be used to synthesize new views given a
single view. Though this can perhaps be done most effectively with a full 3D model [120], we
demonstrate that good results can be achieved just with a set of 2D models. The joint model
can also be used to constrain an Active Appearance Model search [36, 22], allowing simultaneous
matching of frontal and profile models to pairs of images.

14.1 Training Data

To explore the ability of the apperance models to represent the face from a range of angles, we
gathered a training set consisting of sequences of individuals rotating their heads through 180o,
from full profile to full profile. Figure 14.2 shows typical examples, together with the landmark
points placed on each example. The sets were divided up into 5 groups (left profile, left half
profile, frontal, right half profile and right profile). Ambiguous examples were assigned to both
groups, so that they could be used to learn the relationships between nearby views, allowing
smooth transition between them (see below).

We trained three distinct models on data similar to that shown in Figure 14.2. The profile
model was trained on 234 landmarked images taken of 15 individuals from different orienta-
tions. The half-profile model was trained on 82 images, and the frontal model on 294 images.
Reflections of the images were used to enlarge the training set.

Figure 14.3 shows the effects of varying the first two appearance model parameters, c1, c2,
of models trained on a set of face images, labelled as shown in Figure 14.2. These change both
the shape and the texture component of the synthesised image.

14.2. PREDICTING POSE 85

Profile Half Profile Frontal

Figure 14.2: Examples from the training sets for the models

c1 varies ±2 s.d.s c2 varies ±2 s.d.s

Figure 14.3: First two modes of the face models (top to bottom: profile, half-profile and frontal)

14.2 Predicting Pose

We assume that the model parameters are related to the viewing angle, θ, approximately as

c = c0 + cx cos(θ) + cy sin(θ) (14.1)

where c0, cx and cy are vectors estimated from training data (see below).

(Here we consider only rotation about a vertical axis - head turning. Nodding can be dealt
with in a similar way.)

This is an accurate representation of the relationship between the shape, x, and orientation
angle under an affine projection (the landmarks trace circles in 3D which are projected to ellipses
in 2D), but our experiments suggest it is also an acceptable approximation for the appearance
model parameters, c.

We estimate the head orientation in each of our training examples, θi, accurate to about
±10o. For each such image we find the best fitting model parameters, ci. We then perform
regression between {ci} and the vectors {(1, cos(θi), sin(θi))′} to learn c0,cx and cy.

14.3. TRACKING THROUGH WIDE ANGLES 86

Figure 14.4 shows reconstructions in which the orientation, θ, is varied in Equation 14.1.

-105o -80o -60o

-60o -40o -20o

-45o 0 +45o

Figure 14.4: Rotation modes of three face models

Given a new example with parameters c, we can estimate its orientation as follows. Let R−1
c

be the left pseudo-inverse of the matrix (cx|cy) (thus R−1
c (cx|cy) = I2).

Let

(xa, ya)
′ = R−1

c (c− c0) (14.2)

then the best estimate of the orientation is tan−1(ya/xa).

Figure 14.5 shows the predicted orientations vs the actual orientations for the training sets
for each of the models. It demonstrates that equation 14.1 is an acceptable model of parameter
variation under rotation.

14.3 Tracking through wide angles

We can use the set of models to track faces through wide angle changes (full left profile to
full right profile). We use a simple scheme in which we keep an estimate of the current head
orientation and use it to choose which model should be used to match to the next image.

To track a face through a sequence we locate it in the first frame using a global search scheme
similar to that described in [33]. This involves placing a model instance centred on each point
on a grid across the image, then running a few iterations of the AAM algorithm. Poor fits are

14.3. TRACKING THROUGH WIDE ANGLES 87

-150

-100

-50

0

50

100

150

-150 -100 -50 0 50 100 150

P
re

di
ct

ed
 A

ng
le

 (
de

g.
)

Actual Angle (deg.)

Figure 14.5: Prediction vs actual angle across training set

Model Angle Range

Left Profile -110o - -60o

Left Half-Profile -60o - -40o

Frontal -40o - 40o

Right Half-Profile 40o - 60o

Right Profile 60o - 110o

Table 14.1: Valid angle ranges for each model

discarded and good ones retained for more iterations. This is repeated for each model, and the
best fitting model is used to estimate the position and orientation of the head.

We then project the current best model instance into the next frame and run a multi-
resolution seach with the AAM. We estimate the head orientation from the results of the search,
as described above. We then use the orientation to choose the most appropriate model with
which to continue. Each model is valid over a particular range of angles, determined from its
training set (see Table 14.1). If the orientation suggests changing to a new model, we estimate
the parameters of the new model from those of the current best fit. We then perform an AAM
search to match the new model more accurately. This process is repeated for each subsequent
frame, switching to new models as the angle estimate dictates.

When switching to a new model we must estimate the image pose (position, within image
orientation and scale) and model parameters of the new example from those of the old. We
assume linear relationships which can be determined from the training sets for each model, as
long as there are some images (with intermediate head orientations) which belong to the training
sets for both models.

Figure 14.10 shows the results of using the models to track the face in a new test sequence
(in this case a previously unseen sequence of a person who is in the training set). The model
reconstruction is shown superimposed on frames from the sequence. The methods appears to
track well, and is able to reconstruct a convincing simulation of the sequence.

We used this system to track 15 new sequences of the people in the training set. Each

14.4. SYNTHESIZING ROTATION 88

sequence contained between 20 and 30 frames. Figure 14.6 shows the estimate of the angle
from tracking against the actual angle. In all but one case the tracking succeeded, and a good
estimate of the angle is obtained. In one case the models lost track and were unable to recover.

The system currently works off-line, loading sequences from disk. On a 450MHz Pentium III
it runs at about 3 frames per second, though so far little work has been done to optimise this.

Actual Angle (deg.)

Pr
ed

ic
te

d
A

ng
le

 (
de

g.
)

−100 −75 −50 −25 0 25 50 75 100

−100

−75

−50

−25

0

25

50

75

100

Figure 14.6: Comparison of angle derived from AAM tracking with actual angle (15 sequences)

14.4 Synthesizing Rotation

Given a single view of a new person, we can find the best model match and determine their head
orientation. We can then use the best model to synthesize new views at any orientation that
can be represented by the model. If the best matching parameters are c, we use Equation 14.2
to estimate the angle, θ. Let r be the residual vector not explained by the rotation model, ie

r = c− (c0 + cx cos(θ) + cy sin(θ)) (14.3)

To reconstruct at a new angle, α, we simply use the parameters

c(α) = c0 + cx cos(α) + cy sin(α) + r (14.4)

For instance, Figure 14.7 shows fitting a model to a roughly frontal image and rotating
it. The top example uses a new view of someone in the training set. The lower example is a
previously unseen person from the Surrey face database [84].

This only allows us to vary the angle in the range defined by the current view model. To
generate significantly different views we must learn the relationship between parameters for one
view model and another.

14.5. COUPLED-VIEW APPEARANCE MODELS 89

Original Best Fit (-10o) Rotated to -25o Rotated to +25o

Original Best Fit (-2o) Rotated to -25o Rotated to +25o

Figure 14.7: By fitting a model we can estimate the orientation, then synthesize new views

14.5 Coupled-View Appearance Models

Given enough pairs of images taken from different view points, we can build a model of the
relationship between the model parameters in one view and those in another. Ideally the images
should be taken simultaneously, allowing correllations between changes in expression to be learnt.
We have achieved this using a single video camera and a mirror (see Figure 14.1). A looser model
can be built from images taken at different times, assuming a similar expression (typically
neutral) is adopted in both.

Let rij be the residual model parameters for the object in the ith image in view j, formed
from the best fitting parameters by removing the contribution from the angle model (Equation
14.3). We form the combined parameter vectors ji = (rTi1, r

T
i2)

T . We can then perform a principal
component analysis on the set of {ji} to obtain the main modes of variation of a combined model,

j = j̄+Pb (14.5)

Figure 14.8 shows the effect of varying the first four of the parameters controlling such a model
representing both frontal and profile face appearance. The modes mix changes in identity and
changes in expression. For instance mode 3 appears to demonstrate the relationship between
frontal and profile views during a smile.

14.5.1 Predicting New Views

We can use the joint model to generate different views of a subject. We find the joint parameters
which generate a frontal view best matching the current target, then use the model to generate
the corresponding profile view. Figures 14.9(a,b) show the actual profile and profile predicted
from a new view of someone in the training set. In this case the model is able to estimate the
expression (a half smile). Because we only have a limited set of images in which we have non-
neutral expressions, the joint model built with them is not good at generalising to new people.

