02941 Physically Based Rendering

Subsurface Scattering

Jeppe Revall Frisvad

June 2021

Volumes to surfaces

- From local to global formulation [Preisendorfer 1965].

- Suppose we let $L^{0}=T_{r}(0, s) L(0)$ denote direct transmission.
- Preisendorfer introduces a scattering operator \boldsymbol{S}_{j} denoting the illumination that has scattered j times inside the medium.
- The scattering operator provides a path from the radiative transfer equation (local) to the rendering equation (global):

$$
L=L^{0} \boldsymbol{S}_{0}+\sum_{j=1}^{\infty} L^{0} \boldsymbol{S}_{j}=\sum_{j=0}^{\infty} L^{0} \boldsymbol{S}_{j}
$$

BSSRDF

- Since a monotone, bounded sequence of nonnegative real numbers $\left(\sum_{j=0}^{n} L^{0} \boldsymbol{S}_{j}\right)$ converges to a real number (L), a global solution exists. Thus
- But what is \boldsymbol{S} ?

$$
L=\sum_{j=0}^{\infty} L^{0} \boldsymbol{S}_{j}=L^{0} \boldsymbol{S}
$$

- For

- Continuous boundary and interior leads from \boldsymbol{S} to $S\left(X ; \boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)$, the so-called

Bidirectional Scattering-Surface Reflectance Distribution Function.

- Originally called "the scattering function" [Venable and Hsia 1974] where it included time dependency and inelastic scattering. (Arguably a better name.)

References

- Venable, Jr., W. H., and Hsia, J. J. Optical Radiation Measurement: Describing Spectrophotometric Measurements. Technical report, National Bureau of Standards (US), 1974.

Subsurface scattering

- Behind the rendering equation [Nicodemus et al. 1977]:

$$
\frac{\mathrm{d} L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)}{\mathrm{d} \Phi_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right)}=S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)
$$

- An element of reflected radiance $\mathrm{d} L_{r}$ comes from an element of incident flux $\mathrm{d} \Phi_{i}$.
- S (the BSSRDF) is the proportionality factor between the two.
- Using the definition of radiance $L=\frac{d^{2} \Phi}{\cos \theta d A d \omega}$, we have

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A .
$$

References

- Nicodemus, F. E., Richmond, J. C., Hsia, J. J., Ginsberg, I. W., and Limperis, T. Geometrical considerations and nomenclature for reflectance. Tech. rep., National Bureau of Standards (US), 1977.

An estimator for subsurface scattering

- The reflected radiance equation:

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i} .
$$

- Monte Carlo estimator:

$$
L_{r, N, M}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\frac{1}{N M} \sum_{p=1}^{M} \sum_{q=1}^{N} \frac{S\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q}\right) \cos \theta_{i}}{\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)}
$$

- Common direction sampling pdf (cosine-weighted hemisphere):

$$
\operatorname{pdf}\left(\vec{\omega}_{i, q}\right)=\frac{\vec{\omega}_{i, q} \cdot \vec{n}_{i}}{\pi}=\frac{\cos \theta_{i}}{\pi} .
$$

- Common area sampling pdf (triangle mesh):

$$
\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right)=\operatorname{pdf}(\triangle) \operatorname{pdf}\left(\boldsymbol{x}_{i, p, \triangle}\right)=\frac{A_{\triangle}}{A_{\ell}} \frac{1}{A_{\triangle}}=\frac{1}{A_{\ell}}
$$

Sampling a cosine-weighted hemisphere (ambient occlusion)

- Material:

$$
S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\frac{\rho_{d}\left(\boldsymbol{x}_{o}\right)}{\pi} \delta\left(\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right)
$$

- Sampler:

$$
\operatorname{pdf}\left(\vec{\omega}_{i, q}\right)=\frac{\vec{\omega}_{i, q} \cdot \vec{n}_{i}}{\pi}=\frac{\cos \theta_{i}}{\pi}
$$

- Estimator:

$$
\begin{aligned}
& L_{r, N}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right) \\
& =\frac{1}{N} \sum_{q=1}^{N} \frac{\rho_{d}\left(\boldsymbol{x}_{o}\right)}{\pi} \frac{L_{i}\left(\boldsymbol{x}_{o}, \vec{\omega}_{i, q}\right) \cos \theta_{i}}{\operatorname{pdf}\left(\vec{\omega}_{i, q}\right)} \\
& =\rho_{d}\left(\boldsymbol{x}_{o}\right) \frac{1}{N} \sum_{q=1}^{M} L_{i}\left(\boldsymbol{x}_{o}, \vec{\omega}_{i, q}\right) .
\end{aligned}
$$

