
02562 Rendering - Introduction DTU Compute

Worksheet 3

If we compare rendered images to photographs, flatly coloured surfaces with no visual detail is one of the first
giveaways that an image is a rendering. To obtain realism in rendered images, it is important to add visual
detail. One way to add visual detail is to use texturing. This set of exercises is about how to do texturing in
ray tracing.

Learning Objectives

• Use texture mapping (mapping an image to a surface) to heighten the level of visual detail.

• Compute texture coordinates using inverse mapping.

• Use bilinear interpolation for texture magnification filtering.

• Use stratified jitter sampling for texture minification filtering.

Texture Mapping

Texture mapping is in four steps: (1) loading the texture image, (2) computing texture coordinates for the
object to which the texture should be mapped, (3) looking up a colour in the texture image for a given set of
texture coordinates, and (4) using the texture colour in a shader.

1. Create a function that loads a texture image file without colour space conversion. Once loaded, store
the image data in a texture created on the GPU. Use image plane coordinates (uv) to render images of
the texture with clamp-to-edge versus repeat addressing and with nearest versus linear filtering.

2. Add texture coordinates (texcoords) to your hit info struct (HitInfo). Compute texture coordinates
when finding an intersection with a plane using the inverse mapping based on the tangent and the
binormal of the plane. Use a texture scaling factor of 0.2 to scale the texture coordinates. Modify the
intersect_scene function to retrieve the color of the plane from the texture (using repeat addressing
and linear filtering). As with the former color of the plane, use 90% of the color for the diffuse
reflectance of the plane and 10% for the ambient term. Make selection menus that enable the user also
to draw Lambertian materials using base color (diffuse plus ambient) and to switch texturing on/off.

3. Do stratified jitter sampling for anti-aliasing of your ray traced images. Implement an interface in your
HTML page for incrementing and decrementing the pixel subdivision level. Implement a JavaScript
function (compute_jitters) computing an array of vectors from the pixel centre to a jitter sampled
position for each sub-pixel. Call this function whenever the pixel subdivision level is changed and
store the array in a pre-allocated storage buffer. Modify the main function main_fs so that a ray is cast
through each sub-pixel. For each sub-pixel, use the jitter vectors in the storage buffer to modify the
image space coordinates used for generating the ray. Accumulate the result from each sub-pixel and
divide by the number of sub-pixels.

4. Render the default scene using different pixel subdivision levels. Compare result from nearest and
linear texture sampler filtering and explain how scaling the texture coordinates affects the rendered
texture. Divide the texture scaling factor by 10 to magnify the texture by a factor 10. Describe how
texture aliasing is affected by pixel subdivision level and nearest versus linear filtering, respectively.

Reading Material

The curriculum for Worksheet 3 is (41 pages)

B Chapter 11. Texture Mapping.

B Section 13.4.1. Antialiasing (from 4th edition of the text book).

JERF 2024

1