14.6. COUPLED MODEL MATCHING 90

Mode 1 (b1 varies ±2s.d.s) Mode 2 (b2 varies ±2s.d.s)

Mode 3 (b3 varies ±2s.d.s) Mode 4 (b4 varies ±2s.d.s)

Figure 14.8: Modes of joint model, controlling frontal and profile appearance

To deal with this, we built a second joint model, trained on about 100 frontal and profile
images taken from the Surrey XM2VTS face database [84]. These have neutral expressions, but
the image pairs are not taken simultaneously, and the head orientation can vary significantly.
However, the rotation effects can be removed using the approach described above, and the model
can be used to predict unseen views of neutral expressions. Figures 14.9(c,d) show the actual
profile and profile predicted from a new person (the frontal image is shown in Figure 14.7). With
a large enough training set we would be able to deal with both expression changes and a wide
variety of people.

a) Actual profile b) Predicted profile c) Actual profile d) Predicted profile

Figure 14.9: The joint model can be used to predict appearance across views (see Fig 14.7 for
frontal view from which the predictions are made)

14.6 Coupled Model Matching

Given two different views of a target, and corresponding models, we can exploit the correlations
to improve the robustness of matching algorithms. One approach would be to modify the Active

14.6. COUPLED MODEL MATCHING 91

Frontal Model Profile Model
Measure Coupled Independent Coupled Independent

RMS Point Error 4.8± 0.5 5.1± 0.5 3.3± 0.15 3.8± 0.3
(pixels)

RMS Texture Error 7.9± 0.25 7.9± 0.25 8.3± 0.25 8.8± 0.4
(grey-levels)

Table 14.2: Comparison between coupled search and independent search

Appearance Model search algorithm to drive the parameters, b, of the joint model, together with
the current estimates of pose, texture transformation and 3D orientation parameters. However,
the approach we have implemented is to train two independent AAMs (one for the frontal model,
one for the profile), and to run the search in parallel, constraining the parameters with the joint
model at each step. In particular, each iteration of the matching algorithm proceeds as follows:

• Perform one iteration of the AAM on the frontal model, and one on the profile model, to update
the current estimate of c1, c2 and the associated pose and texture transformation parameters.

• Estimate the relative head orientation with the frontal and profile models, θ1, θ2

• Use Equation 14.3 to estimate the residuals r1, r2

• Form the combined vector j = (rT
1 , r

T
2)

T

• Compute the best joint parameters, b = PT (j − j̄) and apply limits to taste.

• Compute the revised residuals using (r′T1 , r′T2)T = j̄ + Pb

• Use Equation 14.1 to add the effect of head orientation back in

Note that this approach makes no assumptions about the exact relative viewing angles. If
appropriate we can learn the relationship between θ1 and θ2 (θ1 = θ2 + const). This could be
used as a further constraint. Similarly the relative positions and scales could be learnt.

To explore whether these constraints actually improve robustness, we performed the following
experiment. We manually labelled 50 images (not in the original training set), then performed
multi-resolution search, starting with the mean model parameters in the correct pose. We ran
the experiment twice, once using the joint model constraints described above, once without any
constraints (treating the two models as completely independent).

Table 14.2 summarises the results. After each search we measure the RMS distance between
found points and hand labelled points, and the RMS error per pixel between the model recon-
struction and the image (the intensity values are in the range [0,255]). The results demonstrate
that in this case the use of the constraints between images improved the performance, but not
by a great deal. We would expect that adding stronger constraints, such as that between the
angles θ1,θ2, and the relative scales and positions, would lead to further improvements.

14.7. DISCUSSION 92

14.7 Discussion

This chapter demonstrates that a small number of view-based statistical models of appearance
can represent the face from a wide range of viewing angles. Although we have concentrated on
rotation about a vertical axis, rotation about a horizontal axis (nodding) could easily be included
(and probably wouldn’t require any extra models for modest rotations). We have shown that
the models can be used to track faces through wide angle changes, and that they can be used
to predict appearance from new viewpoints given a single image of a person.

14.8 Related Work

Statistical models of shape and texture have been widely used for recognition, tracking and
synthesis [62, 74, 36, 116], but have tended to only be used with near fronto-parallel images.

Moghaddam and Pentland [87] describe using view-based eigenface models to represent a
wide variety of viewpoints. Our work is similar to this, but by including shape variation (rather
than the rigid eigen-patches), we require fewer models and can obtain better reconstructions
with fewer model modes. Kruger [69] and Wiskott et. al.[126] used flexible graphs of Gabor Jets
of frontal, half-profile and full profile views for face recognition and pose estimation. Maurer
and von der Malsburg [79] demonstrated tracking heads through wide angles by tracking graphs
whose nodes are facial features, located with Gabor jets. The system is effective for tracking, but
is not able to synthesize the appearance of the face being tracked. Murase and Nayar [59] showed
that the projections of multiple views of a rigid object into an eigenspace fall on a 2D manifold
in that space. By modelling this manifold they could recognise objects from arbitrary views. A
similar approach has been taken by Gong et. al.[105, 70] who use non-linear representations of
the projections into an eigen-face space for tracking and pose estimation, and by Graham and
Allinson [45] who use it for recognition from unfamiliar viewpoints.

Romdhani et. al.[99] have extended the Active Shape Model to deal with full 180o rotation
of a face using a non-linear model. However, the non-linearities mean the method is slow to
match to a new image. They have also extended the AAM [110] using a kernel PCA. A non-
linear 2D shape model is combined with a non-linear texture model on a 3D texture template.
The approach is promising, but considerably more complex than using a small set of linear 2D
models.

Vetter [119, 120] has demonstrated how a 3D statistical model of face shape and texture can
be used to generate new views given a single view. The model can be matched to a new image
from more or less any viewpoint using a general optimization scheme, though this is slow. Similar
work has been described by Fua and Miccio [42] and Pighin et. al.[94]. By explicitly taking into
account the 3D nature of the problem, this approach is likely to yield better reconstructions
than the purely 2D method described below. However, the view based models we propose could
be used to drive the parameters of the 3D head model, speeding up matching times.

La Cascia et. al.[71] describe a related approach to head tracking. They project the face onto
a cylinder (or more complex 3D face shape) and use the residual differences between the sampled
data and the model texture (generated from the first frame of a sequence) to drive a tracking
algorithm, with encouraging results. The model is tuned to the individual by iinitialization in
the first frame, and does not explicitly track expression changes, as the approach here is able to.

14.8. RELATED WORK 93

Figure 14.10: Reconstruction of tracked faces superimposed on sequences

Chapter 15

Applications and Extensions

The ASM and AAMs have been widely used, and numerous extensions have been suggested.
Here I cover a few that have come to my attention. This is by no means a complete list - there
are now so many applications that I’ve lost track. If you are reading this and know of anything
I’ve missed, please let me know - I don’t have the time to keep this as up to date, or as complete,
as I would like.

15.1 Medical Applications

Nikou et. al.describe a statistical model of the skull, scalp and various brain surfaces. The
model uses the modes of vibration of an elastic spherical mesh to match to sets of examples.
The parameters are then put through a PCA to build a model. (Note that this is identical to
a PDM, though without taking care over the correspondence). By matching part of the model
to the skull and scalp, constraints can then be placed on the position of other brain structures,
making it easier to locate them. They demonstrate using the model to register MR to SPECT
images.

van Ginneken [118] describes using Active Shapve Models for interpretting chest radiographs.
He demonstates that various improvements on the original method (such as using k-Nearest
Neighbour classifiers during the profile model search) give more accurate results.

Hamarneh [49, 48] has investigated the extension of ASMs to Spatio-Temporaral Shapes, and
has devised a new algorithm for deforming the ST-shape model to better fit the image sequence
data.

Mitchell et. al.[85] describe building a 2D+time Appearance model of the time varying
appearance of the heart in complete cardiac MR sequences.

The model essentially represents the texture of a set of 2D patches, one for each time step
of the cycle. The modes therefore capture the shape, texture and time-varying changes across
the training set.

The AAM is suitably modified to match such a model to sequence data, with encouraging
results. It shows a good capture range, making it robust to initial position, and is accurate in
its final result.

Bosch et. al.[10] describe building a 2D+time Appearance model and using it to segment

94

15.1. MEDICAL APPLICATIONS 95

parts of the heart boundary in echocardiogram sequences. The model (the same as that used
above) essentially represents the texture of a set of 2D patches, one for each time step of the
cycle. The modes therefore capture the shape, texture and time-varying changes across the
training set.

The paper describes an elegant method of dealing with the strongly non-gaussian nature
of the noise in ultrasound images. Essentially the cumulative intensity histogram is computed
for each patch (after applying a simple linear transform to the intensities to get them into the
range [0,1]). This is then compared to the histogram one would obtain from a true gaussian
distribution with the same s.d. A lookup table is created which maps the intensities so that
the normalised intensities then have an approximately gaussian distribution. The lookup is
computed once during training, based on the distributions of all the training examples. It is
stored, and used to normalise each image patch, both during training, and during AAM search.

This distribution correction approach is shown to have a dramatic effect on the quality
of matching, with successful convergence on a test set rising from 73% (for the simple linear
normalisation) to 97% for the non-linear method.

Li and Reinhardt [76] describe a 3D landmarking defined by marking the boundary in each
slice of an image, equally placing landmarks around each and then shuffling the landmarks
around (varying a single parameter defining the starting point) so as to minimise a measure
comparing curvature on the target curve with that on a template. The equal spacing of the
points will lead to potentially poor correspondences on some points of interest.

Given a set of objects so labelled, a triangulated mesh is created an a 3D ASM can be built.
The statistical models of image structure at each point (along profiles normal to the surface)
include a term measuring local image curvature (if I remember correctly) which is claimed to
reduce the ambiguity in matching.