Sampling a triangle mesh (area lights, soft shadows)

- Material:

$$
S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\frac{\rho_{d}\left(\boldsymbol{x}_{o}\right)}{\pi} \delta\left(\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right)
$$

- Sampler:

$$
\begin{aligned}
& \vec{\omega}_{i, q}=\frac{\boldsymbol{x}_{\ell, q}-\boldsymbol{x}_{i}}{\left\|\boldsymbol{x}_{\ell, q}-\boldsymbol{x}_{i}\right\|} \\
& \operatorname{pdf}\left(\boldsymbol{x}_{\ell, q}\right)=\operatorname{pdf}(\triangle) \operatorname{pdf}\left(\boldsymbol{x}_{\ell, q, \Delta}\right)=\frac{A_{\triangle}}{A_{\ell}} \frac{1}{A_{\triangle}} .
\end{aligned}
$$

- Estimator:

$$
L_{r, N}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)
$$

$$
=\frac{\rho_{d}\left(\boldsymbol{x}_{o}\right)}{\pi} \frac{1}{N} \sum_{q=1}^{N} L_{e}\left(x_{\ell, q},-\vec{\omega}_{i, q}\right) V\left(x_{\ell, q}, x_{o}\right) \frac{\cos \theta_{i} \cos \theta_{\ell}}{\left\|x_{\ell, q}-\boldsymbol{x}_{i}\right\|^{2}} A_{\ell}
$$

Sampling for subsurface scattering

- Material:

$$
S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\ldots
$$

- Sampler:

$$
\begin{aligned}
\operatorname{pdf}\left(\vec{\omega}_{i, q}\right) & =\frac{\vec{\omega}_{i, q} \cdot \vec{n}_{i}}{\pi}=\frac{\cos \theta_{i}}{\pi} . \\
\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) & =\operatorname{pdf}(\triangle) \operatorname{pdf}\left(\boldsymbol{x}_{i, p, \Delta}\right) \\
& =\frac{A_{\triangle}}{A_{\ell}} \frac{1}{A_{\triangle}}=\frac{1}{A_{\ell}} .
\end{aligned}
$$

References

- Frisvad, J. R., Hachisuka, T., and Kjeldsen, T. K. Directional dipole model for subsurface scattering. ACM Transactions on Graphics 34(1), pp. 5:1-5:12, November 2014. Presented at SIGGRAPH 2015.
- Dal Corso, A., and Frisvad, J. R. Point cloud method for rendering BSSRDFs. Technical Report, Technical University of Denmark, 2018.

Rejection control

- The exponential attenuation $e^{-\sigma_{\text {tr }} d}$ appears in all analytical BSSRDFs and $d \rightarrow\left\|x_{o}-x_{i}\right\|$ for $\left\|x_{o}-x_{i}\right\| \rightarrow \infty$.
- We should exploit this.
- Russian roulette:
sample $\xi \in[0,1]$ uniformly;
if $\left(\xi<P_{1}\right)$
call event 1 ;
divide by p_{1};
else if $\left(\xi<P_{2}\right)$
call event 2;
divide by p_{2};
else if $\left(\xi<P_{3}\right)$
else if $\left(\xi<P_{4}\right)$

- When sampling \boldsymbol{x}_{i}, use Russian roulette with $p_{1}\left(\boldsymbol{x}_{i}\right)=P_{1}\left(\boldsymbol{x}_{i}\right)=e^{-\sigma_{\mathrm{tr}}\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|}$ to accept or reject a sample.

Progressive rendering of subsurface scattering

- The equation for reflected radiance:

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i} .
$$

- Initialize a frame by storing samples of transmitted light.
- For each sample:
- Sample a point ($\boldsymbol{x}_{i, p}$) on the surface of the scattering material by sampling a random triangle and then a random point in the triangle: $\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right)=1 / A_{\ell}$.
- Sample a ray direction $\vec{\omega}_{i, q}$ using a cosine-weighted hemisphere and trace they ray to collect incident light $L_{i}: \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)=\cos \theta_{i} / \pi$.
- Use $\vec{\omega}_{i, q}$ to find the direction of the transmitted/refracted ray and the Fresnel transmittance T_{12}.
- Store the transmitted radiance: $L_{t}=\frac{T_{12} L_{i} \cos \theta_{i}}{\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)}=T_{12} L_{i} \pi A_{\ell}$.

