
02561 COMPUTER GRAPHICS DTU COMPUTE
Worksheet 5: Rendering a triangle mesh

1/2

Reading Angel: Section 4.6.
WebGL Programming Guide: “Load and Display 3D Models”

Purpose The purpose of this set of exercises is to load a triangle mesh that models
something more interesting than a box. Once the model is loaded, we will apply
lighting and shading using the techniques from Worksheet 4.

In the following, we will ask you to put your solutions on your student
homepage. This works for all browsers and it is useful for you to know how to
put your WebGL programs online. However, if you would like to test code
locally, some options are listed here:
https://courses.compute.dtu.dk/02561/test-locally.html

Part 1

We have now reached a point where we would like to load external content into
our WebGL applications. This is troublesome (due to browser security settings) if
our application is not running as an actual webpage on a webserver. You should
therefore now place your application on a “secret” webpage. A webpage is secret
if there are no public links to the page, as it is then not searchable.

Placing your WebGL application on your DTU Student Homepage:

• Get started on your student homepage using the gbar tutorial:
http://gbar.dtu.dk/faq/50-homepage

If the shell script that should create a link to your public_html folder is out of order, use
the command pwd to get the path of your home directory. Then use this path to find the
path to your homepage folder. As can be seen in the tutorial, the home page path should
be of the form /www/xx/x/public_html. Once you have located your homepage folder,
you can create a link to it in your standard home directory using the command
ln -s /www/xx/x/public_html public_html

• Get access to the files of your student homepage using SCP or likewise:
http://gbar.dtu.dk/faq/78-home-directory
http://gbar.dtu.dk/faq/25-winscp

• Put a file called index.html in your public_html folder. This ensures that
the files in this folder are not browsable (files in subfolders will
conveniently still be browsable).

• Put the JavaScript library files in a subfolder on the server and place a
previous exercise solution on the server in another subfolder. If you make
no public links to this subfolder, you can use it as your secret folder.

• You have completed this part when one of your previous exercise
solutions can be loaded as a webpage in a browser.

https://courses.compute.dtu.dk/02561/test-locally.html
http://gbar.dtu.dk/faq/50-homepage
http://gbar.dtu.dk/faq/78-home-directory
http://gbar.dtu.dk/faq/25-winscp

02561 COMPUTER GRAPHICS DTU COMPUTE
Worksheet 5: Rendering a triangle mesh

2/2

Part 2

Create a nice 3D object using a modeling tool such as Blender or Maya or
Google SketchUp and export it as a triangle mesh in Wavefront OBJ format. The
modelled object must be more interesting than a box. The Blender monkey called
Suzanne is an option.

If you are absolutely at a loss with respect to modelling a 3D object and
exporting it as an OBJ file, use the teapot uploaded to CampusNet.
[This option is a quick way to move on, but not a full solution for this part.]

Upload the OBJ file and the associated MTL file (if used) to the server, so that
your WebGL application is able to load it.

Part 3

The next step is to load the OBJ file. A method for loading and displaying such
files is given in the section “Load and Display 3D Models” from the WebGL
Programming Guide (available on CampusNet). The part of the code that parses
the OBJ file is in the file OBJParser.js, which we have uploaded to CampusNet.

Place OBJParser.js on the server together with the other library files and use
Listing 10.18 from the WebGL Programming Guide to load the triangle mesh
from the OBJ file.

Since browser programs (like the one you are developing here) do not wait for
data to load, you need to wait for the data before using it in the render function
that you are calling for every frame. Use the following lines of code to wait:

 if (!g_drawingInfo && g_objDoc && g_objDoc.isMTLComplete()) {
 // OBJ and all MTLs are available
 g_drawingInfo = onReadComplete(gl, model, g_objDoc);
 }
 if (!g_drawingInfo) return;

Once data is available, the onReadComplete function passes it to WebGL buffers.
Get this function from Listing 10.21 of the WebGL Programming Guide.

Set up the camera and draw your 3D object as an indexed face set using a simple
set of shaders. The draw call for the loaded OBJ file is
 gl.drawElements(gl.TRIANGLES, g_drawingInfo.indices.length,
 gl.UNSIGNED_SHORT, 0);

Part 4

Set up a light source and use your shaders from Part 5 of Worksheet 4 to shade
the object using Phong shading and the Phong illumination model.

Explain how you obtain and use surface normals, and explain how this relates to
the surface smoothness when you are rendering a triangle mesh.