Once the ASM converges its final state is used as the starting point for a deformable mesh
which can be further refined in a snake like way, including adding extra nodes to give a more
detailed match to image data.

Results were shown on vertebra in volumetric chest HRCT images (check this).

Lorenz et. al.[20] describe how the free vibrational modes of a 3D triangulated mesh can
be used as a model of shape variability when only a single example is available. It is similar
in principle to earlier work by Cootes and Taylor, and by Wand and Staib. They show the
representation error when using a shape model to approximate a set of shapes against number
of modes used. The statistical model gives the best representation, but vibrational mode models
built from a single example can achieve reasonable approximations without excessively increasing
the number of modes required. A model built from the mean was significantly better than one
built from one of the training examples, but of course in practise if one has the mean one would
use the statistical model.

Bernard and Pernus [6] address the problem of locating a set of landmarks on AP radiographs
of the pelvis which are used to assess the stresses on the hip joints. Three statistical appearance
models are built, on of each hip joint, one of the pelvis itself. To match a cost function is defined
which penalises shape and texture variation from the model mean, and which encourages the
centre of each hip joint to correspond to the centre of the circle defined by the socket - a sensible
constraint. The models are matched using simulated annealing and leave-one out tests of match
performance are given.

15.2. TRACKING 96

Yao et. al.[127] describe building a statistical model representing the shape and density of
bony anatomy in CT images. The shape is represented using a tetrahedral mesh. The density is
approximated using smooth Bernstein spline polynomials expressed in barycentric co-ordinates
on each tetrahedron of the mesh. This approach leads to a good representation and is fairly
compact. The demonstrate convincing reconstructions. The aim is to build an anatomical atlas
representing bone density.

Thodberg and Rosholm [115] have used the Active Shape Model in a commercial medical
device for bone densitometry and shown it to be both accurate and reliable. Thodberg [52]
describes using AAMs for interpretting hand radiographs, demonstrating that the AAM is an
efficient and accurate method of solving a variety of tasks. He describes how the bone measure-
ments can be used as biometrics to verify patient identity.

Pekar et. al.[92] use a mesh representation of surfaces, together with a statistical shape
model, to segment vertebrae in CT images. After a global match using the shape model, lo-
cal adaptation is performed, minimising an energy term which combines image matching and
internal model smoothness and vertex distribution.

The appearance model relies on the existence of correspondence between structures in dif-
ferent images, and thus on a consistent topology across examples. For some structures (for
example, the sulci), this does not hold true. An alternative approach for sulci is described by
Caunce and Taylor [16, 17].

15.2 Tracking

Baumberg and Hogg [2] use a modified ASM to track people walking.

Romdhani et. al.[99] have extended the Active Shape Model to deal with full 180o rotation
of a face using a non-linear model. However, the non-linearities mean the method is slow to
match to a new image. They have also extended the AAM [110] using a kernel PCA. A non-
linear 2D shape model is combined with a non-linear texture model on a 3D texture template.
The approach is promising, but considerably more complex than using a small set of linear 2D
models.

Bowden et. al.[11, 12] has used 3D statistical shape models to estimate 3D pose and motion
from 2D images.

La Cascia et. al.[71] describe ‘Active Blobs’ for tracking, which are in many ways similar
to AAMs, though they use a FEM model of deformation of a single prototype rather than a
statistical model.

Edwards et. al.have used ASMs and AAMs to model and track faces [35, 37, 34].

15.3 Extensions

Rogers and Graham [98] have shown how to build statistical shape models from training sets
with missing data. This allows a feature to be present in only a subset of the training data
and overcomes one problem with the original formulation. An extra parameter is added which
allows the feature to be present/absent, and the statistical analysis is done in such a way as to
avoid biasing the estimates of the variance of the features which are present.

15.3. EXTENSIONS 97

Non-linear extensions of shape and appearance models using kernel based methods have been
presented by Romdhani et. al.[99, 110] and Twining and Taylor [117], amongst others.

When the AAM converges it will usually be close to the optimal result, but may not achieve
the exact position. Stegmann and Fisker [40, 80, 112] has shown that applying a general purpose
optimiser can improve the final match.

Chapter 16

Discussion

Active Shape Models allow rapid location of the boundary of objects with similar shapes to
those in a training set, assuming we know roughly where the object is in the image. They are
particularly useful for:

• Objects with well defined shape (eg bones, organs, faces etc)

• Cases where we wish to classify objects by shape/appearance

• Cases where a representative set of examples is available

• Cases where we have a good guess as to where the target is in the image

However, they are not necessarily appropriate for

• Objects with widely varying shapes (eg amorphous things, trees, long wiggly worms etc)

• Problems involving counting large numbers of small things

• Problems in which position/size/orientation of targets is not known approximately (or
cannot be easily estimated).

In addition, it should be noted that the accuracy to which they can locate a boundary is
constrained by the model. The model can only deform in ways observed in the training set.
If the object in an image exhibits a particular type of deformation not present in the training
set, the model will not fit to it. This is true of fine deformations as well as coarse ones. For
instance, the model will usually constrain boundaries to be smooth, if only smooth examples
have been seen. Thus if a boundary in an image is rough, the model will remain smooth, and
will not necessarily fit well. However, using enough training examples can usually overcome this
problem.

One of the main drawbacks of the approach is the amount of labelled training examples
required to build a good model. These can be very time consuming to generate. However,
a ‘bootstrap’ approach can be adopted. We first annotate a single representative image with
landmarks, and build a model from this. This will have a fixed shape, but will be allowed to

98

99

scale, rotate and translate. We then use the ASM algorithm to match the model to a new
image, and edit the points which do not fit well. We can then build a model from the two
labelled examples we have, and use it to locate the points in the third. This process is repeated,
incrementally building a model, until the ASM finds new examples sufficiently accurately every
time, so needs no more training.

Both the shape models and the search algorithms can be extended to 3D. The landmark
points become 3D points, the shape vectors become 3n dimensional for n points. Although
the statistical machinery is identical, a 3D alignment algorithm must be used (see [54]). Of
course, annotating 3D images with landmarks is difficult, and more points are required than
for a 2D object. In addition, the definition of surfaces and 3D topology is more complex than
that required for 2D boundaries. However, 3D models which represent shape deformation can
be successfully used to locate structures in 3D datasets such as MR images (for instance [55]).

The ASM/AAMs are well suited to tracking objects through image sequences. In the simplest
form the full ASM/AAM search can be applied to the first image to locate the target. Assuming
the object does not move by large amounts between frames, the shape for one frame can be used
as the starting point for the search in the next, and only a few iterations will be required to lock
on. More advanced techniques would involve applying a Kalman filter to predict the motion
[2][38].

To summarise, by training statistical models of shape and appearance from sets of labelled
examples we can represent both the mean shape and appearance of a class of objects and the
common modes of variation. To locate similar objects in new images we can use the Active
Shape Model or Active Appearance Model algorithms which, given a reasonable starting point,
can match the model to the image very quickly.

100

Acknowledgements

Dr Cootes is grateful to the EPSRC for his Advanced Fellowship Grant, and to his colleagues
at the Wolfson Image Analysis Unit for their support. The MR cartilage images were provided
by Dr C.E. Hutchinson and his team, and were annotated by Dr S.Solloway. The face images
were annotated by G. Edwards, Dr A. Lanitis and other members of the Unit.

Appendix A

Applying a PCA when there are
fewer samples than dimensions

Suppose we wish to apply a PCA to s n-D vectors, xi, where s < n. The covariance matrix
is n × n, which may be very large. However, we can calculate its eigenvectors and eigenvalues
from a smaller s × s matrix derived from the data. Because the time taken for an eigenvector
decomposition goes as the cube of the size of the matrix, this can give considerable savings.

Subract the mean from each data vector and put them into the matrix D

D = ((x1 − x̄)| . . . |(xs − x̄)) (A.1)

The covariance matrix can be written

S =
1

s
DDT (A.2)

Let T be the s× s matrix

T =
1

s
DTD (A.3)

Let ei be the s eigenvectors of T with corresponding eigenvalues λi, sorted into descending
order. It can be shown that the s vectors Dei are all eigenvectors of S with corresponding
eigenvalues λi, and that all remaining eigenvectors of S have zero eigenvalues. Note that Dei is
not necessarily of unit length so may require normalising.