Progressive rendering of subsurface scattering

- The equation for reflected radiance:

$$
L_{r}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=\int_{A} \int_{2 \pi} S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right) \cos \theta_{i} \mathrm{~d} \omega_{i} \mathrm{~d} A_{i} .
$$

- For a ray hitting x_{o} with direction $-\vec{\omega}_{0}$:
- Compute Fresnel transmittance T_{21} of the ray refracting from inside to $\vec{\omega}_{o}$.
- Loop through the NM samples using exponential distance attenuation as the probability of acceptance in a Russian roulette (rejection control).
- Use L_{t} of accepted samples and T_{21} together with the analytical expression for S to Monte Carlo integrate the rendering equation.
- The Monte Carlo estimator for the diffusive part is (we use $N=1$):

$$
\begin{aligned}
L_{d, N, M}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right) & =\frac{1}{N M} \sum_{p=1}^{M} \sum_{q=1}^{N} \frac{S\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) L_{i}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q}\right) \cos \theta_{i}}{\operatorname{pdf}\left(\boldsymbol{x}_{i, p}\right) \operatorname{pdf}\left(\vec{\omega}_{i, q}\right)} \\
& =\frac{T_{21}}{N M} \sum_{p=1}^{M} \sum_{q=1}^{N} \frac{S_{d}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right) T_{12} L_{i}\left(\boldsymbol{x}_{i, p}, \vec{\omega}_{i, q}\right) \pi A_{\ell}}{e^{-\sigma_{t r}\left\|x_{o}-\boldsymbol{x}_{i, p}\right\|}}\left[\xi<e^{-\sigma_{t r}\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i, p}\right\|}\right] .
\end{aligned}
$$

Radiative transfer as diffusion

- The local formulation: Consider a point \boldsymbol{x} along a ray traversing a medium in the direction $\vec{\omega}$. Then

$$
(\vec{\omega} \cdot \nabla) L(\boldsymbol{x}, \vec{\omega})=-\sigma_{t}(\boldsymbol{x}) L(\boldsymbol{x}, \vec{\omega})+\sigma_{s}(\boldsymbol{x}) \int_{4 \pi} p\left(\boldsymbol{x}, \vec{\omega}^{\prime}, \vec{\omega}\right) L\left(\boldsymbol{x}, \vec{\omega}^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

- We assume that the medium is turbid (scattering), but not emissive. (The emission term $L_{e}(\boldsymbol{x}, \vec{\omega})$ has been left out.)
- To find a global formulation, we think of multiple scattering as a diffusion process.

Fluence and vector irradiance

- In diffusion theory, we use quantities that describe the light field in an element of volume of the scattering medium.
- Total flux, or fluence, is defined by

$$
\phi(\boldsymbol{x})=\int_{4 \pi} L(\boldsymbol{x}, \vec{\omega}) \mathrm{d} \omega .
$$

- Net flux, or vector irradiance, is

$$
\boldsymbol{E}(\boldsymbol{x})=\int_{4 \pi} \vec{\omega} L(\boldsymbol{x}, \vec{\omega}) \mathrm{d} \omega .
$$

- \boldsymbol{E} is measured in flux per (orthogonally) projected area.
- The areas are $\mathrm{d} y \mathrm{~d} z, \mathrm{~d} x \mathrm{~d} z$, and $\mathrm{d} x \mathrm{~d} y$.

Fick's law of diffusion

- The direction in which the fluence undergoes the greatest rate of increase is

$$
\nabla \phi=\left(\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y}, \frac{\partial \phi}{\partial z}\right) .
$$

- Intuitively it is then reasonable to assume the proportionality (Fick's law of diffusion)

$$
E(x)=-D(x) \nabla \phi(x) .
$$

- This assumption is only valid in the asymptotic regions of a medium, that is, in regions far enough from the boundaries to ensure that most light has suffered from multiple scattering events.
- The value of the diffusion coefficient D is also important for the correctness of the law.
- The standard value $D=1 /\left(3 \sigma_{t}^{\prime}\right)$ is valid for nearly isotropic, almost non-absorbing materials.

The diffusion equation

- Integrating the radiative transfer equation over all outgoing directions results in $\int_{4 \pi}(\vec{\omega} \cdot \nabla) L(\boldsymbol{x}, \vec{\omega}) \mathrm{d} \omega=-\int_{4 \pi} \sigma_{t}(\boldsymbol{x}) L(\boldsymbol{x}, \vec{\omega}) \mathrm{d} \omega+\int_{4 \pi} \sigma_{s}(\boldsymbol{x}) \int_{4 \pi} p\left(\boldsymbol{x}, \vec{\omega}^{\prime}, \vec{\omega}\right) L\left(\boldsymbol{x}, \vec{\omega}^{\prime}\right) \mathrm{d} \omega^{\prime} \mathrm{d} \omega$.
- In terms of fluence ϕ and vector irradiance \boldsymbol{E}, this turns into

$$
\nabla \cdot \boldsymbol{E}(\boldsymbol{x})=-\sigma_{t}(\boldsymbol{x}) \phi(\boldsymbol{x})+\sigma_{s}(\boldsymbol{x}) \phi(\boldsymbol{x})=-\sigma_{a}(\boldsymbol{x}) \phi(\boldsymbol{x})
$$

