02562 Rendering - Introduction DTU Compute

Worksheet 1

Ray tracing is the easiest and the most general technique for visualising 3D models. It is easy to create many
sophisticated lighting effects using ray tracing, but ray tracing is still slower than rasterization. Hence, ray
tracing is used primarily for rendering of photorealistic images in applications where image quality rather
than a high frame rate is the primary concern. The purpose of the exercises for the first weeks is to help you
learn how a ray tracer works.

Learning Objectives
* Implement ray casting (tracing rays from eye to first surface intersection).
» Use a pinhole camera model for generating rays in a digital scene.
* Compute intersection of rays with three-dimensional primitive objects (planes, triangles, spheres).

» Compute shading of diffuse surfaces using Kepler’s inverse square law and Lambert’s cosine law.

Getting Started

We will build a minimalistic framework for ray tracing using WebGPU. This means that we will write HTML
and JavaScript files and test them by opening the HTML file in an internet browser. The advantages are that
we get all the loading, display, and interface functionalities of the browser and it runs on any platform.
All you need is an internet browser that supports WebGPU (check current support status: https://caniuse-
.com/webgpu) and your favorite text editor for writing code.

Useful resources for you to familiarize yourself with WebGPU:
* Your first WebGPU app: https://codelabs.developers.google.com/your-first-webgpu-app

* B. Kenwright. Introduction to Computer Graphics and Ray-Tracing Using the WebGPU API. ACM
SIGGRAPH Asia 2022 Courses, Article 1. 2022. https://doi.org/10.1145/3550495.3558218

* B. Kenwright. Web Programming Using the WebGPU API. ACM SIGGRAPH 2023 Courses, Article
21. 2023. https://doi.org/10.1145/3587423.3595543

* WebGPU specification: https://www.w3.org/TR/webgpu/
* WGSL - WebGPU Shading Language - specification: https://www.w3.org/TR/WGSL/

We will do most of the ray tracing work using WGSL. The WebGPU code needed on the JavaScript side will
be kept at a minimum.

Ray Casting

In this first exercise, your job is to implement the very basics of ray tracing: ray generation, ray-object inter-
section, and shading of diffuse surfaces. This simple, non-recursive, visible-surface ray tracing is typically
referred to as ray casting.

Save a .html and a .js file for each part that you solve. In the end, your lab journal will be a collection
of these files documenting your progress and providing us with easy inspection of code and results.

1. Create an html file with a canvas element of resolution 512 x 512, and let it load a JavaScript file that
initializes WebGPU and clears the canvas to black.

2. Create a script in the html file with WGSL code that defines a rectangle from (—0.9, —0.9) to (0.9, 0.9)
and set its colour to (7, g,b,a) = (0.1,0.3,0.6, 1.0). In the JavaScript file, get the text in the script and
use it to create a shader module and a render pipeline. Set up a render pass that draws the four vertices
of the rectangle as a triangle strip.


https://caniuse.com/webgpu
https://caniuse.com/webgpu
https://codelabs.developers.google.com/your-first-webgpu-app
https://doi.org/10.1145/3550495.3558218
https://doi.org/10.1145/3587423.3595543
https://www.w3.org/TR/webgpu/
https://www.w3.org/TR/WGSL/

3. Change the vertices of the rectangle to be from (—1.0, —1.0) to (1.0, 1.0) so that the rectangle fills out
the canvas and pass the image plane location from the vertex to the fragment shader. Create a struct
(Ray) for holding ray information and generate rays using a pinhole camera model.! As a test, output
the ray direction as the pixel color. Multiply by one half and add one half to ensure that you get positive
color values. The result should be a dark blue image with red increasing from left to right and green
increasing from bottom to top.

4. Create a struct (HitInfo) for recording hit information and implement ray-plane intersection, ray-
sphere intersection, and ray-triangle intersection. Call these intersection functions in the fragment
shader to render the default scene (specified below). Assign the designated object colour to the pixel
when a ray intersects it. Use the light blue rectangle colour from before as background colour if
no intersection was found. Adjust the maximum trace distance of your ray (tmax) if you have an
intersection to ensure that you end up with the closest intersection.

5. Create two uniform variables, one for the aspect ratio of the canvas and one for the camera constant
(zoom). Make a zoom interface in HTML/JavaScript (use a slider or the scroll wheel of the mouse)
that changes the camera constant. Re-render the scene when the zoom changes and demonstrate that
you can accurately use the aspect ratio of the canvas to render with a non-square resolution.

6. Create a struct (Light) for returning the radiance (L;) incident from and the direction () toward a light
source. Implement a point light sample function and a shade function for diffuse surfaces sampling
the point light in the scene. Use Kepler’s inverse square law of radiation and Lambert’s cosine law.

Default scene description

Camera: eye point look-at point up-vector camera constant
' (2.0,1.5,2.0) (0.0,0.5,0.0) (0.0,1.0,0.0) 1.0
Plane: position normal rgb colour
' (0.0,0.0,0.0) (0.0,1.0,0.0) (0.1,0.7,0.0)
Trianele: Vo ) Vo rgb colour
gle: (-0.2,0.1,0.9) (0.2,0.1,0.9) (-0.2,0.1,-0.1) (0.4,0.3,0.2)
Sphere: center radius refractive index shininess rgb colour
phere: (0.0,0.5,0.0) 0.3 1.5 42 (0.0,0.0,0.0)
C position intensity
Point light: (0.0,1.0,0.0) -
Reading Material

The curriculum for Worksheet 1 is (105 pages)

B Chapters 1-2. Introduction and Miscellaneous Math.

B Chapters 3-5. Raster Images, Ray Tracing, and Surface Shading.
Supplementary reading material:

e Frisvad, J. R. Ray Generation Using a Pinhole Camera Model. Lecture Note, Technical University of
Denmark, August 2012.

e Frisvad, J. R. Ray-Triangle Intersection. Lecture Note, Technical University of Denmark, July 2011.

JERF 2023

!See the short lecture note “Ray Generation Using a Pinhole Camera Model” for more details. It is available on DTU Learn.