101

Appendix B

Aligning Two 2D Shapes

Given two 2D shapes, x and x′, we wish to find the parameters of the transformation T (.) which,
when applied to x, best aligns it with x′. We will define ‘best’ as that which minimises the sum
of squares distance. Thus we must choose the parameters so as to minimise

E = |T (x)− x′|2 (B.1)

Below we give the solution for the similarity and the affine cases.
To simplify the notation, we define the following sums

Sx = 1
n

∑

xi Sy = 1
n

∑

yi
Sx′ = 1

n

∑

x′i Sy′ = 1
n

∑

y′i
Sxx = 1

n

∑

x2
i Syy = 1

n

∑

y2
i

Sxy = 1
n

∑

xiyi
Sxx′ = 1

n

∑

xix
′
i Syy′ = 1

n

∑

yiy
′
i

Sxy′ = 1
n

∑

xiy
′
i Syx′ = 1

n

∑

yix
′
i

(B.2)

B.1 Similarity Case

Suppose we have two shapes, x and x′, centred on the origin (x.1 = x′.1 = 0). We wish to scale
and rotate x by (s, θ) so as to minimise |sAx − x′|, where A performs a rotation of a shape x
by θ. Let

a = (x.x′)/|x|2 (B.3)

b =

(

n
∑

i=1

(xiy
′
i − yix

′
i)

)

/|x|2 (B.4)

Then s2 = a2 + b2 and θ = tan−1(b/a). If the shapes do not have C.o.G.s on the origin, the
optimal translation is chosen to match their C.o.G.s, the scaling and rotation chosen as above.
Proof
The two dimensional Similarity transformation is

T

(

x
y

)

=

(

a −b
b a

)(

x
y

)

+

(

tx
ty

)

(B.5)

102

B.2. AFFINE CASE 103

We wish to find the parameters (a, b, tx, ty) of T (.) which best aligns x with x′, ie minimises

E(a, b, tx, ty) = |T (x)− x′)|2
=

∑n
i=1(axi − byi + tx − x′i)

2 + (bxi + ayi + ty − y′i)
2 (B.6)

Differentiating w.r.t. each parameter and equating to zero gives

a(Sxx + Syy) + txSx + tySy = Sxx′ + Syy′

b(Sxx + Syy) + tySx − txSy = Sxy′ − Syx′

aSx − bSy + tx = Sx′

bSx + aSy + ty = Sy′

(B.7)

To simplify things (and without loss of generality), assume x is first translated so that its
centre of gravity is on the origin. Thus Sx = Sy = 0, and we obtain

tx = Sx′ ty = Sy′ (B.8)

and

a = (Sxx′ + Syy′)/(Sxx + Syy) = x.x
′/|x|2

b = (Sxy′ − Syx′)/(Sxx + Syy) = (Sxy′ − Syx′)/|x|2
(B.9)

If the original x was not centred on the origin, then the initial translation to the origin must
be taken into account in the final solution.

B.2 Affine Case

The two dimensional affine transformation is

T

(

x
y

)

=

(

a b
c d

)(

x
y

)

+

(

tx
ty

)

(B.10)

We wish to find the parameters (a, b, c, d, tx, ty) of T (.) which best aligns x with x′, ie
minimises

E(a, b, c, d, tx, ty) = |T (x)− x′)|2
=

∑n
i=1(axi + byi + tx − x′i)

2 + (cxi + dyi + ty − y′i)
2 (B.11)

Differentiating w.r.t. each parameter and equating to zero gives

aSxx + bSxy + txSx = Sxx′ cSxx + dSxy + tySx = Sxy′

aSxy + bSyy + txSy = Syx′ cSxy + dSyy + tySy = Syy′

aSx + bSy + tx = Sx′ cSx + dSy + ty = Sy′
(B.12)

where the S∗ are as defined above.

To simplify things (and without loss of generality), assume x is first translated so that its
centre of gravity is on the origin. Thus Sx = Sy = 0, and we obtain

B.2. AFFINE CASE 104

tx = Sx′ ty = Sy′ (B.13)

Substituting into B.12 and rearranging gives

(

a b
c d

)(

Sxx Sxy
Sxy Syy

)

=

(

Sxx′ Syx′

Sxy′ Syy′

)

(B.14)

Thus

(

a b
c d

)

=
1

∆

(

Sxx′ Syx′

Sxy′ Syy′

)(

Syy −Sxy
−Sxy Sxx

)

(B.15)

where ∆ = SxxSyy − S2
xy.

If the original x was not centred on the origin, then the initial translation to the origin must
be taken into account in the final solution.

Appendix C

Aligning Shapes (II)

Here we present solutions to the problem of finding the optimal parameters to align two shapes
so as to minimise a weighted sum-of-squares measure of point difference.

Throughout we assume two sets of n points, xi and x
′
i. We assume a transformation, x′ =

Tt(x) with parameters t. We seek to choose the parameters, t, so as to minimise

E =
n
∑

i=1

(x′i − Tt(xi))
TWi(x

′
i − Tt(xi)) (C.1)

The solutions are obtained by equating ∂E
∂t = 0 (detailed derivation is left to the interested

reader).

C.1 Translation (2D)

If pure translation is allowed,

Tt(x) = x+

(

tx
ty

)

(C.2)

and t = (tx, ty)
T .

In this case the parameters (tx, ty) are given by the solution to the linear equation

(

n
∑

i=1

Wi

)(

tx
ty

)

=

(

n
∑

i=1

Wi(x
′
i − xi)

)

(C.3)

For the special case with isotropic weights, in which Wi = wiI, the solution is given by

t =

(

n
∑

i=1

Wi

)−1(n
∑

i=1

wi(x
′
i − xi)

)

(C.4)

For the unweighted case the solution is simply the difference between the means,

t = x̄′ − x̄ (C.5)

105

C.2. TRANSLATION AND SCALING (2D) 106

C.2 Translation and Scaling (2D)

If translation and scaling are allowed,

Tt(x) = sx+

(

tx
ty

)

(C.6)

and t = (s, tx, ty)
T .

In this case the parameters (tx, ty) are given by the solution to the linear equation







SxWx STWx

SWx SW













s

tx
ty






=







SxWx′

SWx






(C.7)

where
SxWx =

∑

xTi Wixi SWx =
∑

Wixi SW =
∑

Wi

SxWx′ =
∑

xTi Wix
′
i SWx′ =

∑

Wix
′
i

(C.8)

In the unweighted case this simplifies to the solution of







Sxx + Syy Sx Sy
Sx n 0
Sy 0 n













s
tx
ty






=







Sxx′ + Syy′

Sx′

Sy′






(C.9)

where
Sxx =

∑

x2
i Syy =

∑

y2
i Sx =

∑

xi Sy =
∑

yi
Sxx′ =

∑

xix
′
i Syy′ =

∑

yiy
′
i Sx′ =

∑

x′i Sy′ =
∑

y′i
(C.10)

C.3 Similarity (2D)

If translation, scaling and rotation are allowed,

Tt(x) =

(

a −b
b a

)

x+

(

tx
ty

)

(C.11)

and t = (a, b, tx, ty)
T .

In this case the parameters (a, b, tx, ty) are given by the solution to the linear equation







SxWx SxWJx STWx

SxWJx SxJWJx STWJx

SWx SWJx SW

















a
b
tx
ty











=







SxWx′

SxJWx′

SWx′






(C.12)

where
SxJWJx =

∑

xTi J
TWiJxi SWJx =

∑

WiJxi
SxJWx′ =

∑

xTi J
TWix

′
i SWJx′ =

∑

WiJx
′
i

(C.13)

C.4. AFFINE (2D) 107

and

J =

(

0 −1
1 0

)

(C.14)

In the unweighted case this simplifies to the solution of











Sxx + Syy 0 Sx Sy
0 Sxx + Syy −Sy Sx
Sx −Sy n 0
Sy Sx 0 n





















a
b
tx
ty











=











Sxx′ + Syy′

Sxy′ − Syx′

Sx′

Sy′











(C.15)

C.4 Affine (2D)

If a 2D affine transformation is allowed,

Tt(x) =

(

a b
c d

)

x+

(

tx
ty

)

(C.16)

and t = (a, b, c, d, tx, ty)
T .

The anisotropic weights case is just big, but not complicated. I’ll write it down one day.
In the unweighted case the parameters are given by the solution to the linear equation







Sxx Sxy Sx
Sxy Syy Sy
Sx Sy n













a c
b d
tx ty






=







Sxx′ Sxy′

Syx′ Syy′

Sx′ Sy′






(C.17)

Appendix D

Representing 2D Pose

D.1 Similarity Transformation Case

For 2D shapes we usually allow translation (tx, ty), rotation, θ and scaling, s. To retain linearity
we represent the pose using t = (sx, sy, tx, ty)

T where sx = (s cos θ − 1), sy = s sin θ. In
homogeneous co-ordinates, this corresponds to the transformation matrix

Tt =







1 + sx −sy tx
sy 1 + sx ty
0 0 1






(D.1)

For the AAM we must represent small changes in pose using a vector, δt. This is to allow us
to predict small pose changes using a linear regression model of the form δt = Rg. For linearity
the zero vector should indicate no change, and the pose change should be approximately linear
in the vector parameters. This is satisfied by the above parameterisation.

The AAM algorithm requires us to find the pose parameters t′ of the transformation obtained
by first applying the small change given by δt, then the pose transform given by t. Thus, find
t′ so that Tt′(x) = Tt(Tδt(x)).

If we write δt = (δsx, δsy, δtx, δty)
T , it can be shown that

1 + s′x = (1 + δsx)(1 + sx)− δsysy
s′y = δt2(1 + sx) + (1 + δsx)sy
t′x = (1 + sx)δtx − syδty + tx
t′y = (1 + sx)δty + syδtx + ty

(D.2)

Note that for small changes, Tδt1(Tδt2(x)) ≈ T(δt1+δt2)(x), which is required for the AAM
predictions of pose change to be consistent.