- Inserting Fick's law $(\boldsymbol{E}=-D \nabla \phi)$, we get the diffusion equation (for a non-emitter):

$$
\nabla \cdot(D(\boldsymbol{x}) \nabla \phi(\boldsymbol{x}))=\sigma_{a}(\boldsymbol{x}) \phi(\boldsymbol{x})
$$

which we can solve for ϕ to get the light field in a scattering medium.

Splitting up the BSSRDF

- Bidirectional scattering surface reflectance distribution function: $S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)$.
- In asymptotic regions of the medium, we can use diffusion.
- Splitting up the BSSRDF

$$
S\left(\boldsymbol{x}_{i}, \vec{\omega}_{i} ; \boldsymbol{x}_{o}, \vec{\omega}_{o}\right)=T_{o}\left(\vec{\omega}_{o}, n_{\mathrm{med}}, n_{o}\right) S_{d}\left(\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|\right) T_{i}\left(\vec{\omega}_{i}, n_{i}, n_{\mathrm{med}}\right)+\boldsymbol{S}^{1}
$$

where

- T_{i} and T_{o} are Fresnel transmittance terms.
- S^{1} is the single scattering operator.
- S_{d} is the diffusion part.
- $n_{\text {med }}, n_{i}$, and n_{o} are the refractive indices of the scattering medium, the one from where light is incident (incoming), and the one from where light is emergent (outgoing).
- Note that the diffusion part depends only on the distance between the point of incidence $\left(\boldsymbol{x}_{i}\right)$ and the point of emergence (\boldsymbol{x}_{o}).

The diffusion part of the BSSRDF

- Consider the diffusion part of the BSSRDF S_{d} only.

$$
\frac{\mathrm{d} L_{d}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)}{\mathrm{d} \Phi_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right)}=S_{d}\left(\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|\right)
$$

- Radiance is $L=\frac{\mathrm{d}^{2} \Phi}{\cos \theta \mathrm{~d} A \mathrm{~d} \omega}$, radiant exitance is $M=\frac{d \Phi}{d A}$.
- By cosine-weighted integration over all outgoing directions, we have

$$
\int_{2 \pi} \frac{\mathrm{~d} L_{d}\left(\boldsymbol{x}_{o}, \vec{\omega}_{o}\right)}{\mathrm{d} \Phi_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right)} \cos \theta \mathrm{d} \omega=\int_{2 \pi} S_{d}\left(\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|\right) \cos \theta \mathrm{d} \omega
$$

- Since S_{d} only depends on distance, we get

$$
\frac{\mathrm{d} M_{d}\left(\boldsymbol{x}_{o}\right)}{\mathrm{d} \Phi_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right)}=\pi S_{d}\left(\left\|\boldsymbol{x}_{o}-\boldsymbol{x}_{i}\right\|\right)
$$

Boundary conditions

- Assume that no diffuse radiance is scattered in the inward direction at the surface. Then

$$
\left.\begin{array}{l}
\int_{-2 \pi}^{L\left(\boldsymbol{x}, \vec{\omega}^{\prime}\right) \cos \theta \mathrm{d} \omega^{\prime}=0} \\
\int_{2 \pi} L\left(\boldsymbol{x}, \vec{\omega}^{\prime}\right) \cos \theta \mathrm{d} \omega^{\prime}=M_{d}(\boldsymbol{x})
\end{array}\right\} \Rightarrow M_{d}(\boldsymbol{x})=\int_{4 \pi} L\left(\boldsymbol{x}, \vec{\omega}^{\prime}\right) \cos \theta \mathrm{d} \omega^{\prime}=\vec{n} \cdot \boldsymbol{E}(\boldsymbol{x}) .
$$

- The assumption rarely holds, but this gives a link between surface and volume rendering (the local and the global formulation of radiative transfer):

$$
M_{d}(\boldsymbol{x})=\vec{n} \cdot \boldsymbol{E}(\boldsymbol{x})
$$

where \vec{n} is the unit length surface normal.

- This link is crucial for the model. A correction is used later to alleviate the error introduced by the incorrect assumption.

