
02562 Rendering - Introduction DTU Compute

Worksheet 5

One of the key strengths of computer graphics techniques is that they work in general. Ray tracing is, for
example, well known in numerous fields of research. The distinguishing feature of ray tracers in computer
graphics is their ability to efficiently handle nearly arbitrary scenes. This set of exercises helps you load and
efficiently render large triangle meshes.

Learning Objectives

• Implement ray tracing of a triangle mesh (indexed face set).

• Interpolate normals across a triangle.

• Load and render a multi-material triangle mesh.

• Render with a light source specified by triangles in a mesh.

Triangle Meshes

A common way to deal with arbitrary surfaces is using triangles. In particular, we often work with an indexed
face set. This is a collection of vertices with associated positions, normals, and texture coordinates. Each
vertex has an index and each face in the face set (triangle in the mesh) is defined by a vector of three indices.
One way to store an indexed face set on disk is using a Wavefront OBJ file.1 This is the file format we will
use. Most 3D modelling software packages can export to this format, and we will make a couple of the classic
computer graphics scenes available on DTU Learn in this format (the Stanford bunny, the Utah teapot, and
the Cornell box).

1. To get started, define the triangle in the default scene as an indexed face set. Create it on the CPU
side (in JavaScript) and upload it to the GPU in two storage buffers: one for vertex positions (array
of vec3f) and one for face indices (array of vec3u). Modify your intersect_triangle function to
take a face index as argument instead of an array of three vertex positions and make sure that your
intersect_scene function uses this modified version of the intersect_triangle function. Note
that the storage buffers require 4 times 32 bit numbers, so both vertex positions and index triples for
faces need to be patted with an extra number.

2. We will now switch to a different scene consisting of the Utah teapot. Set the resolution of your canvas
to 800×450, remove texturing and your shader selections for the sphere, change your intersect_scene
function to only loop over all triangles in the indexed face set. Modify the camera to

eye point look-at point up vector camera constant
(0.15, 1.5, 10.0) (0.15, 1.5, 0.0) (0.0, 1.0, 0.0) 2.5

Use the library file OBJParser.js available on DTU Learn to load the Utah teapot (teapot.obj).
Uploading vertex positions and face indices is sufficient for this part. You can set the color of the
teapot to a constant vec3f(0.9). Implement a function for sampling a directional light instead of a
point light. Illuminate the teapot by a directional light with the direction normalize(vec3f(-1.0)).

3. The OBJ parser also loads vertex normals. Upload the vertex normals to the GPU in a storage buffer and
use the barycentric coordinates computed in your ray-triangle intersection test to obtain interpolated
vertex normals as a better normal for shading of a smooth surface.

4. We will now again change the scene. Set the canvas resolution back to 512×512 and load the Cor-
nell box with blocks (CornellBoxWithBlocks.obj. This scene is measured in millimetres and thus
requires a different camera configuration:

eye point look-at point up vector camera constant
(277.0, 275.0, -570.0) (277.0, 275.0, 0.0) (0.0, 1.0, 0.0) 1.0

1http://paulbourke.net/dataformats/obj/

1

https://www.cc.gatech.edu/~turk/bunny/bunny.html
https://www.scratchapixel.com/lessons/geometry/bezier-curve-rendering-utah-teapot/bezier-curve.html
http://www.graphics.cornell.edu/online/box/
http://paulbourke.net/dataformats/obj/


This scene has triangles with different materials. For starters, create storage buffers holding the ma-
terials and the material indices for the different triangles in the mesh. All the data you need is loaded
by the OBJParser.js library and made available in a JavaScript object containing drawing info. For
the storage buffer containing materials, you need to extract the relevant information. Upload color and
emission to the GPU and use the sum of these for flat shading of the Cornell box.

5. The final task is to also upload indices pointing out triangles that are light sources (because they have
non-zero emission), and then shade the scene using a point light representing these emissive triangles.
The list of emissive triangles is called light_indices in the JavaScript object containing drawing info.
Use radiometric considerations to shade the Cornell box appropriately based on the area, orientation,
and position of the emissive triangles relative to the point of interest hit by a ray.

Reading Material

The curriculum for Worksheet 5 is (16 pages)

B Sections 12.1–12.1.2. Triangle Meshes.

B Sections 2.8–2.9. Linear Interpolation and Triangles.

B Sections 14.7.1–14.8. BRDF and Transport Equation.

JERF 2023

2