108

Appendix E

Representing Texture
Transformations

We allow scaling, α, and offsets, β, of the texture vectors g. To retain linearity we represent the
transformation parameters using the vector u = (u1, u2)

T = (α− 1, β)T . Thus

Tu(g) = (1 + u1)g + u21 (E.1)

As for the pose, the AAM algorithm requires us to find the parameters u′ such that Tu′(g) =
Tu(Tδu(g)). It is simple to show that

1 + u′1 = (1 + u1)(1 + δu1)
u′2 = (1 + u1)δu2 + u2

(E.2)

Thus for small changes, Tδu1
(Tδu2

(g)) ≈ T(δu1+δu2)(g), which is required for the AAM pre-
dictions of pose change to be consistent.

109

Appendix F

Image Warping

Suppose we wish to warp an image I, so that a set of n control points { xi } are mapped to new
positions, { x′i }. We require a continuous vector valued mapping function, f , such that

f(xi) = x
′
i ∀ i = 1 . . . n (F.1)

Given such a function, we can project each pixel of image I into a new image i′. In practice,
in order to avoid holes and interpolation problems, it is better to find the reverse map, f ’, taking
x′i into xi. For each pixel in the target warped image, i′ we can determine where it came from
in i and fill it in. In general f ′ 6= f−1, but is a good enough approximation.

Below we will consider two forms of f , piece-wise affine and the thin plate spline interpolator.

Note that we can often break down f into a sum,

f(x) =
n
∑

i=1

fi(x)x
′
i (F.2)

Where the n continuous scalar valued functions fi each satisfy

fi(xj) =
1 if i = j
0 i 6= j

(F.3)

This ensures f(xi) = x
′
i.

F.1 Piece-wise Affine

The simplest warping function is to assume each fi is linear in a local region and zero everywhere
else.

For instance, in the one dimensional case (in which each x is a point on a line), suppose the
control points are arranged in ascending order (xi < xi+1).

We would like to arrange that f will map a point x which is halfway between xi and xi+1 to
a point halfway between x′i and x

′
i+1. This is achieved by setting

110

F.2. THIN PLATE SPLINES 111

fi(x) =
(x− xi)/(xi+1 − xi) if x ∈ [xi, xi+1] and i < n
(x− xi)/(xi − xi−1) if x ∈ [xi−1, xi] and i > 1

0 otherwise
(F.4)

We can only sensibly warp in the region between the control points, [x1, xn].

In two dimensions, we can use a triangulation (eg Delauney) to partition the convex hull of
the control points into a set of triangles. To the points within each triangle we can apply the
affine transformation which uniquely maps the corners of the triangle to their new positions in
i′.

Suppose x1, x2 and x3 are three corners of such a triangle. Any internal point can be written

x = x1 + β(x2 − x1) + γ(x3 − x1)
= αx1 + βx2 + γx3

(F.5)

where α = 1− (β+ γ) and so α+ β+ γ = 1. For x to be inside the triangle, 0 ≤ α, β, γ ≤ 1.

Under the affine transformation, this point simply maps to

x′ = f(x) = αx′1 + βx′2 + γx′3 (F.6)

To generate a warped image we take each pixel, x′ in I′, decide which triangle it belongs to,
compute the coefficients α, β, γ giving its relative position in the triangle and use them to find
the equivalent point in the original image, I. We sample from this point and copy the value into
pixel x′ in I′.

Note that although this gives a continuous deformation, it is not smooth. Straight lines can
be kinked across boundaries between triangles (see Figure F.1).

1 2

3

1 2

3

44

Figure F.1: Using piece-wise affine warping can lead to kinks in straight lines

F.2 Thin Plate Splines

Thin Plate Splines were popularised by Bookstein for statistical shape analysis and are widely
used in computer graphics. They lead to smooth deformations, and have the added advantage
over piee-wise affine that they are not constrained to the convex hull of the control points.
However, they are more expensive to calculate.

F.3. ONE DIMENSION 112

F.3 One Dimension

First consider the one dimensional case. Let U(r) = (r
σ
)2log(r

σ
), where σ is a scaling value

defining the stiffness of the spline.

The 1D thin plate spline is then

f1(x) =
n
∑

i=1

wiU(|x− xi|) + a0 + a1x (F.7)

The weights wi,a0, a1 are chosen to satisfy the constraints f(xi) = x′i ∀i.
If we define the vector function

u1(x) = (U(|x− x1|), U(|x− x2|, . . . , U(|x− xn|), 1, x)T (F.8)

and put the weights into a vector w1 = (w1, . . . , wn, a0, a1)

then (F.7) becomes

f1(x) = w
T
1 u1(x) (F.9)

By plugging each pair of corresponding control points into (F.7) we get n linear equations
of the form

x′j =
n
∑

i=1

wiU(|xj − xi|) + a0 + a1xj (F.10)

Let Uij = Uji = U(|xi − xj |). Let Uii = 0. Let K be the n × n matrix whose elements are
{Uij}.

Let

Q1 =













1 x1

1 x2
...

...
1 xn













(F.11)

L1 =

(

K Q1

QT
1 02

)

(F.12)

where (0)2 is a 2× 2 zero matrix.

LetX′
1 = (x′1, x

′
2, . . . , x

′
n, 0, 0)

T . Then the weights for the spline (F.7)w1 = (w1, . . . , wn, a0, a1)
are given by the solution to the linear equation

L1w = X′
1 (F.13)

F.4. MANY DIMENSIONS 113

F.4 Many Dimensions

The extension to the d-dimensional case is straight forward.
If we define the vector function

ud(x) = (U(|x− x1|), . . . , U(|x− xn|), 1|xT)T (F.14)

then the d-dimensional thin plate spline is given by

f(x) =Wud(x) (F.15)

where W is a d× (n+ d+ 1) matrix of weights.
To choose weights to satisfy the constraints, construct the matrices

Qd =













1 xT1
1 xT2
...

...
1 xTn













(F.16)

Ld =

(

K Qd

QT
d 0d+1

)

(F.17)

where 0d+1 is a (d+1)× (d+1) zero matrix, and K is a n× n matrix whose ij th element is
U(|xi − xj |).

Then construct the n+ d+ 1× d matrix X′
d from the positions of the control points in the

warped image,

X′
d =



















x′1
...
x′n
0d
...0d



















(F.18)

The matrix of weights is given by the solution to the linear equation

LTdW
T
d = X′

d (F.19)

Note that care must be taken in the choice of σ to avoid ill conditioned equations.

Appendix G

Density Estimation

The kernel method of density estimation [106] gives an estimate of the p.d.f. from which N
samples, xi, have been drawn as

p(x) =
N
∑

i=1

1

Nhd
K(
x− xi
h

) (G.1)

where K(t) defines the shape of the kernel to be placed at each point, h is a smoothing
parameter defining the width of each kernel and d is the dimension of the data. In general, the
larger the number of samples, the smaller the width of the kernel at each point. We use a gaussian
kernel with a covariance matrix equal to that of the original data set, S, ie K(t) = G(t : 0,S).
The optimal smoothing parameter, h, can be determined by cross-validation [106].

G.1 The Adaptive Kernel Method

The adaptive kernel method generalises the kernel method by allowing the scale of the kernels
to be different at different points. Essentially, broader kernels are used in areas of low density
where few observations are expected. The simplest approach is as follows:

1. Construct a pilot estimate p′(x) using (G.1).

2. Define local bandwidth factors λi = (p′(xi)/g)
− 1

2 , where g is the geometric mean of the
p′(xi)

3. Define the adaptive kernel estimate to be

p(x) =
1

N

N
∑

i=1

(hλi)
−dK(

x− xi
hλi

) (G.2)

114

G.2. APPROXIMATING THE PDF FROM A KERNEL ESTIMATE 115

G.2 Approximating the PDF from a Kernel Estimate

The kernel method can give a good estimate of the distribution. However, because it is con-
structed from a large number of kernels, it can be too expensive to use the estimate in an
application. We wish to find a simpler approximation which will allow p(x) to be calculated
quickly.

We will use a weighted mixture of m gaussians to approximate the distribution derived from
the kernel method.

pmix(x) =
m
∑

j=1

wjG(x : µj ,Sj) (G.3)

Such a mixture can approximate any distribution up to arbitrary accuracy, assuming suffi-
cient components are used. The hope is that a small number of components will give a ‘good
enough’ estimate. The Expectation Maximisation (EM) algorithm [82] is the standard method
of fitting such a mixture to a set of data. However, if we were to use as many components as
samples (m = N), the optimal fit of the standard EM algorithm is to have a delta function
at each sample point. This is unsatisfactory. We assume that the kernel estimate, pk(x) is
in some sense an optimal estimate, designed to best generalise the given data. We would like
pmix(x)→ pk(x) as m→ N .

A good approximation to this can be achieved by modifying the M-step in the EM algorithm
to take into account the covariance about each data point suggested by the kernel estimate (see
(G.3) below).