The dipole approximation

- An approximate solution for the diffusion equation:

$$
\phi(z)=\frac{\Phi}{4 \pi D}\left(\frac{e^{-\sigma_{\mathrm{tr}} d_{r}}}{d_{r}}-\frac{e^{-\sigma_{\mathrm{tr}} d_{v}}}{d_{v}}\right), \quad \sigma_{\mathrm{tr}}=\sqrt{3 \sigma_{a} \sigma_{t}^{\prime}}, \sigma_{t}^{\prime}=\sigma_{a}+(1-g) \sigma_{s}
$$

- σ_{s} is the scattering coefficient.
- σ_{a} is the absorption coefficient.
- g is the asymmetry parameter.
- r is the distance between $\boldsymbol{x}_{\boldsymbol{i}}$ and \boldsymbol{x}_{0}.

Putting the math together

- Fick's law $(\boldsymbol{E}=-D \nabla \phi)$ and the boundary conditions:

$$
M_{d}(\boldsymbol{x})=\vec{n} \cdot \boldsymbol{E}(\boldsymbol{x})=-D \vec{n} \cdot \nabla \phi(\boldsymbol{x}) .
$$

- Using the rendering equation $\frac{\mathrm{d} M_{d}}{\mathrm{~d} \Phi_{i}}=\pi S_{d}$:

$$
\pi S_{d}\left(\left\|x_{o}-\boldsymbol{x}_{i}\right\|\right)=-D \frac{\mathrm{~d}\left(\vec{n} \cdot \nabla \phi\left(\boldsymbol{x}_{o}\right)\right)}{\mathrm{d} \Phi_{i}\left(\boldsymbol{x}_{i}, \vec{\omega}_{i}\right)}
$$

- Inserting the dipole approximation of ϕ :

$$
\pi S_{d}(r)=-D \frac{\mathrm{~d} \Phi}{\mathrm{~d} \Phi_{i}} \frac{\partial}{\partial z}\left[\frac{1}{4 \pi D}\left(\frac{e^{-\sigma_{\mathrm{tr}} d_{r}(z, r)}}{d_{r}(z, r)}-\frac{e^{-\sigma_{\mathrm{tr}} d_{v}(z, r)}}{d_{v}(z, r)}\right)\right]
$$

where

$$
d_{r}(z, r)=\sqrt{r^{2}+\left(z+z_{r}\right)^{2}} \quad \text { and } \quad d_{v}(z, r)=\sqrt{r^{2}+\left(z-z_{v}\right)^{2}} .
$$

The subsurface scattering model

- Taking the partial derivative with respect to z and afterwards setting $z=0$:

$$
S_{d}(r)=\frac{1}{4 \pi^{2}} \frac{\mathrm{~d} \Phi}{\mathrm{~d} \Phi_{i}}\left(\frac{z_{r}\left(1+\sigma_{\mathrm{tr}} d_{r}\right) e^{-\sigma_{\mathrm{tr}} d_{r}}}{d_{r}^{3}}+\frac{z_{v}\left(1+\sigma_{\mathrm{tr}} d_{v}\right) e^{-\sigma_{\mathrm{tr}} d_{v}}}{d_{v}^{3}}\right) .
$$

with $d_{r}(r)=\sqrt{r^{2}+z_{r}^{2}}$ and $d_{v}(r)=\sqrt{r^{2}+z_{v}^{2}}$.

- It remains now only to estimate Φ, z_{r}, and z_{v}.
- The model is based on reduced scattering properties:
- Reduced scattering coefficient: $\sigma_{s}^{\prime}=\sigma_{s}(1-g)$.
- Reduced extinction coefficient: $\sigma_{t}^{\prime}=\sigma_{s}^{\prime}+\sigma_{a}$.
- Reduced scattering albedo: $\alpha^{\prime}=\sigma_{s}^{\prime} / \sigma_{t}^{\prime}$.
- Transport mean free path: $\Lambda=1 / \sigma_{t}^{\prime}$.
- From these we define: $\Phi=\alpha^{\prime} \Phi_{i}$ (meaning $\frac{d \Phi}{d \Phi_{i}}=\alpha^{\prime}$) and $z_{r}=1 / \sigma_{t}^{\prime}$.
- The displacement of the virtual source z_{v} is corrected to mitigate the boundary condition error: $z_{v}=z_{r}+4 A D$, where $D=1 /\left(3 \sigma_{t}^{\prime}\right)$ is the diffusion coefficient and A is the reflection (or the Groenhuis) parameter.

Validity

Figure from Craig Donner's PhD thesis [2006].

References

- Donner, C. Towards Realistic Image Synthesis of Scattering Materials, PhD thesis, University of California, San Diego, 2006.

