
02561 COMPUTER GRAPHICS DTU COMPUTE
Worksheet 8: Projection shadows and render pipeline

1/2

Reading Angel: 5.10, 7.5.6, 7.10-7.10.3, 8.11
Purpose The purpose of this set of exercises is to produce simple shadows using

projection matrices. As a side product, the aim is to get a better
understanding of the rasterization pipeline. We are only concerned with
generating the shadows – this means that the Phong illumination model is
not needed for this set of exercises.

Part 1
Scene

The scene to be rendered consists of three quadrilaterals (quads). One is a
large texture mapped quad in the plane 𝑦𝑦 = −1 (𝑥𝑥 ∈ [−2, 2], 𝑧𝑧 ∈ [−1,−5]),
the others are smaller quads colored red. Let us refer to the large quad as the
ground. One of the two smaller quads should be parallel to 𝑦𝑦 = −1, but
placed above the ground (𝑦𝑦 = −0.5, 𝑥𝑥 ∈ [0.25, 0.75], 𝑧𝑧 ∈ [−1.25,−1.75]).
The other should be perpendicular to 𝑦𝑦 = −1 with two vertices intersecting
the ground (𝑥𝑥 = −1, 𝑦𝑦 ∈ [−1, 0], 𝑧𝑧 ∈ [−2.5,−3]). Create a WebGL program
that draws this scene. Here are some steps:

• Start from Part 1 of Worksheet 6. Use the coordinates given above to
set the vertex coordinates of the ground. Adjust the texture
coordinates of the ground so that the texture fills out the square
without being repeated.

• Replace the checkerboard texture by the texture image in xamp23.png
(available on DTU Learn).

• In initialization, switch to gl.TEXTURE1 using gl.activeTexture and
create a new texture of 1 × 1 resolution, where you store just a single
red color: Uint8Array([255, 0, 0]). [Angel 7.5.6]

• Add the two smaller quads to your vertex and texture coordinate
buffers. Draw the ground quad with texture 0 and the smaller red
quads with texture 1. [Angel 7.5.6]

[In WebGPU, create two different bind groups: one using the marble texture
loaded from xamp23.png and one using the red texture. In the render pass, set
the first bind group when drawing the ground quad and the second bind
group when drawing the two red quads. For Part 2, create a third bind group
that uses the red texture but a new buffer for uniform matrix variables
suitable for the projection shadows. Use the third bind group when drawing
the shadow polygons.]

02561 COMPUTER GRAPHICS DTU COMPUTE
Worksheet 8: Projection shadows and render pipeline

2/2

Part 2
Projection shadows

A light source position is needed to cast shadows. Introduce an animated
point light that circles the scene with circle center (0, 2,−2) and radius 2.
Implement projection shadows using the following steps.

• Create a projection matrix 𝑴𝑴𝑝𝑝 that projects geometry onto the ground
plane 𝑦𝑦 = −1. Projection to a plane different from 𝑦𝑦 = 0 is done by
subtracting the 𝑦𝑦-coordinate of the plane from the 𝑦𝑦-coordinate of the
light source in 𝑴𝑴𝑝𝑝. [Angel 5.10]1

• Construct a shadow model matrix 𝑴𝑴𝑠𝑠 by concatenating 𝑴𝑴𝑝𝑝 with
model and translation matrices so that shadow polygons are projected
from the current position of the point light onto the ground plane.
[Angel 5.10]

• Use the shadow model matrix to draw the smaller quads again but as
shadow polygons. Note that drawing order is important. Ensure that
the shadow polygons are in front of the ground polygon, but behind
the smaller quads. [Angel 8.11.7]

Part 3
Shadow polygon
culling using the
z-buffer

One problem with shadow polygons is that they are drawn even if there is no
ground polygon. Use the depth buffer with a depth test function that accepts
fragments with greater depth values to draw shadow polygons only if there is
also a ground polygon. Handle z-fighting using an offset in the projection
matrix. [Angel 8.11.5]

Introduce a uniform visibility variable in your fragment shader. Use this
variable as a multiplication factor to draw the shadow polygons in black.

[In WebGPU, create two pipelines: one for the normal depth test ("less") and
one for the depth test to be used for the shadow polygons ("greater"). In the
render pass, set the second pipeline when drawing the shadow polygons.]

Part 4
Ambient light in
shadows using
transparency

The black shadows seem too dark. We would like to see a darker version of
the ground texture in the shadows. Semi-transparent shadow polygons can
achieve this effect. Enable blending and set an appropriate blending function
to render a darker version of the ground texture in the shadows.
[Angel 7.10-7.10.3]

Blending in WebGL is influenced by browser compositing. Use

 var gl = WebGLUtils.setupWebGL(canvas, { alpha: false });

to switch off this effect.

1 Please note that the indexing is faulty in the example code of the textbook that creates a projection matrix.