The number of gaussians used in the mixture should be chosen so as to achieve a given
approximation error between pk(x) and pmix(x).

G.3 The Modified EM Algorithm

To fit a mixture of m gaussians to N samples xi, assuming a covariance of Ti at each sample,
we iterate on the following 2 steps:

E-step Compute the contribution of the ith sample to the jth gaussian

pij =
wjG(xi : µj ,Sj)

∑m
j=1wjG(xi : µj ,Sj)

(G.4)

M-step Compute the parameters of the gaussians,

wj =
1
N

∑

i pij , µj =
1

Nwj

∑

i pijxi (G.5)

Sj =
1

Nwj

∑

i

pij [(xi − µj)(xi − µj)
T +Ti] (G.6)

Strictly we ought to modify the E-step to take Ti into account as well, but in our experience
just changing the M-step gives satisfactory results.

Appendix H

Implementation

Though the core mathematics of the models described above are relatively simple, a great deal
of machinery is required to actually implement a flexible system. This could easily be done by
a competent programmer.

However, implementations of the software are already available.
The simplest way to experiment is to obtain the MatLab package implementing the Active

Shape Models, available from Visual Automation Ltd. This provides an application which allows
users to annotate training images, to build models and to use those models to search new images.
In addition the package allows limited programming via a MatLab interface.

A C++ software library, co-written by the author, is also available from Visual Automation
Ltd. This allows new applications incorporating the ASMs to be written.

See http://www.wiau.man.ac.uk/val.htm for details of both of the above.
The author’s research group has adopted VXL (http://www.robots.ox.ac.uk/-vxl or

http://sourceforge.net/projects/vxl) as its standard C++ computer vision library, and
has contributed extensively to the freely available code. As of writing, the AAM and ASM
libraries are not publicly available (due to commercial constraints), but this may change in
time.

In practice the algorithms work well on low-end PC (200 Mhz). Search will usually take less
than a second for models containing up to a few hundred points.

Details of other implementations will be posted on
http://www.isbe.man.ac.uk

116

Bibliography

[1] Bajcsy and A. Kovacic. Multiresolution elastic matching. Computer Graphics and Image Processing,
46:1–21, 1989.

[2] A. Baumberg and D. Hogg. Learning flexible models from image sequences. In J.-O. Eklundh,
editor, 3nd European Conference on Computer Vision, volume 1, pages 299–308. Springer-Verlag,
Berlin, 1994.

[3] A. Baumberg and D. Hogg. An adaptive eigenshape model. In D. Pycock, editor, 6th British
Machine Vison Conference, pages 87–96. BMVA Press, Sept. 1995.

[4] S. Belongie, J. Malik, and C. Fuh. Matching shapes. In 8th International Conference on Computer
Vision, volume 1, pages 454–463. IEEE Computer Society Press, July 2001.

[5] A. Benayoun, N. Ayache, and I. Cohen. Human face recognition: From views to models - from
models to views. In International Conference on Pattern Recognition, pages 225–243, 1994.

[6] R. Bernard and F. Pernus. Statistical approach to anatomical landmark extraction in ap radio-
graphs. In SPIE Medical Imaging, Feb. 2001.

[7] M. J. Black and Y. Yacoob. Recognizing facial expressions under rigid and non-rigid facial motions.
In 1st International Workshop on Automatic Face and Gesture Recognition 1995, pages 12–17,
Zurich, 1995.

[8] F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.

[9] F. L. Bookstein. Landmark methods for forms without landmarks: morphometrics of group differ-
ences in outline shape. Medical Image Analysis, 1(3):225–244, 1997.

[10] H. Bosch, S.C.Mitchell, P.F.Boudewijn, P.F.Leieveldt, F.Nijland, O. Kamp, M. Sonka, and
J. Reiber. Active appearance-motion models for endocardial contour detection in time sequences
of echocardiograms. In SPIE Medical Imaging, Feb. 2001.

[11] R. Bowden, T. Michell, and M. Sarhadi. Reconstructing 3d pose and motion from a single camera
view. In P. Lewis and M. Nixon, editors, 9th British Machine Vison Conference, volume 2, pages
904–013, Southampton, UK, Sept. 1998. BMVA Press.

[12] R. Bowden, T. Mitchell, and M.Sarhadi. Non-linear statistical models for the 3d reconstruction of
human pose and motion from monocular image sequences. Image and Vision Computing, 18(9):729–
737, 2000.

[13] C. Brechbühler, G. Gerig, and O. Kübler. Parameterisation of closed surfaces for 3-D shape de-
scription. Computer Vision, Graphics and Image Processing, 61:154–170, 1995.

117

BIBLIOGRAPHY 118

[14] A. D. Brett and C. J. Taylor. A framework for automated landmark generation for automated 3D
statistical model construction. In 16th Conference on Information Processing in Medical Imaging,
pages 376–381, Visegrád, Hungary, June 1999.

[15] P. Burt. The pyramid as a structure for efficient computation. In A.Rosenfeld, editor, Multi-
Resolution Image Processing and Analysis, pages 6–37. Springer-Verlag, Berlin, 1984.

[16] A. Caunce and C. J. Taylor. 3d point distribution models of the cortical sulci. In A. F. Clark,
editor, 8th British Machine Vison Conference, pages 550–559, University of Essex, UK, Sept. 1997.
BMVA Press.

[17] A. Caunce and C. J. Taylor. Using local geometry to build 3d sulcal models. In 16th Conference
on Information Processing in Medical Imaging, pages 196–209, 1999.

[18] G. Christensen. Consistent linear-elastic transformations for image matching. In 16th Conference
on Information Processing in Medical Imaging, pages 224–237, Visegrád, Hungary, June 1999.

[19] G. E. Christensen, R. D. Rabbitt, M. I. Miller, S. C. Joshi, U. Grenander, T. A. Coogan, and
D. C. V. Essen. Topological properties of smooth anatomic maps. In 14th Conference on Information
Processing in Medical Imaging, France, pages 101–112. Kluwer Academic Publishers, 1995.

[20] C.Lorenz, M. Kaus, V. Pekar, and J. Weese. Efficient representation of shape variability using
surface based free vibration modes. In SPIE Medical Imaging, Feb. 2001.

[21] D. L. Collins, A. Zijdenbos, W. F. C. Baare, and A. C. Evans. Animal+insect: Improved cortical
structure segmentation. In 16th Conference on Information Processing in Medical Imaging, pages
210–223, Visegrád, Hungary, June 1999.

[22] T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. In H.Burkhardt and
B. Neumann, editors, 5th European Conference on Computer Vision, volume 2, pages 484–498.
Springer, Berlin, 1998.

[23] T. F. Cootes, G. J. Edwards, and C. J. Taylor. A comparative evaluation of active appearance
model algorithms. In P. Lewis and M. Nixon, editors, 9th British Machine Vison Conference,
volume 2, pages 680–689, Southampton, UK, Sept. 1998. BMVA Press.

[24] T. F. Cootes and C. J. Taylor. Modelling object appearance using the grey-level surface. In
E. Hancock, editor, 5th British Machine Vison Conference, pages 479–488, York, England, Sept.
1994. BMVA Press.

[25] T. F. Cootes and C. J. Taylor. Data driven refinement of active shape model search. In 7th British
Machine Vison Conference, pages 383–392, Edinburgh, UK, 1996.

[26] M. Covell. Eigen-points: Control-point location using principal component analysis. In 2nd Inter-
national Conference on Automatic Face and Gesture Recognition 1997, pages 122–127, Killington,
USA, 1996.

[27] R. Davies, T. Cootes, and C. Taylor. A minimum description length approach to statistical shape
modelling. In 17th Conference on Information Processing in Medical Imaging, pages 50–63, 2001.

[28] R. Davies, T. Cootes, C. Twining, and C. Taylor. An information theoretic approach to statistical
shape modelling. In T. Cootes and C. Taylor, editors, 12th British Machine Vison Conference,
pages 3–11, 2001.

[29] R. Davies, C.Twining, T. Cootes, and C. Taylor. A minimum description length approach to
statistical shape modelling. IEEE Transactions on Medical Imaging, 21:525–537, 2002.

BIBLIOGRAPHY 119

[30] R. Davies, C.Twining, T. Cootes, J. Waterton, and C. Taylor. 3D ststistical shape models using di-
rect optimisation of description length. In 7th European Conference on Computer Vision, volume 3,
pages 3–20. Springer, 2002.

[31] M. Dickens, H. Sari-Sarraf, and S. Gleason. A streamlined volumetric landmark placement method
for building three dimensional active shape models. In SPIE Medical Imaging, Feb. 2001.

[32] I. Dryden and K. V. Mardia. The Statistical Analysis of Shape. Wiley, London, 1998.

[33] G. Edwards, T. F. Cootes, and C. J. Taylor. Advances in active appearance models. In 7th

International Conference on Computer Vision, pages 137–142, 1999.

[34] G. Edwards, T. F. Cootes, and C. J. Taylor. Improving identification performance by integrat-
ing evidence from sequences. In IEEE Conference on Computer Vision and Pattern Recognition,
volume 1, pages 486–491, 1999.

