
02562 Rendering - Introduction DTU Compute

Worksheet 7

Graphics is the visual interface between the user and the computer. The display driver thus prefers that the
graphics processing unit (GPU) is responsive. Stalling the GPU to compute one expensive frame might lead
to a timeout and recovery action in the display driver, which oftentimes means that your rendering program is
not allowed to do what you asked it to do. When rendering using the GPU, we therefore prefer many frames
of low computational cost over one frame very costly to compute. Progressive unidirectional path tracing is
an algorithm for realistic image synthesis that can adhere to these constraints. We will use it in this worksheet
to add indirect illumination to our renderings.

Learning Objectives

• Generate pseudo-random numbers on the GPU.

• Do progressive updating using a ping-pong rendering scheme.

• Use Monte Carlo integration for solving the rendering equation.

• Implement basic progressive unidirectional path tracing.

Progressive Path Tracing

Progressive rendering is useful in the sense that we do not need to start over if the initial number of samples
was insufficient to get the desired image quality. With a progressive technique, we can keep improving the
image until the desired quality is obtained. We can also quickly spot a problem by inspecting the rendering
as it progressively improves.

• Create two textures for a ping-pong rendering scheme. Ping-pong rendering means that the previous
rendering result is used to render the next. To accomplish this, set up one texture to be a render target
and a copy source and one to be a texture binding and a copy destination. After rendering to the render
target, copy the result to the texture bound for shader look-ups. Upload the frame number as well as
the rendering resolution (canvas width and height) to your shaders as uniform variables. Use these
uniform variables to seed a pseudo-random number generator and to get a random offset within each
pixel. Implement progressive updating using the result from the previous frame such that you always
store the average of all the frames as the next result. Create a button for switching progressive updating
on/off. Load the Cornell box with blocks (CornellBoxWithBlocks.obj) so that the user can render it
using progressive updates until the image has nice anti-aliased edges.

• Pass the seed for the pseudo-random number generator to your shader for Lambertian materials and
change the simplified area light sampling implemented earlier to Monte Carlo sampling of a random
position on the surface of the light source (first sample a random triangle index, then sample a random
position on that triangle). As a result you should obtain an image of the Cornell box where the blocks
cast soft shadows.

• Update your HitInfo struct to include an emit flag and an RGB factor. The emit flag is for com-
bining different methods for evaluating direct and indirect illumination. The factor is for weighting
the result returned from later in the path. Implement sampling of a cosine-weighted hemisphere and
add sampling of indirect illumination to your shader for Lambertian materials. Use these techniques to
render the Cornell box with blocks including path traced indirect illumination.

1



Reading Material

The curriculum for Worksheet 7 is (34 pages, 9 of these pages are repetition)

B Sections 2.10-2.12. Discrete Probability, Continuous Probability, and Monte Carlo Integration.

B Chapter 13. Sampling.

B Sections 14.8 and 14.10. Transport Equation and Monte Carlo Ray Tracing.

JERF 2023

2


