
02562 Rendering - Introduction DTU Compute

Worksheet 6

We would like to be able to work with scenes of higher complexity. A million pixels, a million triangles,
and several different materials is a common scenario. For such scenes, brute force ray tracing is infeasible:
looping through 1012 ray-triangle intersections is too demanding a task. Fortunately, we can use a spatial
data structure to accelerate the ray tracing.

Learning Objectives

• Accelerate rendering techniques using spatial data structures.

• Use a BSP tree for efficient space subdivision.

• Algorithm and data format adaptation for the GPU.

Space Partitioning

Ray tracing is slow if we have no spatial data structure for acceleration of the intersection tests. The following
exercises are about using an axis-aligned binary space partitioning (BSP) tree for space subdivision.

1. Continue working on your solution for Worksheet 5 (ray tracing of a triangle mesh using brute force
looping through all triangles). Include the following three library files available on DTU Learn:
Aabb.js, BspTree.js, and TimingHelper.js. Use the TimingHelper to add a frame time mea-
surement to your application and test this on the rendering of the teapot, for instance. Create an empty
JavaScript object for buffers and use the function build_bsp_tree to create buffers holding the trian-
gle mesh data that you load from a Wavefront OBJ file. Draw the mesh using the buffers created by
the BspTree.js library and upload the axis-aligned bounding box (Aabb) of the object to the GPU as a
uniform buffer (so that it becomes available in WGSL). Speed-up your rendering by not checking for
intersection between the triangle mesh and a ray that is outside the bounding box.

2. Use an axis-aligned BSP tree to find the closest intersection of a ray and a triangle mesh. Investigate
the implementation of this spatial data structure in BspTree.js. Use the BSP tree instead of the simple
looping over all triangles from Worksheet 5. You may hit the WebGPU limit of at most 8 storage buffers
per shader stage. If this is a problem, comment out your area light shading and exploit that triangle
face indices can be a vec4u with the material index of the face as the fourth index (the w-coordinate).
Show that you can render a teapot, a bunny and perhaps even a larger object when using the BSP tree.
The table below provides a view for the bunny.

eye point look-at point up vector camera constant
(-0.02, 0.11, 0.6) (-0.02, 0.11, 0.0) (0.0, 1.0, 0.0) 3.5

3. Because some data in our triangle mesh is per vertex and some is per triangle (face), we can inter-
leave some buffers and reduce the number of storage buffers to stay below the limit of 8. The files
BspTree_interleaved.js and OBJParser_interleaved.js can help you do this. If you did not do
this in the previous task, exploit that triangle face indices can be a vec4u with the material index of the
face as the fourth index (the w-coordinate). This should help you remove a storage buffer. Construct
a small struct for vertex attributes and use it to contain interleaved vertex positions and normals. In
this way, you can remove another storage buffer. With these modifications, reintroduce your arealight
shading and render the Cornell box with blocks using the BSP tree.

4. Load the Cornell box without blocks (CornellBox.obj). Use your intersect_scene function to
insert a mirror sphere and a glass sphere in the Cornell box. Size, position, and material of the spheres
are provided in the table below. Render this scene using the BSP tree and include shadows, distant area
light illumination, and an option to do anti-aliasing by jitter sampling.

1



object center radius material refractive index
left sphere (420.0, 90.0, 370.0) 90.0 mirror
right sphere (130.0, 90.0, 250.0) 90.0 glass 1.5

Reading Material

The curriculum for Worksheet 6 is (12 pages)

B Section 12.3. Spatial Data Structures.

Supplementary reading material:

• Ize, T., Wald, I., and Parker, S. G. Ray tracing with the BSP tree. In Proceedings of Symposium on
Interactive Ray Tracing, pp. 159–166. 2008.

• Kammaje, R. P., and Mora, B. A study of restricted BSP trees for ray tracing. In Proceedings of the
IEEE Symposium on Interactive Ray Tracing (RT ’07), pp. 55–62, October 2007.

• Sung, K., and Shirley, P. Ray tracing with the BSP tree. In D. Kirk, editor, Graphics Gems III, Chapter
VI.1, pp. 271–274, Academic Press, 1995.

JERF 2025

2