[35] G. Edwards, A. Lanitis, C. Taylor, and T. Cootes. Statistical models of face images - improving
specificity. Image and Vision Computing, 16:203–211, 1998.

[36] G. Edwards, C. J. Taylor, and T. F. Cootes. Interpreting face images using active appearance
models. In 3rd International Conference on Automatic Face and Gesture Recognition 1998, pages
300–305, Japan, 1998.

[37] G. Edwards, C. J. Taylor, and T. F. Cootes. Learning to identify and track faces in image sequences.
In 3rd International Conference on Automatic Face and Gesture Recognition 1998, pages 260–265,
Japan, 1998.

[38] G. J. Edwards, C. J. Taylor, and T. F. Cootes. Learning to identify and track faces in image
sequences. In 8th British Machine Vison Conference, pages 130–139, Colchester, UK, 1997.

[39] T. Ezzat and T. Poggio. Facial analysis and synthesis using image-based models. In 2nd Inter-
national Conference on Automatic Face and Gesture Recognition 1997, pages 116–121, Killington,
Vermont, 1996.

[40] R. Fisker. Making Deformable Template Models Operational. PhD thesis, Informatics and Mathe-
matical Modelling, Technical University of Denmark, 2000.

[41] M. Fleute and S. Lavallee. Building a complete surface model from sparse data using statistical
shape models: Application to computer assisted knee surgery. In MICCAI, pages 878–887, 1998.

[42] P. Fua and C. Miccio. From regular images to animated heads: A least squares approach. In
H.Burkhardt and B. Neumann, editors, 5th European Conference on Computer Vision, volume 1,
pages 188–202. Springer, Berlin, 1998.

[43] M. Gleicher. Projective registration with difference decomposition. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 1997.

[44] C. Goodall. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical
Society B, 53(2):285–339, 1991.

[45] D. Graham and N. Allinson. Face recognition from unfamiliar views: Subspace methods and pose
dependency. In 3rd International Conference on Automatic Face and Gesture Recognition 1998,
pages 348–353, Japan, 1998.

[46] U. Grenander and M. Miller. Representations of knowledge in complex systems. Journal of the
Royal Statistical Society B, 56:249–603, 1993.

BIBLIOGRAPHY 120

[47] G. Hager and P. Belhumeur. Efficient region tracking with parametric models of geometry and
illumination. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(10):1025–39,
1998.

[48] G. Hamarneh and T. Gustavsson. Deformable spatio-temporal shape models: Extending asm to
2d+time. In T. Cootes and C. Taylor, editors, 12th British Machine Vison Conference, pages 13–22,
2001.

[49] G. Harmarneh. Deformable spatio-temporal shape modeling. Master’s thesis, Department of Signals
and Systems, Chalmers University of Technology, Sweden, 1999.

[50] J. Haslam, C. J. Taylor, and T. F. Cootes. A probabalistic fitness measure for deformable template
models. In E. Hancock, editor, 5th British Machine Vison Conference, pages 33–42, York, England,
Sept. 1994. BMVA Press, Sheffield.

[51] T. Heap and D. Hogg. Automated pivot location for the cartesian-polar hybrid point distribution
model. In R. Fisher and E. Trucco, editors, 7th British Machine Vison Conference, pages 97–106,
Edinburgh, UK, Sept. 1996. BMVA Press.

[52] H.H.Thodberg. Hands-on experience with active appearance models. In SPIE Medical Imaging,
Feb. 2002.

[53] A. Hill, T. F. Cootes, and C. J. Taylor. A generic system for image interpretation using flexible
templates. In D. Hogg and R. Boyle, editors, 3rd British Machine Vision Conference, pages 276–285.
Springer-Verlag, London, Sept. 1992.

[54] A. Hill, T. F. Cootes, and C. J. Taylor. Active shape models and the shape approximation problem.
Image and Vision Computing, 14(8):601–607, Aug. 1996.

[55] A. Hill, T. F. Cootes, C. J. Taylor, and K. Lindley. Medical image interpretation: A generic
approach using deformable templates. Journal of Medical Informatics, 19(1):47–59, 1994.

[56] A. Hill and C. J. Taylor. Automatic landmark generation for point distribution models. In E. Han-
cock, editor, 5th British Machine Vison Conference, pages 429–438. BMVA Press, Sept. 1994.

[57] A. Hill and C. J. Taylor. A method of non-rigid correspondence for automatic landmark identifi-
cation. In 7th British Machine Vison Conference, pages 323–332. BMVA Press, Sept. 1996.

[58] A. Hill and C. J. Taylor. Automatic landmark identification using a new method of non-rigid
correspondence. In 15th Conference on Information Processing in Medical Imaging, pages 483–488,
1997.

[59] H.Murase and S. Nayar. Learning and recognition of 3d objects from appearance. International
Journal of Computer Vision, pages 5–25, Jan. 1995.

[60] X. Hou, S. Li, H. Zhang, and Q. Cheng. Direct appearance models. In Computer Vision and
Pattern Recognition Conference 2001, volume 1, pages 828–833, 2001.

[61] M. J. Jones and T. Poggio. Multidimensional morphable models. In 6th International Conference
on Computer Vision, pages 683–688, 1998.

[62] M. J. Jones and T. Poggio. Multidimensional morphable models : A framework for representing
and matching object classes. International Journal of Computer Vision, 2(29):107–131, 1998.

[63] C. Kambhamettu and D. Goldgof. Point correspondence recovery in non-rigid motion. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 222–227, 1992.

[64] P. Karaolani, G. D. Sullivan, K. D. Baker, and M. J. Baines. A finite element method for deformable
models. In 5th Alvey Vison Conference, Reading, England, pages 73–78, 1989.

BIBLIOGRAPHY 121

[65] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In 1st International
Conference on Computer Vision, pages 259–268, London, June 1987.

[66] A. Kelemen, G. Székely, and G. Guido Gerig. Three-dimensional Model-based Segmentation. Tech-
nical Report 178, Image Science Lab, ETH Zürich, 1997.

[67] M. Kirby and L. Sirovich. Application of the Karhumen-Loeve procedure for the characterization
of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):103–108,
1990.

[68] A. C. W. Kotcheff and C. J. Taylor. Automatic construction of eigenshape models by direct
optimisation. Medical Image Analysis, 2(4):303–314, 1998.

[69] N. Kruger. An algorithm for the learning of weights in discrimination functions using a priori
constraints. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):764–768,
1997.

[70] J. Kwong and S. Gong. Learning support vector machines for a multi-view face model. In T. Prid-
more and D. Elliman, editors, 10th British Machine Vison Conference, volume 2, pages 503–512,
Nottingham, UK, Sept. 1999. BMVA Press.

[71] M. La Cascia, S. Sclaroff, and V. Athitsos. Fast, reliable head tracking under varying illumination:
An approach based on registration of texture mapped 3d models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(4):322–336, 2000.

[72] F. D. la Torre. Automatic learning of appearance face models. In Recognition, Analysis and
Tracking of Faces and Gestures in Realtime Systems, pages 32–39, 2001.

[73] M. Lades, J. Vorbruggen, J. Buhmann, J. Lange, C. von der Malsburt, R. Wurtz, and W. Konen.
Distortion invariant object recognition in the dynamic link architecture. IEEE Transactions on
Computers, 42:300–311, 1993.

[74] A. Lanitis, C. J. Taylor, and T. F. Cootes. Automatic interpretation and coding of face images using
flexible models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):743–756,
1997.

[75] H. Lester, S. A. Arridge, K. M. Jansons, L. Lemieux, J. V. Hajnal, and A. Oatridge. Non-linear reg-
istration with the variable viscosity fluid algorithm. In 16th Conference on Information Processing
in Medical Imaging, pages 238–251, Visegrád, Hungary, June 1999.

[76] B. Li and J. Reinhardt. Automatic generation of 3-d object shape models and their application to
tomographic image segmentation. In SPIE Medical Imaging, Feb. 2001.

[77] J. B. A. Maintz and M. A. Viergever. A survey of medical image registration. Medical Image
Analysis, 2(1):1–36, 1998.

[78] K. V. Mardia, J. T. Kent, and A. N. Walder. Statistical shape models in image analysis. In
E. Keramidas, editor, Computer Science and Statistics: 23rd INTERFACE Symposium, pages 550–
557. Interface Foundation, Fairfax Station, 1991.

[79] T. Maurer and C. von der Malsburg. Tracking and learning graphs and pose on image sequences
of faces. In 2nd International Conference on Automatic Face and Gesture Recognition 1997, pages
176–181, Los Alamitos, California, Oct. 1996. IEEE Computer Society Press.

[80] M.B.Stegmann. Active appearance models: Theory, extensions and cases. Master’s thesis, Infor-
matics and Mathematical Modelling, Technical University of Denmark, 2000.

BIBLIOGRAPHY 122

[81] T. McInerney and D. Terzopoulos. Deformable models in medical image analysis: a survey. Medical
Image Analysis, 1(2):91–108, 1996.

[82] G. McLachlan and K.E.Basford. Mixture Models: Inference and Applications to Clustering. Dekker,
New York, 1988.

