
02562 Rendering - Introduction DTU Compute

Worksheet 7

Graphics is the visual interface between the user and the computer. The display driver thus prefers that the
graphics processing unit (GPU) is responsive. Stalling the GPU to compute one expensive frame might lead
to a timeout and recovery action in the display driver, which oftentimes means that your rendering program is
not allowed to do what you asked it to do. When rendering using the GPU, we therefore prefer many frames
of low computational cost over one frame very costly to compute. Progressive unidirectional path tracing is
an algorithm for realistic image synthesis that can adhere to these constraints. We will use it in this worksheet
to add indirect illumination to our renderings.

Learning Objectives

• Generate pseudo-random numbers on the GPU.

• Do progressive updating using a ping-pong rendering scheme.

• Use Monte Carlo integration for solving the rendering equation.

• Implement basic progressive unidirectional path tracing.

Progressive Path Tracing

Progressive rendering is useful in the sense that we do not need to start over if the initial number of samples
was insufficient to get the desired image quality. With a progressive technique, we can keep improving the
image until the desired quality is obtained. We can also quickly spot a problem by inspecting the rendering
as it progressively improves.

1. In this worksheet, we will render the Cornell box with blocks (CornellBoxWithBlocks.obj, comment
out the spheres). Our objective is to replace jitter sampling with progressive random sampling of the
pixels. Once jitter sampling has been removed, create two textures for a ping-pong rendering scheme.
Ping-pong rendering means that the previous rendering result is used to render the next. To accomplish
this, set up one texture to be a render target and a copy source and one to be a texture binding and a copy
destination. After rendering to the render target, copy the result to the texture bound for shader look-
ups. Upload the frame number as well as the rendering resolution (canvas width and height) to your
shaders as uniform variables. Use these uniform variables to seed a pseudo-random number generator
and to get a random offset within each pixel. Implement progressive updating using the result from
the previous frame such that you always store the average of all the frames as the next result. Create
a button or a checkbox for switching progressive updating on/off. Your solution works when the user
can use progressive updating until the image has nice anti-aliased edges.

2. Pass a pointer to the seed for the pseudo-random number generator (t) from the main function over your
shader for Lambertian materials to the function for sampling an area light. Then change the simplified
area light sampling from earlier to Monte Carlo sampling of a random position on the surface of the
light source (first sample a random triangle index, then sample a random position on that triangle). As
a result you should obtain an image of the Cornell box where the blocks cast soft shadows.

3. Update your HitInfo struct to include an emit flag and an RGB factor. The emit flag is for com-
bining different methods for evaluating direct and indirect illumination. The factor is for weighting
the result returned from later in the path. Implement sampling of a cosine-weighted hemisphere and
add sampling of indirect illumination to your shader for Lambertian materials. Use these techniques to
render the Cornell box with blocks including path traced indirect illumination.

1



Reading Material

The curriculum for Worksheet 7 is (34 pages, 9 of these pages are repetition)

B Sections 2.10-2.12. Discrete Probability, Continuous Probability, and Monte Carlo Integration.

B Chapter 13. Sampling.

B Sections 14.8 and 14.10. Transport Equation and Monte Carlo Ray Tracing.

JERF 2024

2


