
02561 COMPUTER GRAPHICS DTU COMPUTE
Worksheet 7: Environment mapping and normal mapping

1/2

Reading Angel: Sections 7.5.6 and 7.7-7.9
Purpose The purpose of this set of exercises is to become familiar with the concepts

behind environment mapping and normal mapping. We will use environment
mapping to render a curved reflector and, in the process, learn how to use
cube maps and the reflection function. We will also use normal mapping to
add scale-like surface details.

Part 1
Cube map

Start from a textured sphere (Part 3 of Worksheet 6). Instead of the ordinary
2D texture, we will now use a cube map to texture the sphere. [Angel 7.8]

Modify your texture initialization such that it loads a cube map from six
image files, one file for each face. The files are in textures.zip (on DTU
Learn). The file names and their orientation in the cube map are:
 var cubemap = ['textures/cm_left.png', // POSITIVE_X
 'textures/cm_right.png', // NEGATIVE_X
 'textures/cm_top.png', // POSITIVE_Y
 'textures/cm_bottom.png', // NEGATIVE_Y
 'textures/cm_back.png', // POSITIVE_Z
 'textures/cm_front.png']; // NEGATIVE_Z

If you use a loop to load the image files, you must retrieve the image from
the event variable in the onload function:
 image.onload = function(event) {
 var image = event.target;
 // Insert cube face texture initialization here
 };

Once the cube map is initialized, no inverse map is needed to compute
texture coordinates. Simply use the world space normal as texture
coordinates when looking up the texture color in the fragment shader.

Part 2
Environment

The next step is to also draw the environment in the background. To do this,
we draw a screen-filling quad very close to the far plane of the view frustum
and texture it using the cube map.

• A screen-filling quad close to the far plane is most easily drawn using
clip coordinates, where the diagonal goes from (−1,−1, 0.999, 1) to
(1, 1, 0.999, 1). Insert this background quad into your scene.

• Draw the background quad using the same shaders as in Part 1 but
introduce a uniform matrix 𝑴𝑴tex in the vertex shader that transforms
the vertex position to texture coordinates.

• For the sphere, 𝑴𝑴tex is an identity matrix. The vertices of the
background quad are however in clip space, so its model-view-
projection matrix is an identity matrix, but its 𝑴𝑴tex should transform
from clip space positions to world space directions. Create 𝑴𝑴tex for
the background quad using (a) the inverse of the projection matrix to
go from clip coordinates to camera coordinates and (b) the inverse of
the rotational part of the view matrix (no translation) to get direction
vectors in world coordinates. Explain the transformation.

02561 COMPUTER GRAPHICS DTU COMPUTE
Worksheet 7: Environment mapping and normal mapping

2/2

Part 2
Reflection

The sphere is not really like a mirror ball. Instead of looking up the
environment in the normal direction, we should look up the environment in
the direction of reflection. [Angel 7.7]

• Create a uniform variable (reflective) to distinguish reflective
objects (the mirror ball) from other objects (the background quad).

• Upload the eye position to the fragment shader as a uniform variable
and compute the direction of incidence (the view vector, 𝒗𝒗) in world
space coordinates.

• Use a conditional operator (or an if-statement) to choose the
direction of reflection as texture coordinates for reflective objects.
Hint: You can use the built-in GLSL ES function
reflect(vec3 incident, vec3 normal).

Part 4
Bump mapping

Finally, we will perturb the normal of the mirror ball using a normal map to
give the impression that the ball surface is 'bumpy'. [Angel 7.9]

• Load the normal map texture from the file textures/normalmap.png.
Map it onto the sphere using the same technique as in Part 3 of
Worksheet 6. The first image for this part is the expected result.

• Bind the normal map to another texture (e.g. TEXTURE1) so that it can
be used together with the cube map [Angel 7.5.6]. The color found in
the normal map is in [0, 1]. Transform it to be in [−1, 1] to get the
actual normal.

• The normal retrieved from the normal map is in tangent space. We need
to transform it to world space to use it in place of the sphere normal
when calculating the direction of reflection. Use the following function
as an efficient way to perform this change of basis transformation:1

 vec3 rotate_to_normal(vec3 n, vec3 v) {
 float sgn_nz = sign(n.z + 1.0e-16);
 float a = -1.0/(1.0 + abs(n.z));
 float b = n.x*n.y*a;
 return vec3(1.0 + n.x*n.x*a, b, -sgn_nz*n.x)*v.x
 + vec3(sgn_nz*b, sgn_nz*(1.0 + n.y*n.y*a), -n.y)*v.y
 + n*v.z;

 }

The first argument is the surface normal n in world coordinates, the
second argument is the tangent space vector to be transformed to world
space. In our case, the tangent space vector is the normal retrieved from
the normal map. The transformation returns the bump mapped normal to
be used in place of the sphere normal when rendering reflective objects.

1 Frisvad, J. R. Building an orthonormal basis from a 3D unit vector without normalization. Journal of Graphics Tools
16(3), pp. 151-159, August 2012. https://people.compute.dtu.dk/jerf/code/hairy/
 Duff, T., Burgess, J., Christensen, P., Hery, C., Kensler, A., Liani, M., and Villemin, R. Building an orthonormal basis,
revisited. Journal of Computer Graphics Techniques 6(1), pp. 1-8. March 2017.

https://people.compute.dtu.dk/jerf/code/hairy/