[83] D. Meier and E. Fisher. Parameter space warping: Shape-based correspondence between morpho-
logically different objects. IEEE Trans. Medical Image, 21:31–47, 2002.

[84] K. Messer, J. Matas, J. Kittler, J. Luettin, and G. Maitre. XM2VTSdb: The extended m2vts
database. In Proc. 2nd Conf. on Audio and Video-based Biometric Personal Verification. Springer
Verlag, 1999.

[85] S. Mitchell, P. Boudewijn, P.F.Lelievedt, R. van der Geest, H. Bosch, J. Reiber, and M. Sonka. Time
continuous segmentation of cardiac mr image sequences using active appearance motion models. In
SPIE Medical Imaging, Feb. 2001.

[86] B. Moghaddam and A. Pentland. Face recognition using view-based and modular eigenspaces. In
SPIE, volume 2277, pages 12–21, 1994.

[87] B. Moghaddam and A. Pentland. Probabilistic visual learning for object recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 19(7):696–710, 1997.

[88] C. Nastar and N. Ayache. Non-rigid motion analysis in medical images: a physically based approach.
In 13th Conference on Information Processing in Medical Imaging, Flagstaff, Arizona, USA, pages
17–32. Springer-Verlag, 1993.

[89] C. Nastar, B. Moghaddam, and A. Pentland. Generalized image matching: Statistical learning of
physically-based deformations. In 4th European Conference on Computer Vision, volume 1, pages
589–598, Cambridge, UK, 1996.

[90] N.Duta, A. Jain, and M. Dubuisson-Jolly. Automatic construction of 2d shape models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(5):433–446, 2001.

[91] J. Park, D. Mataxas, A. Young, and L. Axel. Deformable models with parameter functions for
cardiac motion analysis from tagged mri data. IEEE Transactions on Medical Imaging, 15:278–
289, 1996.

[92] V. Pekar, M. Kaus, C. Lorenz, S.Lobregt, R. Truyen, and J. Weese. Shape model based adaptation
of 3-d deformable meshes for segmentation of medical images. In SPIE Medical Imaging, Feb. 2001.

[93] A. P. Pentland and S. Sclaroff. Closed-form solutions for physically based modelling and recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):715–729, 1991.

[94] F. Pighin, R. Szeliski, and D. Salesin. Resynthesizing facial animation through 3d model-based
tracking. In 7th International Conference on Computer Vision, pages 143–150, 1999.

[95] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C (2nd Edition).
Cambridge University Press, 1992.

[96] A. Rangagajan, H. Chui, and F. L. Bookstein. The softassign procrustes matching algorithm. In
15th Conference on Information Processing in Medical Imaging, pages 29–42, 1997.

[97] A. Rangarajan, E. Mjolsness, S. Pappu, L. Davachi, P. S. Goldman-Rakic, and J. S. Duncan. A
robust point matching algorithm for autoradiograph alignment. In Visualisation in Biomedical
Computing, pages 277–286, 1996.

BIBLIOGRAPHY 123

[98] M. Rogers and J. Graham. Structured point distribution models: Modelling intermittently present
features. In T. Cootes and C. Taylor, editors, 12th British Machine Vison Conference, pages 33–42,
2001.

[99] S. Romdhani, S. Gong, and A. Psarrou. A multi-view non-linear active shape model using kernel
PCA. In T. Pridmore and D. Elliman, editors, 10th British Machine Vison Conference, volume 2,
pages 483–492, Nottingham, UK, Sept. 1999. BMVA Press.

[100] S.Baker and I.Matthews. Equivalence and efficiency of image alignment algorithms. In Computer
Vision and Pattern Recognition Conference 2001, volume 1, pages 1090–1097, 2001.

[101] S. Sclaroff and J. Isidoro. Active blobs. In 6th International Conference on Computer Vision, pages
1146–53, 1998.

[102] S. Sclaroff and A. P. Pentland. Modal matching for correspondence and recognition. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 17(6):545–561, 1995.

[103] G. L. Scott and H. C. Longuet-Higgins. An algorithm for associating the features of two images.
????, 244:21–26, 1991.

[104] L. S. Shapiro and J. M. Brady. A modal approach to feature-based correspondence. In P. Mowforth,
editor, 2nd British Machine Vison Conference, pages 78–85. Springer-Verlag, Sept. 1991.

[105] J. Sherrah, S. Gong, and E. Ong. Understanding pose discrimination in similarity space. In
T. Pridmore and D. Elliman, editors, 10th British Machine Vison Conference, volume 2, pages
523–532, Nottingham, UK, Sept. 1999. BMVA Press.

[106] B. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London,
1986.

[107] S. Solloway, C. Hutchinson, J. Waterton, and C. J. Taylor. Quantification of articular cartilage
from MR images using active shape models. In B. Buxton and R. Cipolla, editors, 4th Euro-
pean Conference on Computer Vision, volume 2, pages 400–411, Cambridge, England, April 1996.
Springer-Verlag.

[108] P. Sozou, T. F. Cootes, C. J. Taylor, and E. DiMauro. Non-linear point distribution modelling
using a multi-layer perceptron. In D. Pycock, editor, 6th British Machine Vison Conference, pages
107–116, Birmingham, England, Sept. 1995. BMVA Press.

[109] P. Sozou, T. F. Cootes, C. J. Taylor, and E. D. Mauro. A non-linear generalisation of point
distribution models using polynomial regression. Image and Vision Computing, 13(5):451–457,
June 1995.

[110] S.Romdhani, A.Psarrou, and S. Gong. On utilising template and feature-based correspondence in
multi-view appearance models. In 6th European Conference on Computer Vision, volume 1, pages
799–813. Springer, 2000.

[111] L. H. Staib and J. S. Duncan. Boundary finding with parametrically deformable models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(11):1061–1075, 1992.

[112] M. B. Stegmann, R. Fisker, and B. K. Ersbøll. Extending and applying active appearance models for
automated, high precision segmentation in different image modalities. In Scandinavian Conference
on Image Analysis, pages 90–97, 2001.

[113] G. Szeliski and S. Lavalée. Matching 3-D anatomical surface with non-rigid deformations using
octree-splines. International Journal of Computer Vision, 18(2):171–186, 1996.

BIBLIOGRAPHY 124

[114] J. P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons. Medical
Image Analysis, 2(3):243–260, 1998.

[115] H. Thodberg and A. Rosholm. Application of the active shape model in a commercial medical
device for bone densitometry. In T. Cootes and C. Taylor, editors, 12th British Machine Vison
Conference, pages 43–52, 2001.

[116] M. Turk and A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1):71–
86, 1991.

[117] C. Twining and C.J.Taylor. Kernel principal component analysis and the construction of non-linear
active shape models. In T. Cootes and C. Taylor, editors, 12th British Machine Vison Conference,
pages 23–32, 2001.

[118] B. van Ginneken. Computer-Aided Diagnosis in Chest Radiography. PhD thesis, University Medical
Centre Utrecht, the Netherlands, 2001.

[119] T. Vetter. Learning novel views to a single face image. In 2nd International Conference on Auto-
matic Face and Gesture Recognition 1997, pages 22–27, Los Alamitos, California, Oct. 1996. IEEE
Computer Society Press.

[120] T. Vetter and V. Blanz. Estimating coloured 3d face models from single images: an example based
approach. In H.Burkhardt and B. Neumann, editors, 5th European Conference on Computer Vision,
volume 2, pages 499–513. Springer, Berlin, 1998.

[121] T. Vetter, M. Jones, and T. Poggio. A bootstrapping algorithm for learning linear models of object
classes. In Computer Vision and Pattern Recognition Conference 1997, pages 40–46, 1997.

[122] K. N. Walker, T. F. Cootes, , and C. J. Taylor. Automatically building appearance models from
image sequences using salient features. In T. Pridmore and D. Elliman, editors, 10th British Machine
Vison Conference, volume 2, pages 463–562, Nottingham, UK, Sept. 1999. BMVA Press.

[123] K. N. Walker, T. F. Cootes, and C. J. Taylor. Automatically building appearance models. In
4th International Conference on Automatic Face and Gesture Recognition 2000, pages 271–276,
Grenoble,France, 2000.

[124] Y. Wang, B. S. Peterson, and L. H. Staib. Shape-based 3d surface correspondence using geodesics
and local geometry. In IEEE Conference on Computer Vision and Pattern Recognition, pages
644–651, 2000.

[125] Y. Wang and L. H. Staib. Elastic model based non-rigid registration incorporating statistical shape
information. In MICCAI, pages 1162–1173, 1998.

[126] L. Wiskott, J. Fellous, N. Kruger, and C. der Malsburg. Face recognition by elastic bunch graph
matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7):775–779, 1997.

[127] J. Yao and R. Taylor. Construction and simplification of bone density models. In SPIE Medical
Imaging, Feb. 2001.

[128] L. Younes. Optimal matching between shapes via elastic deformations. Image and Vision Comput-
ing, 17:381–389, 1999.

[129] A. L. Yuille, D. S. Cohen, and P. Hallinan. Feature extraction from faces using deformable tem-
plates. International Journal of Computer Vision, 8(2):99–112, 1992.

